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Introduction: Malaria remains a major public health concern, particularly in sub-
Saharan Africa, where climatic factors strongly influence its transmission
dynamics. However, the delayed effects of these factors on malaria incidence
remain poorly understood.

Methods: This study examines the relationship between meteorological variables
(temperature, rainfall, and humidity) and malaria incidence in Senegal from 2015
to 2022, using a distributed lag non-linear model (DLNM). Daily malaria case data
were obtained from the Senegal syndromic sentinel surveillance network (4S
network), while daily climatic data were sourced from the Senegalese
meteorology agency and NASA POWER DATA Access.

Results: The results reveal significant associations between climatic factors and
malaria cases. High maximum temperatures were associated with increased
malaria risk at lag periods of 2—-6 days, whereas extreme rainfall initially
reduced mosquito breeding but contributed to increased malaria cases after
10-15 days. Similarly, relative humidity displayed non-linear, time-dependent
effects on malaria incidence, underscoring the importance of considering lag
effects in climate-health modelling.

Discussion: These findings highlight the necessity of integrating climate
variability into malaria control strategies. Adaptive interventions, such as
predictive modelling and early warning systems, could enhance response
efficiency by enabling proactive vector control and healthcare resource
allocation. Future research should explore additional factors, such as socio-
economic and behavioural influences, to refine prediction models and optimise
malaria prevention efforts in the context of climate change.
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Introduction

Malaria remains a significant public health threat, particularly
in sub-Saharan Africa, where climate conditions influence its
transmission dynamics (1). In 2022, malaria cases in endemic
countries were estimated at 249 million, an increase of five
million from 2021, with 608,000 associated deaths. The African
region accounted for 93.6% of global malaria cases and 95.4% of
malaria-related deaths (2).

In Senegal, malaria remains a major health burden, with an
estimated 831,000 cases and 2,128 deaths reported in 2022 (3). The
association between climatic factors and infectious diseases,
particularly vector-borne diseases such as malaria, has been
widely investigated (4). Transmission and distribution of malaria
are substantially influenced by climate factors, including
temperature, rainfall, and humidity (5-7). Mosquito vector
abundance and life cycle dynamics are highly sensitive to climatic
variations, particularly temperature, humidity, and rainfall patterns,
which influence breeding conditions and parasite development
rates (6, 8). Malaria outbreaks in East Africa have been associated
with increases in mean monthly maximum temperatures and
rainfall (9).

The distributed lag non-linear model (DLNM) addresses some
limitations encountered by the generalised linear model to capture
complex, time-varying relationships, including lagged climate
factors on disease dynamics. DLNM offers a robust alternative
and identifies the most important lag time period (10). Thus,
many studies have investigated the monthly relationship between
climate variables and malaria incidence, but few have examined
their daily lag time impact (11, 12). Understanding the link between
these daily climate variables and malaria incidence can provide
useful information to guide public health decision-making
and interventions.

Developing effective malaria control and prevention strategies
requires a comprehensive understanding of the interactions
between climatic factors, vector ecology, and human behaviour. A
multidisciplinary approach incorporating climate science,
epidemiology, public health, and socio-economic factors is crucial
for designing targeted, sustainable interventions.

Methods
Data collection

The Senegalese Ministry of Health and the Dakar Pasteur
Institute (IPD) have established an integrated sentinel surveillance
system (4S) for syndromic monitoring, enhancing early outbreak
detection and improving public health response capabilities. This
system, called “4S”, not only tracks malaria but also monitors other
emerging diseases such as suspected arbovirus, influenza-like illness

Abbreviations: CI, Confidence interval; RDT, Rapid Diagnostic Test; 4S,
Senegalese Syndromic Sentinel Surveillance; DLNM, Distributed Lag Non-
linear Model.
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and diarrhoea based on WHO case definitions (13). All 25 health
centres involved in the surveillance provide daily aggregate data,
including the total number of consultations, febrile cases, malaria-
positive cases identified by the rapid diagnostic test tool (RDT), and
suspected arbovirus cases. In this study, the daily new malaria cases
from all sentinel sites from 2015 to 2022 have been used, reflecting
the patterns observed at the national level. Climate data were
obtained from the Senegalese National Civil Aviation and
Meteorology Agency’s weather station located closest to the
sentinel site. For points where weather stations were missing, data
was collected from the NASA website on a daily basis with a
resolution of 0.5 x 0.625 degrees of latitude and longitude.
Climate data, including maximum and minimum temperatures
and rainfall, were collected from weather stations. Data on
relative humidity were obtained from the NASA POWER DATA
Access site using satellite-estimated data (14). All climatic data and
malaria cases were recorded on a daily basis during the same
time period.

