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Leishmaniasis are a group of neglected tropical vector-borne diseases caused by

an obligate intracellular protozoan parasite of the genus Leishmania. Currently,

standard chemotherapy has challenges due to its cytotoxicity, cost, painful route of

administration, long treatment duration, resultant partial efficacy, and high risk of

resistance. To overcome this issue, new intervention approaches have been

formulated to treat leishmaniasis. Host-directed immunotherapy is a novel approach

that involves the adoptive transfer of host-derived biomolecules to enhance the

natural power of protective cellular immunity. This restores the function of effector

cells, enabling them to clear intracellular amastigotes and leads to the recovery of

patients from infections. The advantages of this modality over routine treatment

include less cytotoxicity, short hospitalization, affordability, and better efficacy for

drug-resistant parasite strains. Several studies have reported better efficacy of this

treatment model for drug-resistant Leishmania species. However, current knowledge

and evidence are highly insufficient to implement this agent to treat any form of

leishmaniasis. This review aims to show the efficacy of this immunotherapeutic agent

against leishmaniasis. The discussion has focused on major pro-inflammatory

cytokines (interferon-gamma, interleukin-12, and granulocyte-macrophage colony-

stimulating factors), immune cells (dendritic and mesenchymal stem cells), and

monoclonal-antibodies (anti-interleukin-10, anti-interleukin-4, and immune

checkpoint inhibitory molecules). Our finding shows that this treatment approach

has the potential to be a successful treatment and improve clinical outcomes by

reducing the adverse effects of routine therapy. This suggests the future deployment of

this treatment modality as an alternative strategy. However, it needs extensive pre-

clinical trials using local animal models that reflect typical host immunological profiles

against leishmaniasis in order to select the most protective candidate agents.
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Introduction

Leishmaniasis are a group of neglected tropical diseases caused by

obligate intracellular protozoan parasites of the genus Leishmania (1).

Over 20 different Leishmania species have been reported to be

pathogenic for humans (2, 3). These are transmitted to the host

through the bite of infected female sand-flies of genera Lutzomyia

and Phelbotomus in both developing and developed countries (4, 5).

Leishmaniasis remains a serious major public health problem, resulting

in substantial morbidity and mortality (1, 3). Globally, it was estimated

to affect over 12 million people with an annual incidence of 2 to 2.5

million new cases, resulting in 774,000 disability-adjusted life years

(DALYs), 60,000 deaths, and 350 million people at risk (1, 6). Of this

burden, 90% of cases disproportionally occur in the Indian

subcontinent, Latin America, and Africa. Ethiopia is one of the

African countries highly affected by leishmaniasis where L. donovani

and L. aethiopica are etiological agents for all clinical forms of the

disease (7, 8). Environmental and behavioral aspects, low

socioeconomic conditions, population mobility, an increase in HIV

co-infection, a lack of vaccines, and the expansion of resistance to

current chemotherapy are some of the factors behind the persistent rise

in leishmaniasis in endemic regions (9).

Depending on the pathogenic parasite species and the immune

status of the infected host, the clinical manifestations of leishmaniasis

range from self-healing localized cutaneous (LCL) and diffused

cutaneous leishmaniasis (DCL) to severe deep visceral forms (10).

Cutaneous leishmaniasis (CL) is caused by L. tropica complex species

in Europe, Asia, and Africa, and L. mexicana complex in the

Americas and the Caribbean. It is self-resolving with long-life

immunity and features ulcerative skin lesions on the face, hand,

and feet (3, 7). Nevertheless, among immunocompromised

individuals, including those with human immune deficiency virus

(HIV) and patients with defective cellular immune responses, CL is

not self-healing (11). Since it can cause long-lasting chronic and

diffuse forms. A mucocutaneous leishmaniasis (MCL) is a severe

form of LCL infection that affects the lips and nostrils. This is usually

provoked by L. brasilliensis, L. panamensis, or L. guyanensis agents

(12). This spectrum is associated with high morbidity and is

potentially life-threatening if untreated (13). Remarkably, current

genomic studies findings have documented the emergence of L.

donovani, a causal agent for CL in different regions including

Ethiopia (14, 15).

Visceral leishmaniasis (VL) is the most dangerous and damaging

form of infection that attacks the reticuloendothelial system and is

caused by the L. donovani complex. Hepatosplenomegaly, weight

loss, fever, and pancytopenia are the clinical features of VL, and it is

100% lethal if left untreated (16, 17). Furthermore, 10% to 20% of VL

patients still die while receiving standard chemotherapy (5). It is clear

that the outcome of leishmaniasis pathology is linked to an imbalance

in the T helper-1/T helper 2 (Th1/Th2) immunological makeup (11).

Thus, the presence of pro-inflammatory cytokines is protective, and

the key to treatment and recovery. Leishmania involves heteroxenic

life stages of the metacyclic promastigote stage in the sand fly’s

midgut and ovoid spherical intracellular amastigote forms in the

mammalian host (1).
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In humans, a lifecycle begins when an infective promastigote is

injected into the skin by female sand flies during a blood meal.

Professional phagocytes including neutrophils, dendritic cells

(DCs), and macrophages (MQs) ingest the promastigote and

transform it into a round, non-flagellated amastigote. In these

cells, amastigotes survive and multiply by binary fission, rupture

of infected cells, and are released into the circulation to infect new

phagocytic cells. The sand flies feed on the infected blood, taking

amastigotes, and the lifecycle continues in a circular fashion (7).

