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Introduction:Malaria remains a major public health concern, particularly in sub-

Saharan Africa, where climatic factors strongly influence its transmission

dynamics. However, the delayed effects of these factors on malaria incidence

remain poorly understood.

Methods: This study examines the relationship betweenmeteorological variables

(temperature, rainfall, and humidity) and malaria incidence in Senegal from 2015

to 2022, using a distributed lag non-linear model (DLNM). Daily malaria case data

were obtained from the Senegal syndromic sentinel surveillance network (4S

network), while daily climatic data were sourced from the Senegalese

meteorology agency and NASA POWER DATA Access.

Results: The results reveal significant associations between climatic factors and

malaria cases. High maximum temperatures were associated with increased

malaria risk at lag periods of 2–6 days, whereas extreme rainfall initially

reduced mosquito breeding but contributed to increased malaria cases after

10–15 days. Similarly, relative humidity displayed non-linear, time-dependent

effects on malaria incidence, underscoring the importance of considering lag

effects in climate-health modelling.

Discussion: These findings highlight the necessity of integrating climate

variability into malaria control strategies. Adaptive interventions, such as

predictive modelling and early warning systems, could enhance response

efficiency by enabling proactive vector control and healthcare resource

allocation. Future research should explore additional factors, such as socio-

economic and behavioural influences, to refine prediction models and optimise

malaria prevention efforts in the context of climate change.
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Introduction

Malaria remains a significant public health threat, particularly

in sub-Saharan Africa, where climate conditions influence its

transmission dynamics (1). In 2022, malaria cases in endemic

countries were estimated at 249 million, an increase of five

million from 2021, with 608,000 associated deaths. The African

region accounted for 93.6% of global malaria cases and 95.4% of

malaria-related deaths (2).

In Senegal, malaria remains a major health burden, with an

estimated 831,000 cases and 2,128 deaths reported in 2022 (3). The

association between climatic factors and infectious diseases,

particularly vector-borne diseases such as malaria, has been

widely investigated (4). Transmission and distribution of malaria

are substantially influenced by climate factors, including

temperature, rainfall, and humidity (5–7). Mosquito vector

abundance and life cycle dynamics are highly sensitive to climatic

variations, particularly temperature, humidity, and rainfall patterns,

which influence breeding conditions and parasite development

rates (6, 8). Malaria outbreaks in East Africa have been associated

with increases in mean monthly maximum temperatures and

rainfall (9).

The distributed lag non-linear model (DLNM) addresses some

limitations encountered by the generalised linear model to capture

complex, time-varying relationships, including lagged climate

factors on disease dynamics. DLNM offers a robust alternative

and identifies the most important lag time period (10). Thus,

many studies have investigated the monthly relationship between

climate variables and malaria incidence, but few have examined

their daily lag time impact (11, 12). Understanding the link between

these daily climate variables and malaria incidence can provide

useful information to guide public health decision-making

and interventions.

Developing effective malaria control and prevention strategies

requires a comprehensive understanding of the interactions

between climatic factors, vector ecology, and human behaviour. A

multidisciplinary approach incorporating climate science,

epidemiology, public health, and socio-economic factors is crucial

for designing targeted, sustainable interventions.
Methods

Data collection

The Senegalese Ministry of Health and the Dakar Pasteur

Institute (IPD) have established an integrated sentinel surveillance

system (4S) for syndromic monitoring, enhancing early outbreak

detection and improving public health response capabilities. This

system, called “4S”, not only tracks malaria but also monitors other

emerging diseases such as suspected arbovirus, influenza-like illness
Abbreviations: CI, Confidence interval; RDT, Rapid Diagnostic Test; 4S,

Senegalese Syndromic Sentinel Surveillance; DLNM, Distributed Lag Non-

linear Model.
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and diarrhoea based on WHO case definitions (13). All 25 health

centres involved in the surveillance provide daily aggregate data,

including the total number of consultations, febrile cases, malaria-

positive cases identified by the rapid diagnostic test tool (RDT), and

suspected arbovirus cases. In this study, the daily new malaria cases

from all sentinel sites from 2015 to 2022 have been used, reflecting

the patterns observed at the national level. Climate data were

obtained from the Senegalese National Civil Aviation and

Meteorology Agency’s weather station located closest to the

sentinel site. For points where weather stations were missing, data

was collected from the NASA website on a daily basis with a

resolution of 0.5 x 0.625 degrees of latitude and longitude.