Statistical analysis

Initially, a Pearson correlation analysis was performed to assess
the relationship between meteorological variables and malaria cases,
addressing collinearity to ensure robust statistical analysis. This step
was crucial to identify potential multicollinearity issues, which can
lead to misleading interpretations of regression coefficients and
compromise the reliability of the model (15). By assessing the
strength and direction of associations between climate variables
such as temperature, rainfall, and humidity, the analysis helped
determine whether certain predictors needed to be excluded or
transformed to reduce redundancy. Additionally, correlation
analysis provided insights into the immediate versus lagged
impacts of meteorological factors on malaria incidence, guiding
the selection of variables for subsequent modelling. Variance
inflation factor (VIF) was used to measure the multicollinearity
among variables in a generalised linear model. The association
between malaria incidences and meteorological variables was
analysed using a distributed lag non-linear model (DLNM). This
model was developed to study lagged effects and non-linear
exposure-response relationships (16). We examined the effects of
climate variables on daily malaria cases with varying lag days using
a DLNM and considering all explanatory variables in the quasi-
Poisson generalised linear regression as a link function. Data
overdispersion was addressed using quasi-Poisson generalised
linear regression as a link function (16).

The DLNM model was described as follows:

Log(E[Y,]) = Alpha + NS(TempMax, df) + NS(TempMin, df)
+ NS(RHt, df) + NS(Time, df)

Where (E[Yt]) is the expected number of malaria cases on day t;
Log is the natural log function, Alpha represents the model
intercept, NS represents the natural spline function; RHt is the
daily relative humidity on day t; TempMax and TempMin represent
the daily maximum and minimum temperature; Time is the long-
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TABLE 1 Describe meteorological parameters used in this study and
malaria cases recorded.

Parameters Overall (N=30203)

Positive cases

Mean (SD) 10.336 (18.023)
Range 0.000 - 131.000
Season

Rainy Season 27597 (91.4%)

Dry season 2606 (8.6%)
Temp Max

Mean (SD) 34.952 (2.608)

Range 26.697 - 42.995
Temp Min

Mean (SD) 21.794 (2.772)

Range 13.965 - 26.877
Rainfall

Mean (SD) 2.269 (5.448)

Range 0.000 - 68.794

Relative Humidity

Mean (SD) 57.635 (18.851)

Range 10.437 - 92.500

SD is the standard deviation, and Temp is the temperature; Max, maximum and Min,
minimum.

term temporal trend, and df is the degree of freedom. The dffor each
covariate was determined using sensitivity analysis, and the df for
the best model was chosen by minimising the Quasi-Akaike
information criterion (QAIC) (16). We used cross-basis functions
for all covariates. All covariates are lagged with a maximum lag
period of 15 days based on a previous study showing correlation
with malaria incidence with a lag of two weeks (17). Contour plots
that depend on lag times and values of meteorological variables
were used to visualise the effects. All statistical analyses were
performed by using R software (version 4.4.2) (18), and the
“dlnm” package was used to fit the distributed lag nonlinear model.

Results
Descriptive analysis

Table 1 provides a summary of the climatic variables and
malaria cases used in the model. During the study period, a total
of 30,203 malaria cases were recorded, with a daily average
incidence of 10 cases. Over 91% (27597) of malaria cases were
reported during the rainy season. Figure 1 shows the spatial
distribution of sentinel sites and the proportion of positive
malaria cases among individuals tested between 2015 and 2022.
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Malaria exhibits strong seasonality in Senegal, with the highest
number of cases reported during the rainy season, which typically
extends from July to October (Figure 2). The transmission peak
occurs in October with 131 cases, coinciding with the post-rainfall
period when vector breeding conditions are most favourable. A
declining trend in malaria incidence was observed over the study
period, with the highest number of cases recorded in 2015 (6162
cases) and the lowest in 2020 (2502 cases) (Figure 2).

Maximum temperatures peaked between February and May,
corresponding to the dry season, while minimum temperatures
reached their highest values between May and November, aligning
with the transition from the rainy season to the cooler months. The
lowest minimum temperatures were recorded between January and
April (Supplementary Figure S1). The Pearson correlation analysis
indicated that minimum temperature (r = 0.10), rainfall (r = 0.04),
and relative humidity (r = 0.31) were positively associated with
malaria incidence, while maximum temperature exhibited a weak
negative correlation (r = -0.10) (Table 2). Notably, the highest
correlation was found between malaria cases and relative humidity,
indicating an important role in the disease transmission. VIF results
indicated no multicollinearity issues (Supplementary Figure S2).

DLNM analysis

The eftects of meteorological variables on malaria cases were
illustrated by Figure 3. This figure illustrates non-linear
relationships, showing how different climatic variables influence
malaria transmission over varying lag periods. The optimal model
was selected based on the Quasi-Akaike Information Criterion (Q-
AIC), which identified the best fit with four degrees of freedom for
maximum temperature, rainfall, and relative humidity, and three
degrees of freedom for minimum temperature.