Moreover, this intracellular amastigote is a target for host immunity

and different therapeutic models for disease management.
Human immunity to leishmaniasis

Once infective metacyclic promastigotes are inoculated into

human skin, the parasite needs rapid host cell entry where they

differentiate into amastigotes which survive and propagate in the

harsh/acidic cell environment (18). The parasites are challenged by

complement proteins prior to their cell entry into the infection site.

These proteins are part of innate immunity that kills promastigotes

by classical activation, and the amastigotes by alternative pathways

(13). Resident/recruited neutrophils, macrophages, and dendritic cells

are initial innate responses that identify pathogen components via

pattern recognition receptors (PRR) (19). Yet, some studies state that

neutrophils cannot kill promastigotes since the parasite inhibits

apoptotic signals, delaying the lifespan of cells and thereby

spreading to macrophages using the Trojan horse principle (20). In

contrast, MQs and DCs are key for the rapid clearance of invading

parasites and initiating adaptive immunity that produces a specific

response. In this, toll-like receptors (TLRs) are vital cellular receptors

used to identify pathogen-associated molecular patterns (PAMPs) for

downstream signal transduction and activation in the innate response

(13, 21). Particularly, TLR2 and TLR4 are surface receptors in MQs

that detect specific ligands of parasites from outside, while TLR3 and

TLR9 recognize them from vacuoles and become activated. Activated

TLRs recruit adapter proteins such as myeloid differentiation 88

(MyD88) to stimulate Nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-kB) transcription factors which migrate into the

nucleus and initiate DNA transcription for the synthesis of pro-

inflammatory cytokines/chemokines and toxic free radicals that kill

amastigotes (22, 23).

Effective anti-leishmanial immunity requires the synergetic

interaction of immune cells, cytokine microenvironment, and

chemokines (24). Pro-inflammatory cytokines produced by DCs

(IL-12) prime cluster of differentiation 4 (CD4+) naive T-cells to

differentiate into the Th1 phenotype, the main source of interferon-

gamma (IFN-g) that is used for MQ stimulation/activation (5). The

activation of MQs by endogenously produced IFN-g upregulates the
inducible nitric oxide synthetase and mediates nitric/oxygen

radical-dependent killing of intracellular amastigotes (17, 20).

Among immunocompetent hosts, natural killer cells, a Th1

cytokine (IFN-g, IL-12, or TNF-a), DCs, and MQs are major

sources of protective immunity against leishmaniasis (25). In

contrast, disease progression is linked with a Th2 cytokine milieu
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that is primarily featured by the presence of interleukin-4 (IL-4),

interleukin-10 (IL-10), IL-13, and TGF-b (5, 26). Understanding

the complicated involvement of host immune molecules with

critical activity for leishmaniasis prevention is an important

method for establishing exogenous host-directed immunotherapy.
Host immunomodulation and
intracellular survival of the
Leishmania parasite

In resistant hosts, classically activated MQs are pioneer cells

that kill intracellular parasites by secretion of toxic radicals and the

synthesis of pro-inflammatory cytokines (5, 25). However,

Leishmania evade and modulate the physiological functions of

MQs by glycoprotein 63 and lipophosphoglycan effectors

expressed on the parasite’s surface. These are released into the

cytoplasm, altering the most desirable host cell signaling pathways

(27). The Janus tyrosine kinase/signal transducer and activator of

transcription (JAK/STAT) signaling pathway of MQs is modulated

by Leishmania. This downregulates the synthesis of protective

cytokines, chemokines, and toxic nitric (NOS-)/oxygen radicals.

The production of Th2 (IL-10, IL-4, IL-5, and TGF-b) become

highly upregulated during this time (5, 28).

Of the Th2 cytokines, IL-10 and IL-4 downregulate human

protective immune arms (Th1) by blocking the activity of IFN-g,
deactivating MQs, inhibiting the proliferation of lymphocytes,

reducing expression of major histocompatibility complex II

(MHC II) molecules, and hindering the biogenesis and

maturation of phagolysosome, and oxidative stress guarantees

host immunosuppression, and parasite survival, proliferation, and

disease progression (22, 29). Furthermore, immunosuppression is

the main cause of poor treatment outcomes and frequent disease

relapses among patients treated with conventional chemotherapy

(5). Thus, immunomodulation therapy that restores the ordinary

function of MQ cells and neutralizes immunosuppressive Th2

cytokines using monoclonal antibodies (mAbs) is now a growing

therapeutic approach for Leishmania infection (4).
Conventional anti-leishmanial
chemotherapy and their drawbacks

Pentavalent ant imonial , mi l tefos ine , deoxycholate

amphotericin B, paromomycin, and liposomal amphotericin B

(AmBisome) are the currently available first and second-line anti-

leishmanial drugs. The route of administration for these drugs is

painful systemic intravenous and intramuscular infusion except for

miltefosine (30–32). The activation of impaired effector cells to

produce parasiticidal toxic radicals and cytokines that enhance host

defense is one of their mechanisms (11, 33). However, cytotoxicity,

cost, painful route of administration with prolonged treatment

course, and poor patient compliance are challenges in
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chemotherapy (5, 34). Additionally, their efficacy is affected by

variations in parasite species, drug pharmacokinetic features,

patient immune/nutritional status, and regional features (9, 35).

The evolution of drug-resistant parasite strains against pentavalent

antimony is one of the public health threats in endemic regions of

developing countries. According to an Indian report, nearly 60% to

90% of antimony-treated patients were found to be unresponsive,

which pushed them to decide on the utilization of second-line drugs

(36–38). Chemotherapy cannot provide a complete cure in zoonotic

cases, which might be the main obstacle in the control of

leishmaniasis since this disease is spread by the sand-fly (5).