Climate data, including maximum and minimum temperatures

and rainfall, were collected from weather stations. Data on

relative humidity were obtained from the NASA POWER DATA

Access site using satellite-estimated data (14). All climatic data and

malaria cases were recorded on a daily basis during the same

time period.
Statistical analysis

Initially, a Pearson correlation analysis was performed to assess

the relationship between meteorological variables and malaria cases,

addressing collinearity to ensure robust statistical analysis. This step

was crucial to identify potential multicollinearity issues, which can

lead to misleading interpretations of regression coefficients and

compromise the reliability of the model (15). By assessing the

strength and direction of associations between climate variables

such as temperature, rainfall, and humidity, the analysis helped

determine whether certain predictors needed to be excluded or

transformed to reduce redundancy. Additionally, correlation

analysis provided insights into the immediate versus lagged

impacts of meteorological factors on malaria incidence, guiding

the selection of variables for subsequent modelling. Variance

inflation factor (VIF) was used to measure the multicollinearity

among variables in a generalised linear model. The association

between malaria incidences and meteorological variables was

analysed using a distributed lag non-linear model (DLNM). This

model was developed to study lagged effects and non-linear

exposure-response relationships (16). We examined the effects of

climate variables on daily malaria cases with varying lag days using

a DLNM and considering all explanatory variables in the quasi-

Poisson generalised linear regression as a link function. Data

overdispersion was addressed using quasi-Poisson generalised

linear regression as a link function (16).

The DLNM model was described as follows:

Log(E½Yt�) = Alpha + NS(TempMax,  df ) + NS(TempMin, df)

+ NS(RHt,  df ) + NS(Time,  df )

Where (E[Yt]) is the expected number of malaria cases on day t;

Log is the natural log function, Alpha represents the model

intercept, NS represents the natural spline function; RHt is the

daily relative humidity on day t; TempMax and TempMin represent

the daily maximum and minimum temperature; Time is the long-
frontiersin.org
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term temporal trend, and df is the degree of freedom. The df for each

covariate was determined using sensitivity analysis, and the df for

the best model was chosen by minimising the Quasi-Akaike

information criterion (QAIC) (16). We used cross-basis functions

for all covariates. All covariates are lagged with a maximum lag

period of 15 days based on a previous study showing correlation

with malaria incidence with a lag of two weeks (17). Contour plots

that depend on lag times and values of meteorological variables

were used to visualise the effects. All statistical analyses were

performed by using R software (version 4.4.2) (18), and the

“dlnm” package was used to fit the distributed lag nonlinear model.
Results

Descriptive analysis

Table 1 provides a summary of the climatic variables and

malaria cases used in the model. During the study period, a total

of 30,203 malaria cases were recorded, with a daily average

incidence of 10 cases. Over 91% (27597) of malaria cases were

reported during the rainy season. Figure 1 shows the spatial

distribution of sentinel sites and the proportion of positive

malaria cases among individuals tested between 2015 and 2022.
Frontiers in Tropical Diseases 03
Malaria exhibits strong seasonality in Senegal, with the highest

number of cases reported during the rainy season, which typically

extends from July to October (Figure 2). The transmission peak

occurs in October with 131 cases, coinciding with the post-rainfall

period when vector breeding conditions are most favourable. A

declining trend in malaria incidence was observed over the study

period, with the highest number of cases recorded in 2015 (6162

cases) and the lowest in 2020 (2502 cases) (Figure 2).