For maximum temperature, a significant effect was observed at a
lag of two days for extremely high values (>38°C), persisting for up
to six days. At extreme temperatures (40°C), the relative risk (RR)
for malaria incidence was 1.03 (95% CI 0.94-1.23), indicating a
slight but non-significant increase in risk. However, at lag 0, high
temperatures had a suppressive effect on mosquito populations,
likely due to thermal stress reducing vector survival and activity (19,
20). The estimated RR at lag 0 was 0.94 (95% CI 0.78-1.14),
suggesting no direct relationship between high temperature and
malaria incidence.

A strong direct effect of minimum temperature was observed at
lag 0, with an increasing relative risk over subsequent day. Depending
on the time lag, low and high minimum temperatures have varying
impacts, with their effects lasting no more than four days. At lag one,
minimum temperatures between 13°C and 18°C were associated with
a reduction in malaria risk. In contrast, higher minimum
temperatures increased malaria risk for the same lag time.

A similar pattern was observed for relative humidity, where
high levels at lag one increased malaria risk, while low levels had a
suppressive effect. The influence of relative humidity on malaria
transmission was short-lived, persisting for a maximum of two days.
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Daily distribution of malaria cases incidence (A) and monthly pattern in Senegal from 2015 to 2022 (B, C).
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TABLE 2 Pearson correlation coefficients between meteorological factors and daily malaria cases.

Variables Malaria cases Relafci\{e Rainfall
Humidity

Malaria cases 1

Relative Humidity 0.31% 1

Temp Max -0.1* -0.51* 1

Temp Min 0.1* 0.67* 0 1

Rainfall 0.04* 0.5* -0.4* 0.32* 1

Temp, Temperature; Max, Maximum; Min, Minimum; *P< 0.05.
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FIGURE 3

Contour plots illustrating the lagged effects of maximum temperature, minimum temperature, relative humidity, and rainfall on malaria incidence.
The plots visualise non-linear relationships, showing how different climatic variables influence malaria transmission over varying lag periods. The
colour represents the magnitude and direction of the correlation between climate factors and malaria cases at varying exposure levels and time lags.
Red colour indicates a positive association (high risk), blue colour indicates a negative association, and white colour indicates no effect.
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At lag one and lag two, heavy rainfall initially reduced malaria
relative risk. However, from lag three to lag eight and from lag 10 to
lag 15, the relative risk increased. Rainfall amounts between 60 mm
and 100 mm were identified as the critical range influencing
malaria incidence.

Figure 4 illustrates the climate variable-specific effects at
different lag times. The effects of maximum temperature on
malaria risk followed a similar pattern at lags of two, five, and
seven days, indicating recurring short-term influences on
transmission dynamics. For minimum temperature and relative
humidity, trends varied across lag periods, with a central minimum
temperature of 20°C playing a key role in determining malaria risk.
Malaria incidence increased with rainfall from lag time five
onwards, emphasising the delayed impact of rainfall on vector
proliferation (Figure 4).
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Discussion

In this study, we used DNLM models to examine how daily
variations in humidity, temperature, and rainfall along with their lag
effects impact malaria transmission. Our results indicate a significant
association between climatic factors and malaria incidence.

High maximum temperatures (>38°C) were associated with an
increase in malaria incidence starting at lag two, with the effect
persisting for up to eight days. This suggests that elevated
temperatures may accelerate mosquito development and parasite
maturation, enhancing transmission risk over short-term lags. A
negative correlation was observed between low temperatures and
malaria incidence, with reductions in cases becoming evident from
lag two onward. This decline likely reflects unfavourable conditions
for mosquito survival and parasite development at lower
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FIGURE 4

Estimated effects of climate variables on malaria cases at various specific lag times. (A) for maximum temperature, (B) for minimum temperature,
(C) for rainfall and (D) for relative humidity. Red lines represent relative risks, and grey regions indicate 95% confidence intervals.

temperatures. Previous studies have shown that Anopheles
mosquitoes reach maturity more quickly and exhibit increased
blood-feeding behaviour in response to rising temperatures (21).
The optimal temperature range for vector-borne disease
transmission is typically between 14°C-18°C and 35°C-40°C (11),
corroborating the findings of this study. Specific studies have shown
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that temperature fluctuations can significantly affect the development
of the Plasmodium parasite and the activity of Anopheles vector
mosquitoes (22). Furthermore, the observed impacts between the
maximum temperature, minimum temperature and malaria cases
are confirmed by specific studies that have demonstrated that
temperature fluctuations can significantly affect the development of
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the Plasmodium parasite and the activity of Anopheles vector
mosquitoes (22). According to a study in South Africa and
Botswana, temperature between 20-33°C may increase malaria
transmission (23, 24). However, other research indicates that
malaria transmission decreases at temperatures exceeding 25°C, with
an optimal range of 25°C (25). This discrepancy may arise due to
regional variations in mosquito species, parasite adaptation, or
environmental conditions that modulate vector survival and
transmission efficiency.