To circumvent all the challenges of conventional therapy, there

was an extensive clinical trial to design vaccine therapy using mouse,

dog, and primate animal models. However, there is a paucity of

effective licensed vaccines for human leishmaniasis partly due to the

complexity of the host-parasite interaction and/or human’s delicate

immune modulation system (37). Therefore, a change in drug policy

is required to escape the impact of drug and immune-resistant strain

infections (20). At this point, the immunomodulatory treatment

approach might offer vital solutions with the prospect of breaking

parasite transmission and the risk of drug resistance (4, 39).

Immunopathology treatment using immune factors has been

suggested as an appropriate therapeutic system in chronic and

acute infectious diseases (12, 34). Some studies have focused on

applying major cytokines, monoclonal antibodies, immune cells, and

inhibitory immune checkpoints for the targeted treatment of

leishmaniasis to restore the functional activity of impaired MQs

and other immune cells (4, 34). These immunomodulation treatment

approaches are collectively called immunotherapy (40).

The term immunotherapy, often known as biotherapy, refers to

the use of biological molecules that modulate immune responses to

achieve preventative/therapeutic goals (41). This term can be used to

describe pathogen-directed/vaccine immunotherapy that delivers

parasite antigens to induce cell-mediated immunity, known as

active immunotherapy. Additionally, the term can be used for

other types of therapy that comprise passive or adoptive transfer of

host-derived biomolecules such as cytokines, immune cells,

and monoclonal antibodies to enhance the natural power of

immunity in leishmaniasis, called host-directed immunotherapy

(HDT) (2, 19). This therapeutic model is based on the basic

concept that the immune system can protect against different

infections but disease occurs when there is a failure of or

suboptimal and excessive immune reactions. This might be

remedied by using a suitable immunomodulation intervention that

redirects the effector function of cells and/or reduces an inflated

response using biological modifiers (20).

For two decades, immunotherapy with and without

chemotherapy has been developed and applied as an additional

approach for the treatment of leishmaniasis (4, 42). Different

reviews of this therapy have shown its ability to accelerate the

targeted specific effector cell response to the parasiticidal state and

its efficacy in the clearance of parasites, including drug-resistant

strains (42). However, most of the reviews of immunotherapy have

focused on pathogen-directed (vaccine immunotherapy) with very
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limited information regarding HDT against leishmaniasis.

Moreover, the available reviews of HDT are only a part of either

cellular therapy/cytokine or monoclonal antibody therapies. Thus,

review efforts that deliver comprehensive data on the therapeutic

potential of HDT against leishmaniasis are required. This review

aimed to provide comprehensive evidence of the therapeutic

potential of major HDT candidate agents (cytokine, cellular,

monoclonal antibody, and immune checkpoint inhibitor) therapy

against leishmaniasis from different pre-clinical, experimental

animal model and/or human-based studies.
Host-directed immunotherapy and its
efficacy against leishmaniasis

Host-directed immunotherapy refers to a novel treatmentmodality

that uses host-derived biomolecules for the treatment of leishmaniasis

(43). It is a broad-spectrum treatment that could treat infectious

diseases with high mortality rates (12). The historical background of

HDT dates back to a large early clinical trial in influenza, hepatitis,

HIV, systemic respiratory syndrome, and tuberculosis with promising

efficacy (44, 45). HDT remains a superior treatment modality to treat

several immunopathological conditions including allergy, autoimmune

disease, cancer, hepatitis, and leishmaniasis (5).

HDT enhances the natural power of the innate and adaptive

immune system, restoring the function of covert effector cells, and

reducing the immunopathology, leading to host recovery from

infection (5). It contains different multi-potent host-derived

immunostimulatory or neutralizing agents, namely, cytokines,

immune cells, mAbs, and immune checkpoint inhibitors. These

host-derived products have ultimately been found to augment host

cellular defense capacity and improve clinical outcomes in patients

with leishmaniasis measured by reduced parasite load, morbidity,

mortality rate, and recovery. This makes HDT the suggested practical

alternative for intervention in leishmaniasis with and without routine

chemotherapy (4, 43). The general mechanism of action of HDT

against Leishmania parasites involves the re-direction of pro-active

effector or memory responses, activation of autophagy/apoptosis, the

induction of oxidative/nitrosative stress, and enhancement of antigen

processing/presentation by antigen-presenting cells (APCs) which

triggers an efficient clearance of intracellular amastigotes (43).

Additionally, HDT works by shifting non-protective Th2

immune arms into the protective Th1 phenotype, ameliorating

the pathological pathway of leishmaniasis (12). Thus, major

mAbs, immune cells, cytokines, and immune checkpoint

inhibitors that trigger the restoration of diverted effector cells to

the parasiticidal state seem promising candidates for the treatment

of leishmaniasis (2). The advantages of HDT over conventional

chemotherapy include less cytotoxicity, more therapeutic success,

short hospitalization, affordability, lower teratogenicity risk,

avoidance of drug-resistant strains, and species-dependent efficacy

(12, 39). The next section will focus on potential HDT candidates

and their treatment efficacy in different forms of leishmaniasis in

animal and/or human models.
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Potential host-directed therapeutic
candidate agents against leishmaniasis

Following the identification of the normal function of Th1/Th2

cytokines, mAbs, and different immune cells in the natural course of

leishmaniasis, several immunotherapeutic approaches have been

implicated in the treatment of the infection (4). The enhancement

of Th1 immune responses and neutralization of Th2 cytokines are

the main mechanisms of action and were suggested as a promising

alternative treatment for leishmaniasis (1, 34). This review

addresses the therapeutic effect of selected Th1 cytokines, mAbs,

innate immune cells, and immune checkpoint inhibitory molecules

against leishmaniasis from animal models and human studies (43).
Cytokine-based immunotherapy
against leishmaniasis