Maximum temperatures peaked between February and May,

corresponding to the dry season, while minimum temperatures

reached their highest values between May and November, aligning

with the transition from the rainy season to the cooler months. The

lowest minimum temperatures were recorded between January and

April (Supplementary Figure S1). The Pearson correlation analysis

indicated that minimum temperature (r = 0.10), rainfall (r = 0.04),

and relative humidity (r = 0.31) were positively associated with

malaria incidence, while maximum temperature exhibited a weak

negative correlation (r = -0.10) (Table 2). Notably, the highest

correlation was found between malaria cases and relative humidity,

indicating an important role in the disease transmission. VIF results

indicated no multicollinearity issues (Supplementary Figure S2).
DLNM analysis

The effects of meteorological variables on malaria cases were

illustrated by Figure 3. This figure illustrates non-linear

relationships, showing how different climatic variables influence

malaria transmission over varying lag periods. The optimal model

was selected based on the Quasi-Akaike Information Criterion (Q-

AIC), which identified the best fit with four degrees of freedom for

maximum temperature, rainfall, and relative humidity, and three

degrees of freedom for minimum temperature.

For maximum temperature, a significant effect was observed at a

lag of two days for extremely high values (>38°C), persisting for up

to six days. At extreme temperatures (40°C), the relative risk (RR)

for malaria incidence was 1.03 (95% CI 0.94–1.23), indicating a

slight but non-significant increase in risk. However, at lag 0, high

temperatures had a suppressive effect on mosquito populations,

likely due to thermal stress reducing vector survival and activity (19,

20). The estimated RR at lag 0 was 0.94 (95% CI 0.78–1.14),

suggesting no direct relationship between high temperature and

malaria incidence.

A strong direct effect of minimum temperature was observed at

lag 0, with an increasing relative risk over subsequent day. Depending

on the time lag, low and high minimum temperatures have varying

impacts, with their effects lasting no more than four days. At lag one,

minimum temperatures between 13°C and 18°C were associated with

a reduction in malaria risk. In contrast, higher minimum

temperatures increased malaria risk for the same lag time.

A similar pattern was observed for relative humidity, where

high levels at lag one increased malaria risk, while low levels had a

suppressive effect. The influence of relative humidity on malaria

transmission was short-lived, persisting for a maximum of two days.
TABLE 1 Describe meteorological parameters used in this study and
malaria cases recorded.

Parameters Overall (N=30203)

Positive cases

Mean (SD) 10.336 (18.023)

Range 0.000 - 131.000

Season

Rainy Season 27597 (91.4%)

Dry season 2606 (8.6%)

Temp Max

Mean (SD) 34.952 (2.608)

Range 26.697 - 42.995

Temp Min

Mean (SD) 21.794 (2.772)

Range 13.965 - 26.877

Rainfall

Mean (SD) 2.269 (5.448)

Range 0.000 - 68.794

Relative Humidity

Mean (SD) 57.635 (18.851)

Range 10.437 - 92.500
SD is the standard deviation, and Temp is the temperature; Max, maximum and Min,
minimum.
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FIGURE 1

The spatial distribution of sentinel sites (blue points) and the proportion of positive malaria cases among individuals tested between 2015 and 2022.
FIGURE 2

Daily distribution of malaria cases incidence (A) and monthly pattern in Senegal from 2015 to 2022 (B, C).
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At lag one and lag two, heavy rainfall initially reduced malaria

relative risk. However, from lag three to lag eight and from lag 10 to

lag 15, the relative risk increased. Rainfall amounts between 60 mm

and 100 mm were identified as the critical range influencing

malaria incidence.

Figure 4 illustrates the climate variable-specific effects at

different lag times. The effects of maximum temperature on

malaria risk followed a similar pattern at lags of two, five, and

seven days, indicating recurring short-term influences on

transmission dynamics. For minimum temperature and relative

humidity, trends varied across lag periods, with a central minimum

temperature of 20°C playing a key role in determining malaria risk.

Malaria incidence increased with rainfall from lag time five

onwards, emphasising the delayed impact of rainfall on vector

proliferation (Figure 4).
Frontiers in Tropical Diseases 05
Discussion

In this study, we used DNLM models to examine how daily

variations in humidity, temperature, and rainfall along with their lag

effects impact malaria transmission. Our results indicate a significant

association between climatic factors and malaria incidence.