Rainfall plays a complex role in malaria transmission by
influencing mosquito breeding site availability. Moderate rainfall
enhances mosquito breeding by creating suitable water bodies for
larval development, thereby increasing malaria transmission risk.
However, heavy rainfall can disrupt breeding sites by flushing away
larvae, while prolonged dry conditions may limit mosquito
populations due to the absence of standing water (26).

Our findings indicate that malaria incidence decreases
immediately following heavy rainfall (lag 0), likely due to the
flushing of mosquito larvae and temporary habitat destruction
(27, 28). Conversely, other studies have demonstrated a positive
correlation between rainfall and malaria incidence, with a rainfall
threshold between 70mm and 600mm required to trigger outbreaks,
particularly in arid regions (28, 29). In Senegal, malaria
transmission exhibits strong seasonality, reaching a peak of
incidence during the rainy season. The northern regions,
characterised by lower rainfall and ongoing elimination efforts,
report fewer malaria cases. In contrast, humid regions with higher
rainfall levels experience more intense transmission, highlighting
the role of local climatic conditions in shaping malaria dynamics.

Humidity has a key role in malaria transmission, varying
according to lag time. Low humidity values (<50%) at lags 0-2
were associated with a reduction in malaria incidence, while positive
effects were observed at lags 2-3, followed by negative effects at lags
4-5. Similarly, when relative humidity exceeded 50%, an immediate
increase in malaria incidence was observed at lag one. This
variability suggests that humidity played a complex and short-
lived role in malaria transmission. Research indicates that mosquito
adaptation is strongly influenced by humidity and temperature,
with high humidity promoting vector survival and feeding
behaviour (30). Therefore, malaria prevention strategies must
incorporate humidity-related factors to better predict
transmission patterns and improve vector control efforts. Actions
can be taken to anticipate epidemics, optimise the allocation of
resources for vector control, and prepare for a possible future
increase in the number of cases. The approach allows timely
actions before a climate-driven malaria case increases, improving

prevention and treatment.

Limitations

The transmission dynamics of vector-borne diseases are
inherently complex, influenced by a combination of climatic,
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biological, socio-economic, and behavioural factors. Although
distributed non-linear models effectively capture the lagged effects
of climatic variables, they have inherent limitations in fully
accounting for the multifaceted nature of malaria transmission.

While climate variables play a critical role in malaria
transmission, they alone are insufficient to fully explain
fluctuations in case numbers. Other key determinants such as
human mobility, socio-cultural practices, economic disparities,
and public health interventions also significantly influence disease
dynamics. Human movement patterns, socio-economic conditions,
healthcare accessibility, and the effectiveness of malaria control
measures all play crucial roles in shaping transmission trends (31).
Ignoring these factors may limit the accuracy of model-
based predictions.

Despite these constraints, distributed nonlinear models remain
valuable tools for quantifying the impact of climatic factors and
assessing the time-lagged effects of environmental variables on
malaria incidence. However, to enhance predictive accuracy, a
multidisciplinary approach integrating climate data with
epidemiological surveillance, socio-economic indicators, and
vector control strategies is needed. Such an approach would
contribute to the development of more robust and reliable early
warning systems for vector-borne diseases, ultimately strengthening
malaria control efforts in a changing climate.

Conclusions

Considering lag-time effects in distributed non-linear models
enhances malaria forecasting accuracy, supports targeted
intervention strategies, and helps mitigate the public health
burden of malaria in a changing climate. By capturing the
delayed effects of climatic variables on malaria transmission, these
models facilitate more accurate risk assessments and enable the
development of early warning systems, improving outbreak
preparedness and response. Understanding how temperature,
rainfall, and humidity interact with malaria transmission
dynamics over time allows health authorities to anticipate
outbreak patterns and allocate resources more efficiently. The
development of hybrid models that incorporate climate
projections, real-time disease surveillance, and remote sensing
technologies could further enhance early warning capabilities.
Additionally, interdisciplinary collaboration among climate
scientists, epidemiologists, public health practitioners, and
policymakers will be crucial to translating model-derived insights
into effective, evidence-based malaria control strategies.
Strengthening regional climate-health monitoring networks and
investing in capacity-building initiatives will also be critical to
ensure that malaria forecasting tools are effectively utilised in
endemic regions. Ultimately, a comprehensive, data-driven
approach that integrates both climatic and non-climatic factors
will be essential for developing more resilient malaria control
strategies under changing environmental conditions.
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