Cytokines are messenger molecules that mediate intercellular

communication in the immune system and are produced by

different cell types. They have pleiotropic and regulatory effects

involving host defense processes (46). In leishmaniasis, cytokines

are critical decision-makers that facilitate disease progression or

host resistance and they are key targets for diagnosis and/or

immunotherapy (4). The history of cytokine therapy dates back

to an experiment by Murray et al. in which the effect of anti-IL10

mAbs for the treatment of leishmaniasis was explored (47). Th1

cytokines (IFN-g and IL-12) are protective immune arms for

leishmaniasis, while Th2/T-reg cytokines (IL-10, IL-4,IL-5, and

IL-13) facilitate the parasite’s progression by downregulating the

Th1 response (4). Thus, in the center of cytokine immunotherapy,

IFN-g and IL-12 have received great attention as targets for host-

directed immunotherapy (1). Thus, the therapeutic potential of

both pro-inflammatory cytokines is reviewed in the next section.
Interferon gamma-
based immunotherapy

IFN-g is a homodimer glycoprotein consisting of two subunits

each approximately 21 to 24 kDa. Of the several anti-leishmanial

cytokines, IFN-g is the most potent cytokine in host protection and

plays a key role in macrophage activation to a leishmanicidal state

(48–50). It is a monocyte-activating factor that augments the release

of oxygen radicals, secretion of pro-inflammatory cytokines,

expression of major histocompatibility class II (MHC class-II),

and antigen presentation (49, 51). Moreover, IFN-g blocks the

production of IL-10, which shifts the Th1 to the Th2 response

(52). The main cellular sources of IFN-g production are activated

CD4+ T cells, CD8+ T-cells, and natural killer (NK) cells after IL-12

signaling (48). With this activation and blockage role against

parasites, IFN-g has been suggested to be a promising candidate

for the treatment of leishmaniasis.
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A study elsewhere used lymphokines (IFN-g) collected from

murine spleen cell culture supernatant encapsulated in liposomes

for the treatment of VL. The treated mice had a reduction of

parasite burden in their livers compared with the untreated control,

indicating the protective effect of lymphokines against

leishmaniasis. Another study treated VL infection using

recombinant Th1 cytokines (r IFN-g and rIL-2), after challenging

mice with L. donovani. The therapeutic efficacy was observed with a

substantial reduction of parasite burden among the treated mice

(34). In another study on the treatment of VL in C57BL/6 and Balb/

c mice, rIFN-g and muramyl tripeptide (MTP-PE) were

administered by several intravenous injections in varying doses,

and the treated mice had a decreased parasite burden in the spleen

(53). Furthermore, a combination therapy of recombinant human

IFN-g and pentavalent antimonials has been reported to provide

better parasitological and clinical treatment compared to drug

monotherapy in VL patients from Brazil, Kenya, and India. This

indicates a short course of IFN-g can have adequate synergetic

effects to activate/stimulate macrophages, thereby accelerating the

immune-induced efficacy of drugs (4).

Furthermore, 13 VL patients were enrolled in an open-label trial

in an Indian hospital to examine the treatment efficacy of cytokines

against L. donovani infection. These patients previously failed

antimonial and pentamidine treatments and had repeatedly

relapsed. For these patients, a combination of IFN -g plus

antimony was administrated, and 69% of them were cured of the

VL infection (54). This suggests the beneficial effect of IFN-g for

patients with standard treatment and primarily reflects its capacity

to activate monocytes and macrophages to kill intracellular L.

donovani. IFN- g therapy influences immunopathogenic

mechanisms by promoting a Th1 response and by inhibiting a

suppressive Th2-associated response (54).Similarly, IFN-g was

found to be effective for the treatment of cutaneous leishmaniasis

in certain trials (12). Moreover, a study on L. donovani-infected

mice continuously infused them with IFN- g via intraperitoneal

routes. The result showed that 50% of the treated mice had a

reduction in liver parasite burden, indicating that the effect of IFN-

g on MQ activation exploits antimicrobial effects with or without

conventional chemotherapy (55) (Table 1).
Interleukin-12-based immunotherapy

IL-12 is a pro-inflammatory heterodimer cytokine with two

subunits (35 and 40 kDa) connected by a disulfide bond and it is

primarily produced by activated macrophages and DCs. The

production of IL-12 is often linked to protective immunity

against leishmaniasis and it bridges innate and adaptive immune

responses (56, 57). It promotes the Th1 response and synthesis of

IFN- g and other lymphokines from NK and T cells, and increases

nitric oxide synthetase 2(NOS2) expression and NO generation.

This mediates T-cell proliferation, upregulating the leshimanicidal

activity of macrophages to eliminate amastigotes. Moreover, IL-12

limits the synthesis of IL-4 by CD4+ T cells, controlling the growth

of Th2 arms and clearing leishmaniasis (58–60). As a result, it is one

of the key target cytokines inhibited by Leishmania to escape
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immunity. Because of these hopeful in vivo protective roles of IL-

12, it has been suggested as a promising candidate agent for host-

direct immunotherapeutic approaches.