High maximum temperatures (>38°C) were associated with an

increase in malaria incidence starting at lag two, with the effect

persisting for up to eight days. This suggests that elevated

temperatures may accelerate mosquito development and parasite

maturation, enhancing transmission risk over short-term lags. A

negative correlation was observed between low temperatures and

malaria incidence, with reductions in cases becoming evident from

lag two onward. This decline likely reflects unfavourable conditions

for mosquito survival and parasite development at lower
TABLE 2 Pearson correlation coefficients between meteorological factors and daily malaria cases.

Variables Malaria cases
Relative
Humidity

Temp Max Temp Min Rainfall

Malaria cases 1

Relative Humidity 0.31* 1

Temp Max -0.1* -0.51* 1

Temp Min 0.1* 0.67* 0 1

Rainfall 0.04* 0.5* -0.4* 0.32* 1
Temp, Temperature; Max, Maximum; Min, Minimum; *P< 0.05.
FIGURE 3

Contour plots illustrating the lagged effects of maximum temperature, minimum temperature, relative humidity, and rainfall on malaria incidence.
The plots visualise non-linear relationships, showing how different climatic variables influence malaria transmission over varying lag periods. The
colour represents the magnitude and direction of the correlation between climate factors and malaria cases at varying exposure levels and time lags.
Red colour indicates a positive association (high risk), blue colour indicates a negative association, and white colour indicates no effect.
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temperatures. Previous studies have shown that Anopheles

mosquitoes reach maturity more quickly and exhibit increased

blood-feeding behaviour in response to rising temperatures (21).

The optimal temperature range for vector-borne disease

transmission is typically between 14°C–18°C and 35°C–40°C (11),

corroborating the findings of this study. Specific studies have shown
Frontiers in Tropical Diseases 06
that temperature fluctuations can significantly affect the development

of the Plasmodium parasite and the activity of Anopheles vector

mosquitoes (22). Furthermore, the observed impacts between the

maximum temperature, minimum temperature and malaria cases

are confirmed by specific studies that have demonstrated that

temperature fluctuations can significantly affect the development of
FIGURE 4

Estimated effects of climate variables on malaria cases at various specific lag times. (A) for maximum temperature, (B) for minimum temperature,
(C) for rainfall and (D) for relative humidity. Red lines represent relative risks, and grey regions indicate 95% confidence intervals.
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the Plasmodium parasite and the activity of Anopheles vector

mosquitoes (22). According to a study in South Africa and

Botswana, temperature between 20–33°C may increase malaria

transmission (23, 24). However, other research indicates that

malaria transmission decreases at temperatures exceeding 25°C, with

an optimal range of 25°C (25). This discrepancy may arise due to

regional variations in mosquito species, parasite adaptation, or

environmental conditions that modulate vector survival and

transmission efficiency.

Rainfall plays a complex role in malaria transmission by

influencing mosquito breeding site availability. Moderate rainfall

enhances mosquito breeding by creating suitable water bodies for

larval development, thereby increasing malaria transmission risk.

However, heavy rainfall can disrupt breeding sites by flushing away

larvae, while prolonged dry conditions may limit mosquito

populations due to the absence of standing water (26).

Our findings indicate that malaria incidence decreases

immediately following heavy rainfall (lag 0), likely due to the

flushing of mosquito larvae and temporary habitat destruction

(27, 28). Conversely, other studies have demonstrated a positive

correlation between rainfall and malaria incidence, with a rainfall

threshold between 70mm and 600mm required to trigger outbreaks,

particularly in arid regions (28, 29). In Senegal, malaria

transmission exhibits strong seasonality, reaching a peak of

incidence during the rainy season. The northern regions,

characterised by lower rainfall and ongoing elimination efforts,

report fewer malaria cases. In contrast, humid regions with higher

rainfall levels experience more intense transmission, highlighting

the role of local climatic conditions in shaping malaria dynamics.