To prove its protective role, some experiments have removed IL-

12 cytokines from L. major and L. donovani-infected hosts. The

outcome was a rapid progression of disease. The addition of IL-12 to

the lymphocyte culture of patients with VL restored IFN-g synthesis
and improved the cytotoxic activity of NK cells, resulting in recovery

from infection (60–62). Furthermore, exogenous administration of

the rIL-12 cytokine for the treatment of leishmaniasis had been found

to give rise to resistance among treated susceptible mice (63),

indicating its value in clinical outcomes. Similarly, treatment of L.

major-infected BALB/c mice with IL-12 cytokines was reported to

reduce parasite load and lesion size. This treatment is linked to the

pronounced effect of IL-12 on T cell growth together with the IFN-

stimulatory effects while suppressing IL-4 production. In another

experiment, L. major-infected BALB/c mice were treated with mouse

rIL-12 via the intraperitoneal route of injection at the first week of

infection to determine its therapeutic role against leishmaniasis. The

outcome revealed that 89% of BALB/c mice were cured, as measured

by the reduction lesion size and there was a 1,000 to 10,000-fold

decrease in parasite burden after the treatments. Furthermore, the

mice were found to be resistant to subsequent infections after a 4-

month follow-up (63) (Table 1).
Granulocyte-macrophage colony-
stimulating factors

A granulocyte-macrophage colony-stimulating factor (GM-

CSF) is a key humoral growth factor glycoprotein that stimulates

the production of neutrophilic granulocytes and macrophages from

bone marrow precursor cells. Additionally, it upregulates the

proliferation and clonal expansion of blood monocytes and tissue

macrophages (64). Interleukin 3 (IL-3) and CSF-1 are fundamental

components of GM-CSF that stimulate the proliferation, activation,

and chemotaxis of T lymphocytes, keratinocytes, endothelial, and

professional phagocytic cells. This is a critical role in developing

functional, robust innate immunity towards a range of intracellular

pathogens including Leishmania, suggested GM-CSF is a candidate

for immunomodulatory therapy (65, 66). A clinical trial study on

GM-CSF treatment in AIDS, cancer, aplastic anemia,

myelodysplastic syndromes, and patients with Leishmania was

undertaken and the finding shows a significant increase in the

number of myeloid cells and resultant recovery from disease after

GM-CSF treatments (67–69).

Leishmania infection compromises the effector function of MQs

by inhibiting cellular signaling pathways, transcription factors, and

protease-dependent cleavages of host immune factors, thereby

reducing the ability of MQs to secret pro-inflammatory cytokines

and toxic anti-parasitic molecules and resulting in the

commencement of infection (70). GM-CSF stimulates both Th1

and Th2 cell subsets and it activates macrophages to destroy

Leishmania. In addition to parasiticidal activities, GM-CSF is

known to promote fibrosis and tissue wound healing, which plays a
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key role in the recovery of lesions in patients with CL (71). Thus,

administration of GM-CSF in patients with leishmaniasis appears a

promising HDT agent since it enhances MQ phagocytic activity,

secretion of anti-parasitic molecules, and destruction of the

intracellular stage of parasites, improving patient outcomes while

reducing the risk of drug resistance (40, 72). This review aims to

summarize the HDT effect of GM-CSF against leishmaniasis.

In a randomized, double-blind study on patients with CL, one

group received a combination of stibogluconate and GM-CSF

whereas the other group received stibogluconate alone. The study

demonstrated that the patients with CL who received the

combination therapy had a higher proportion of recovery and

quicker wound healing than those who received stibogluconate

monotherapy. This suggests that GM-CSF may have a greater

impact on effective antigen presentations, overall parasiticidal

activity of MQ, rapid scar formation, and better immunological

maturation than chemotherapy alone (72). Another experimental

work was carried out on VL-infected BALB/c mice to evaluate the

therapeutic role of GM-CSF against leishmaniasis. In this study,

L. donovani-infected mice were treated with murine anti-GM-

CSF antibodies, which may neutralize endogenous GM-CSF

cytokines and change the maturation of mice immunity against

infection. Thus, the study found severe disease progression and a

threefold increase in liver parasite load following anti-GM-CSF

medication. This validated the therapeutic role of GM-CSF

against Leishmania, making it a promising HDT candidate

(65) (Table 1).
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Cellular therapy against leishmaniasis

Dendritic cell immunotherapy

Immune cell therapy is a novel modality to combat different

infectious diseases and cancer (73). A dendritic cell is a network of

diverse cell types that develop from hematopoietic stem cells in the

bonemarrow (74). It is a highly specialized APC of the immune system

capable of priming naïve T cells and mounting a T cell response upon

pathogen entry in the body. This is a significant cell bridging innate and

adaptive immunity since it uptakes/processes antigens, matures and

upregulates MHCII and co-stimulatory molecules, migrates to lymph

nodes, and activates T cells to differentiate into effector Th1 cells

through the synthesis of IL-12 (73, 75). For therapy, DCs act by

boosting antigen-specific T-cell immunity, activating T cells, B cells,

and NK cells. Furthermore, DCs inhibit the early secretion of

immunosuppressive IL-10 cytokines, conversely stimulating the

synthesis of Th1 cytokines. Thus, DCs are a desirable candidate for

immunotherapy because of their role in the induction of memory T-

cell differentiation and host protection (4, 74).

In experiments, DC-based immunotherapy combined with an

antimony drug was very effective against murine VL (76). Bone

marrow-derived DCs pulsed with soluble parasite antigens were given

in combination with antimonial to mice infected with L. donovani, and

the results showed a significant reduction in the parasite load in both

liver and spleen organs (42, 76) (Table 1). Thus, the future of DC-based

therapy appears promising as a prospective treatment against VL.
TABLE 1 Summary of the HDT candidate agents and post-treatment clinical response in animal models and human populations.