Humidity has a key role in malaria transmission, varying

according to lag time. Low humidity values (<50%) at lags 0–2

were associated with a reduction in malaria incidence, while positive

effects were observed at lags 2–3, followed by negative effects at lags

4–5. Similarly, when relative humidity exceeded 50%, an immediate

increase in malaria incidence was observed at lag one. This

variability suggests that humidity played a complex and short-

lived role in malaria transmission. Research indicates that mosquito

adaptation is strongly influenced by humidity and temperature,

with high humidity promoting vector survival and feeding

behaviour (30). Therefore, malaria prevention strategies must

incorporate humidity-related factors to better predict

transmission patterns and improve vector control efforts. Actions

can be taken to anticipate epidemics, optimise the allocation of

resources for vector control, and prepare for a possible future

increase in the number of cases. The approach allows timely

actions before a climate-driven malaria case increases, improving

prevention and treatment.
Limitations

The transmission dynamics of vector-borne diseases are

inherently complex, influenced by a combination of climatic,
Frontiers in Tropical Diseases 07
biological, socio-economic, and behavioural factors. Although

distributed non-linear models effectively capture the lagged effects

of climatic variables, they have inherent limitations in fully

accounting for the multifaceted nature of malaria transmission.

While climate variables play a critical role in malaria

transmission, they alone are insufficient to fully explain

fluctuations in case numbers. Other key determinants such as

human mobility, socio-cultural practices, economic disparities,

and public health interventions also significantly influence disease

dynamics. Human movement patterns, socio-economic conditions,

healthcare accessibility, and the effectiveness of malaria control

measures all play crucial roles in shaping transmission trends (31).

Ignoring these factors may limit the accuracy of model-

based predictions.

Despite these constraints, distributed nonlinear models remain

valuable tools for quantifying the impact of climatic factors and

assessing the time-lagged effects of environmental variables on

malaria incidence. However, to enhance predictive accuracy, a

multidisciplinary approach integrating climate data with

epidemiological surveillance, socio-economic indicators, and

vector control strategies is needed. Such an approach would

contribute to the development of more robust and reliable early

warning systems for vector-borne diseases, ultimately strengthening

malaria control efforts in a changing climate.
Conclusions

Considering lag-time effects in distributed non-linear models

enhances malaria forecasting accuracy, supports targeted

intervention strategies, and helps mitigate the public health

burden of malaria in a changing climate. By capturing the

delayed effects of climatic variables on malaria transmission, these

models facilitate more accurate risk assessments and enable the

development of early warning systems, improving outbreak

preparedness and response. Understanding how temperature,

rainfall, and humidity interact with malaria transmission

dynamics over time allows health authorities to anticipate

outbreak patterns and allocate resources more efficiently. The

development of hybrid models that incorporate climate

projections, real-time disease surveillance, and remote sensing

technologies could further enhance early warning capabilities.

Additionally, interdisciplinary collaboration among climate

scientists, epidemiologists, public health practitioners, and

policymakers will be crucial to translating model-derived insights

into effective, evidence-based malaria control strategies.

Strengthening regional climate-health monitoring networks and

investing in capacity-building initiatives will also be critical to

ensure that malaria forecasting tools are effectively utilised in

endemic regions. Ultimately, a comprehensive, data-driven

approach that integrates both climatic and non-climatic factors

will be essential for developing more resilient malaria control

strategies under changing environmental conditions.
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Monthly distribution of climate variables, with the red line representing the
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Variance inflation factor (VIF) of all climate variables included in the model
estimated using a generalised linear model with quasi-poisson distribution.
References
1. Obeagu EI, Obeagu GU. Adapting to the shifting landscape: Implications of
climate change for malaria control: A review. Med (Baltimore). (2024) 103:e39010.
doi: 10.1097/MD.0000000000039010

2. Shin H-I, Ku B, Jung H, Lee S, Lee S-Y, Ju J-W, et al. 2023 World Malaria Report
(Status of World Malaria in 2022). Public Health Weekly Report (2024) 17:1351–77.
doi: 10.56786/PHWR.2024.17.32.1