HDT candidate Agents Infected host Infecting parasite species Clinical response/treatment
outcome (Ref)

A. Cytokines

1. IFN- g Mice L. donovani Substantial ↓ in host PL (4, 34, 46, 97)

2. IFN- g Human L.donovani Significant ↓in host PL (4, 98)

3. IL-12 Mice and human L. major + L. donovani Mice and patient cured (59, 60, 62)

4. IL-12 BALB/c mice L. major Mice cured (60, 63)

5. GM-CSF BALB/c mice L.donovani + L. amazonensi Significant ↓ in PL (65, 99)

B. Cellular

1. BDDCs Murine L. donovani Significant ↓ in host PL (42, 76)

2. BM MSCs BALB/c mice L. amazonensis Significant ↓ in PL and lesion size (77)

3. BMMSCs BALB/c mice L. major Significant ↓PL and improved (77, 79)

4. ADMSCs C57BL/6mice L. amazonensis Greater ↓in PL and lesion size (80)

C. Antibody

1. Anti-IL-4 + IL-10 C57BL/6mice L. major 85% of mice cured (4, 34, 87, 88, 100)

2. Anti-IL-10R + IL-2 BALB/c Mice L. donovani Significant ↓ in host PL (95, 101)

3. Anti-hIL-10 Human L. amazonensis significant↓in host PL (83)
PL, Parasite load; BALB/c, susceptible albino mice; BDDC, Bone marrow derived dendritic cells; BMMSC, Bone marrow mesenchymal stem cells; ↓, reduction; ADMSCs, Adipose tissue MSCs;
C57BL/6mice, resistant mice; +, symbol for ‘‘plus’’; Ref, Reference; %, Percentage.
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Mesenchymal stem cell immunotherapy
against leishmaniasis

Mesenchymal stem cells (MSCs) are a subset of adult stem cells

that can differentiate into a wide range of functional cells as well as

proliferate and self-renewal. These are usually found in bone marrow,

but they can also be found in the blood, dermis, cartilage, muscle,

tendons, spleen, adipose tissue, thymus, tooth pulp, and embryonic

tissues (77). Due to their capacity to move rapidly to the site of

infections, and other characteristics of cell proliferation, multi-potent

differentiation, and cytokine production/immune modulation, MSCs

have been postulated to be used in cell therapy for a variety of

infections including leishmaniasis (78).

In certain experiments, BALB/c mice were infected with L.

major and treated with an intra-lesion injections of mesenchymal

stem cells, glucantime, or glucantime + mesenchymal stem cells.

The result showed that the mice that were treated with

mesenchymal stem cells revealed significant regression and

healing of the lesions. Furthermore, they found that a

proliferation of splenocytes stimulated with soluble Leishmania

antigen, the efficacy of phagocytosis in MQs of the mice treated

with mesenchymal stem cells was considerably higher, and the

clinical outcome of infection was improved (77).

In another experiment, bone marrow MSCs were injected

intravenously and intra-lesionally into a BALB/c mice model that

had been infected with L. amazonensis. The therapeutic outcomes

indicated that there was no appreciable difference in lesion

progression regardless of the MSC delivery method but the

analysis of spleen cellular profiles revealed that only mice given

intravenous MSCs had higher levels of IL-10-producing CD4+ and

CD8+ T cells. This cell upregulates macrophage phagocytosis and

splenocyte multiplication, inhibiting parasite duplication and

lesions (77, 79).

Furthermore, adipose tissue-sourced mesenchymal stromal

cells (AD-MSCs) were evaluated in vivo in C57BL/6 mice

infected with L.amazonosis and two doses of AD-MSCs were

injected into the jugular vein and the vein was clamped for a

few seconds to avoid any loss of blood or injected cells. When

compared to the untreated control, the AD-MSC treatment

conferred partial protection against infection. Moreover, the

same infected mice were treated with a combination of

antimonial + MSCs and antimonials only. In comparison to the

mice that only received antimonials, the study demonstrated that

the combination therapy offered a greater reduction in lesion size

and parasite burden, demonstrating the ability of AD-MSC

therapy to activate mouse macrophages to produce parasiticidal

effects (80). Once MSCs are injected into an infected host, they will

migrate to the infection site using homing receptors, performing

multiple immunological functions. Initially, MSC signals

recruitment of blood monocyte to the site of infection, allowing

cells to be differentiated to MQs. These phagocytic cells ingest the

parasite and are activated to secret toxic oxygen and nitrogen

radicals which enables destruction of intracellular pathogens and

results in infection recovery. For the detailed mechanism, please

refer to (81) (Table 1).
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Monoclonal antibody-based
immunotherapy for leishmaniasis

During the infection, the ability of IL-10 and IL-4 to suppress

Th1 and upregulate Th2 immune responses has been established as

the key component of parasite biology. The overproduction of IL-4

and IL-10 favors parasite persistence and disease progression (73).

IL-10 can inhibit the function of DCs and renders MQs

unresponsive for protective cell signaling. This meant that mice

deficient in IL-10 cytokines were found to be highly resistant to L.

donovani infection (82).Thus, a reduction in IL-10 and IL-4

cytokines by the adoptive transfer of neutralizing mAbs (anti-IL-

10, anti-IL-10R, and anti-IL-4) blocked of their synthesis pathway

has been suggested as key to anti-leishmaniasis immunotherapy

(42).This passive adoptive transfer of mAbs induces the synthesis of

protective Th1 cytokines such as IFN- ? and TNF (83). As a result,

patients with VL with anergic T cells were found have their

functional response restored after treatment with anti-IL10 mAbs.

In another experiment on L. major challenged Balb/c mice

treated with an infusion of anti-IL-4 and anti-IL-10 antibodies,

nearly 85% of the treated group were cured of Leishmania

infections (34). In addition, mice were challenged and injected

intraperitoneally with anti-IL-10 and anti-IL-2 monoclonal

antibodies at different time points, the group which received

both antibodies together had early limited growth of the parasite in

the spleen and controlled disease onset. At the initial phase of VL,

the IL-2 cytokine is used as an IL-10 suppressor while inducing the

secretion of the Th1 (IFN-g) active immune response.

Furthermore, L. donovani-infected wild-type mice were treated

with a single dose of anti-IL-10R mAbs and daily low doses of

antimonials to assess the therapeutic impact of the antibody by

blocking the IL-10 site of action. This experiment led to rapid L.

donovani infection recovery and showed a significantly enhanced

efficacy of the drug and monoclonal antibody with an over 10-fold

dose-sparing effect and the length of the treatment period was

shortened (84). In another separate study, BALB/c mice infected

with L. donovani received a single dose of anti-IL-10R mAbs (0.5 mg)

and this resulted in a 63% liver parasite burden reduction.

Furthermore, when administered at a lower dose (0.1 mg), the

anti-IL-10 mAbs enhanced the effect of antimonials, which had

also been given at a suboptimal dose (50 mg/kg) and nearly 72% of

liver parasites were killed.

The same result was found in L. donovani-infected BALB/c mice

treated with a suboptimal single dose (0.1 mg) of an anti-IL-10R mAbs

and low-dose amphotericin B (2 mg/kg total dose). The combination

therapy reduced the hepatic parasite load by 76%, compared with anti-

IL-10R mAbs alone (85, 86). Moreover, to understand whether the

therapeutic effect was due to blocking the synthesis pathway of Th2

cytokine or the cytokine itself, there have been several studies in animal

models. For example, a study blocked IL-10 production through the

administration of a human monoclonal antibody (anti-hIL-10) to

promote a Th1 response in CL patients infected with L.

amazonensis, and a patient showed a reduction in IL-10, IL-4, and

TNF-a levels (83).This cytokine reduction was found to be potentially

protective for localized cutaneous leishmaniasis. Another experiment
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on the therapeutic efficacy of anti-IL-10R was conducted in a C57BL/6

mouse model infected with L. donovani. The results indicated that

blocking the IL-10 receptor can reduce the parasite burden in mice and

be an alternative to chemotherapy (Table 1). Hence, the direct role of

IL-10 in the pathology of VL is supported by studies showing that IL-10

blockage could enhance IFN-g synthesis.
More recently, phase 1 trials have revealed that IL-10 blockage has

an anti-parasitic effect in human VL, indicating that neutralization of

IL-10 results in a notable reduction in the parasite burden in splenic

aspirate cells (4). In another trial, susceptible BALB/c mice strain

infected with L. major were given a single dose of anti-IL-4 antibodies

to investigate the role of anti-IL-4 mAbs against infections. Within 4

days, anti-IL-4 significantly changed the in vivo cytokine expression

from a Th2 to a Th1 pattern. The treatment resulted in healing

responses in the mice, demonstrating that IL-4 is necessary for Th cells

to differentiate into Th2 cells in BALB/c mice leishmaniasis.

Furthermore, research reveals that IL-4 severely degrades the Th1

immune response (87, 88). Since Th2/Th1 differentiation occurs

during the first 2 weeks of infection, anti-IL-4 needs might be more

effective if given during that week of infection. In general, this therapy

against immunosuppressive cytokines is a justifiable and interesting

alternative treatment of leishmaniasis (Table 1).

Moreover, a phase I study of anti-IL-10 mAbs alone and in

combination with AmBisome has recently been proposed for the

human trial, thus leading to possible ex vivo supportive findings.

This combination is estimated to induce synergistic effects that will

control VL immunopathology, overcoming the threat of drug

resistance and possibly achieving a chemotherapeutic dose-

sparing effect that results in better efficacy (4). Notably, proving

that IL-10 neutralization has therapeutic value as a proof of concept

will pave the way for additional approaches aimed at inhibiting IL-

10 and other immunosuppressive components.
Therapeutic role of immune
checkpoint inhibitors
against leishmaniasis

Immune checkpoints are host cellular surface receptors with a

stimulatory or inhibitory role that play a vital activity in regulating

the effector function of T cells (89). For the development of

functional immunity against foreign antigens, this checkpoint

facilitates multidirectional cell-to-cell interactions, frequently

among T cells, MQs, DCs, monocytes, and neutrophils (11).

Different checkpoint receptors have been discovered with distinct

roles that should be investigated in the context of intracellular

infections such as Leishmania (89). For instance, the stimulatory

arm of immune checkpoints triggers the inflammatory response

and might lead to the destruction of the host cell, resulting in the

establishment of disease (11, 17). Conversely, the use of immune

checkpoint inhibitors in an HDT approach provides promising

potential for the treatment of cancer and autoimmune and

infectious diseases including leishmaniasis (17, 89). This

treatment approach involves the downregulation of Th2 cytokine
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expression while inducing the activity of APCs and synthesis of

defensive Th1 cytokine subsets (IFN-g, TNF-a, and IL-12) acts to

collapse intracellular amastigotes and halt disease progression (2).