3. Venkatesan P. The 2023 WHO World malaria report. Lancet Microbe. (2024) 5:
e214. doi: 10.1016/S2666-5247(24)00016-8

4. Megersa DM, Luo X-S. Effects of Climate Change on Malaria Risk to Human
Health: A Review. Atmosphere. (2025) 16:71. doi: 10.3390/atmos16010071

5. Diouf I, Adeola AM, Abiodun GJ, Lennard C, Shirinde JM, Yaka P, et al. Impact of
future climate change on malaria in West Africa. Theor Appl Climatol. (2022) 147:853–
65. doi: 10.1007/s00704-021-03807-6
6. Ryan SJ, Lippi CA, Zermoglio F. Shifting transmission risk for malaria in Africa
with climate change: a framework for planning and intervention. Malar J. (2020)
19:170. doi: 10.1186/s12936-020-03224-6

7. Okunlola OA, Oyeyemi OT. Spatio-temporal analysis of association between
incidence of malaria and environmental predictors of malaria transmission in Nigeria.
Sci Rep. (2019) 9:17500. doi: 10.1038/s41598-019-53814-x

8. Smith MW, Willis T, Mroz E, James WHM, Klaar MJ, Gosling SN, et al. Future
malaria environmental suitability in Africa is sensitive to hydrology. Science. (2024)
384:697–703. doi: 10.1126/science.adk8755

9. Gashaw KW, Kassa SM, Ouifki R. Climate-dependent malaria disease
transmission model and its analysis. Int J Biomath. (2019) 12:1950087. doi: 10.1142/
S1793524519500876
10. Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models.

Stat Med. (2010) 29:2224–34. doi: 10.1002/sim.3940
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fitd.2025.1631996/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fitd.2025.1631996/full#supplementary-material
https://doi.org/10.1097/MD.0000000000039010
https://doi.org/10.56786/PHWR.2024.17.32.1
https://doi.org/10.1016/S2666-5247(24)00016-8
https://doi.org/10.3390/atmos16010071
https://doi.org/10.1007/s00704-021-03807-6
https://doi.org/10.1186/s12936-020-03224-6
https://doi.org/10.1038/s41598-019-53814-x
https://doi.org/10.1126/science.adk8755
https://doi.org/10.1142/S1793524519500876
https://doi.org/10.1142/S1793524519500876
https://doi.org/10.1002/sim.3940
https://doi.org/10.3389/fitd.2025.1631996
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org


Talla et al. 10.3389/fitd.2025.1631996
11. Abiodun GJ, Maharaj R, Witbooi P, Okosun KO. Modelling the influence of
temperature and rainfall on the population dynamics of Anopheles arabiensis.Malaria
J. (2016) 15:364. doi: 10.1186/s12936-016-1411-6

12. Armando CJ, Rocklöv J, Sidat M, Tozan Y, Mavume AF, Bunker A, et al. Climate
variability, socio-economic conditions and vulnerability to malaria infections in
Mozambique 2016-2018: a spatial temporal analysis. Front Public Health. (2023)
11:1162535. doi: 10.3389/fpubh.2023.1162535

13. Lampros A, Talla C, Diarra M, Tall B, Sagne S, Diallo MK, et al. Shifting Patterns
of Influenza Circulation during the COVID-19 Pandemic, Senegal. Emerg Infect Dis.
(2023) 29:1808–17. doi: 10.3201/eid2909.230307

14. Sparks AH. nasapower: A NASA POWER Global Meteorology, Surface Solar
Energy and Climatology Data Client for R. J Open Source Softw. (2018) 3:1035.
doi: 10.21105/joss.01035

15. Kim JH. Multicollinearity and misleading statistical results. Korean J Anesthesiol.
(2019) 72:558–69. doi: 10.4097/kja.19087

16. Gasparrini A. Distributed Lag Linear and Non-Linear Models in R: The Package
dlnm. J Stat Softw. (2011) 43:1–20. doi: 10.18637/jss.v043.i08
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