Of the immune checkpoints, programmed cell death protein 1 (PD-

1; CD279) and its ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC), are

members of the B7/CD28 family and are a vital immune checkpoint

axis that is frequently investigated in leishmaniasis. During the

host-parasite interaction period, PD-1 to PD-L1 or PD-L2 induces

phosphorylation of tyrosine residues in the PD-1 intracellular

domain that recruits tyrosine phosphatases 2 (SHP2) (90). This

dephosphorylation pathway produces crucial bioproducts that are

used for parasite survival and proliferation, resulting in the

progression of pathology (91). The subsequent effect of this

signaling cascade is the inhibition and exhaustion of protective T

cells (92). Thus, the neutralization and inhibition of such targeted

immune checkpoint molecules using specific anti-bodies and

inhibitory molecules looks to be a vital HDT modality to limit

clinical disease advancement (89). Several individual experimental

studies reported that the administration of antibodies that block

PD-1/PD-L1 interaction in patients infected by different

Leishmania species has been shown to increase the survival of

CD8+ T cells, restore their function, and result in a notable

reduction of parasite load after treatment (90, 93).

Additionally, a recent randomized controlled trial study that

tested the therapeutic potential of anti-PD-1 and anti-PD-L1 mAbs

against a non-healing L. amazonensis infection in BALB/c mice

reported that the treatments significantly increased IFN-g-
producing CD4+ and CD8+ T cells, respectively. Thus, compared

with infection controls, mice treated with anti-PD-1 and anti-PD-

L1 demonstrated a significant reduction in lesion size and parasite

load. The basic protection mechanism was established through the

suppression of parasite-favorable IL-4 and TGF-b cytokine

production in cells (94). This study concluded that treatment

of leishmaniasis using anti-PD-1 has the potential to mobilize

and build a strong T cell environment that activates MQs

for intracellular parasite destruction, lowering the parasite load

burden of the infected host (Table 1).

Another study in mice infected with L. donovani using cytotoxic

T-lymphocyte-associated protein 4 (CTLA-4) demonstrated that

CTLA-4 blockade decreased parasite burden in both the liver and

spleen and was associated with increased synthesis of IFN-g major

cytokines. Furthermore, CTLA-4 blockade has been shown to

increase the efficiency of chemotherapy in L. donovani-infected

mice (95, 96). Thus, these studies clearly show the therapeutic

potential of immune checkpoint molecules for HDT against VL and

other forms of leishmaniasis (11).
Main finding of the review

Host-directed immunotherapy has attracted attention for the

treatment of leishmaniasis to save patients from frequent relapses and

adverse effects of chemotherapy. In this review, the application of

cytokine immunotherapy (IFN- g, IL-12, and GM-CSF), cellular

immunotherapy (dendritic cells and mesenchymal stem cells),
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mAbs immunotherapy (anti-IL-10 and anti-IL-4), and immune

checkpoint inhibitor molecules against animal/human leishmaniasis

infections were found to result in a significant reduction in parasite

burden and/or complete cure of the Leishmania infection.
Challenges in the clinical application
of host-directed immunotherapy

Treatments that enhance immune responses to fight against

diseases are of significant clinical interest. While much progress in

leishmaniasis treatment has been made over the past years, the field

still has a limited understanding of the immune mechanism

underlying human leishmaniasis. One of the major problems in

translating discoveries from disease models into human treatment

is the risk that potential treatment strategies will fail to give similar

responses in humans as in the models (4). An additional central

issue in immunotherapy is related to safety, cost, toxicity, and

specificity. Since the production of some agents may be quite

expensive and may cause severe sensitization/allergic reactions,

this leads to low treatment efficacy. Additionally, there is a lack of

clear practical precision on the adequate therapeutic dose, length of

treatment duration, pharmacokinetics/dynamics, and route of

administration for humans. This needs extensive prospective trial

work with suitable animal models (77). Therefore, the problems and

side effects associated with the use of cytokine/cellular therapy have

to be addressed properly before its clinical application.
Conclusion and recommendation

This review shows that HDT with pro-inflammatory cytokines,

immune cells, and monoclonal antibodies has been found to show

significant therapeutic potential, resulting in substantial parasite

reduction and/or complete cure of all forms of leishmaniasis. In

particular, cytokine and monoclonal antibody immunotherapy have

promising efficacy. This review suggests the future deployment of

immunotherapy as an alternative to conventional chemotherapy for
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the appropriate management of leishmaniasis. However, it needs

extensive pre-clinical and clinical trials using local animal models

which can reflect the precise nature of the human immune profile

against leishmaniasis to select the most protective HDT candidates.
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Glossary

AD-MSC adipose tissue-mesenchymal stromal cell
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anti-IL-4 mAbs anti-interleukin-4 monoclonal antibody
anti-IL-10R anti-interleukin-10 receptor
Balb/susceptible albino mice
C57BL/6 resistant albino mice
CL cutaneous leishmaniasis
DCs dendritic cells
IFN-g interferon gamma
IL-10 interleukin-10
IL-12 interleukin-12
IL-1 interleukin-1
IL-4 interleukin-4
mAbs monoclonal antibody
MHC class-II major histocompatibility complex II
iseases 12
MQ macrophage
MSC mesenchymal stem cells
NK natural killer cells
NO Nitric oxide
RIFN-g recombinant interferon gamma
ROS reactive oxygen species
TGF transforming growth factor beta
Th1 T-helper 1
Th2 T-helper 2
TNF-a tumor necrosis factor-alpha
VL visceral leishmaniasis
anti-PD/PDL anti-programmed cell death/ligand
GCSF granulocyte colony-stimulating factor
CTLA-4 cytotoxic T-lymphocyte associated protein 4
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