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Background: To evaluate the human population at risk of arboviral illnesses and

improve vector and disease surveillance, it is crucial to model the probability of

occurrence of impactful mosquitoes such as Aedes aegypti sensu lato (s.l.)which

transmits dengue and Chikungunya etc. While majority of studies on Aedes

distributions have focused on global ecological niche modelling (ENM), there is

need to build local vector niche models using national data to design targeted

vector surveillance and control strategies. Here, we built a spatial inventory of

Aedes aegypti s.l. and applied a national-wide ENM approach to predict the

probability of occurrence of Ae. aegypti s.l. across Kenya.

Methods: Occurrence data on Aedes aegypti s.l. from 2000 to 2024 were

assembled from the Global Biodiversity Information Facility (GBIF), Walter Reed

Biosystematics Unit’s (WRBU) VectorMap, and online literature searches. A

maximum entropy approach was used to predict Ae. aegypti s.l. probability of

occurrence in Kenya for 2024 at ~5 x 5 km resolution, using the occurrence data

assembled and environmental covariates: population density, daytime and

nighttime land surface temperature (LST), enhanced vegetation index (EVI),

elevation, and land cover. Model performance was evaluated using the area

under the curve (AUC) metric.

Results: A total of 291 unique locations reported positive identification of Ae.

aegypti s.l. Population density, daytime and nighttime LST were the most

influential predictors. The models predicted high probabilities of occurrence of

Ae. aegypti s.l. along the coast, northeastern and western Kenya, and in urban

centres, while lower probabilities were predicted in sparsely populated areas. The

models achieved a mean AUC value of 0.732 (0.653-0.779), indicating a

moderate performance.
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Conclusion: The predicted distribution of Ae. aegypti s.l. can guide vector

surveillance in high-risk areas and help identify populations at risk of arboviral

diseases like dengue fever and Chikungunya, aiding in future outbreak preparedness.
KEYWORDS

Aedes aegypti, ecological niche modelling, maximum entropy, probability of
occurrence, arbovirus
1 Introduction

The mosquitoes of the Aedes genera are known to transmit

viruses such as dengue virus (DENV), Chikungunya virus

(CHIKV), Rift Valley fever virus (RVFV), yellow fever virus

(YFV) and Zika virus (ZIKV), and their global expansion with

accompanying disease burden is increasing at an alarming rate (1).

The main Aedes species globally are Aedes aegypti and Ae.

albopictus (2, 3). Dengue fever (DF) has the highest disease

burden among human arboviruses, with an estimated 100 to 390

million cases each year and approximately 10,000 deaths globally

(4–6). CHIKV has expanded its geographic range to over 100

countries (7) and, as for Rift Valley fever (RVF), it has been

reported in over 30 countries in Africa and the Middle East (8).

Approximately 339,000 human cases of RVF have been reported in

five of nine outbreaks that have occurred between 1997–2010 in

Africa (9). Over 100,000 severe infections and over 50,000 deaths

due to YFV were estimated in Africa and South America in 2018

(10). ZIKV infected over one million people in over 70 countries

during its outbreak in 2015–2016, forcing the World Health

Organization (WHO) to declare it a public health emergency of

international concern (11). The changing global landscape of Aedes

transmitted arboviral infections is widely thought to be linked to

changing climate, urban settlement patterns, as well as human

mobility and trade (12, 13).

In Kenya, the three most significant arboviral infections are DF,

Chikungunya (CHIKF) and RVF (14). The first case of DF in Kenya

was reported in 1982 in Malindi where the serotype DENV-2 was

isolated from a tourist (15). Additional outbreaks of DF have been

reported in Mandera in 2011 (16, 17), multiple outbreaks in

Mombasa in 2013/2014, 2017, 2019 and 2021 (1, 16, 18–21),

Wajir in 2017 (1) and Lamu in 2021 (20). For CHIKF, the first

outbreak was reported in 2004 in Lamu, where over 13,000 cases

were recorded (22). Other outbreaks have been reported in

Mandera in 2016 (23) and Mombasa in 2004, 2018 and 2022 (22,

24). RVFV was first isolated in 1930 from sheep at Lake Naivasha

farm (25) where approximately 100,000 sheep died and close to half

a million calves aborted (26). In 1997–1998, a major RVF outbreak

was reported in East Africa (Kenya, Somalia and Tanzania; 27) and,

in 2006–2007, another RVF outbreak was reported in multiple areas

across Kenya (27–29). The most recent epidemic occurred in June
02
2018 in Garissa, Kajiado, Kitui, Marsabit, Tana River and Wajir

where the human case fatality ratio was 23% (29).

The increasing outbreaks of Aedes-borne arboviral infections in

Kenya are a significant public health threat, causing mortality, disability

and economic losses (30). The spatial nature of the vector distributions

are a fundamental aspect of effective prevention, control and epidemic

mitigation strategies. Defining disease vector distributions often

employs ecological niche modelling (ENM; 31). ENM approaches are

a class of prediction models that combine geo-coded data on locations/

areas where the species were present and considered as absent together

with the ecological characteristics of those areas to predict the

probability of the vectors being observed in space and time given

local environmental conditions. These models have previously been

applied to the global distribution of Aedes species (12, 13, 32–46) and

other arthropods including Anopheles (47–49) and Culex (50)

mosquito species, tsetse flies (51), ticks (52), and sand flies (53).

However, there are very few examples where these models have been

applied for Aedes species at national/subnational level in Africa: Kenya

(54–57), Morocco (58), Nigeria (59) and Tanzania (60). National/sub-

national modelling is important to understand local ecologies using

local data to tailor local vector control and surveillance strategies.

The first pillar of WHO’s Global Arbovirus Initiative (GAI) is

“monitor risk and anticipate” (61) and emphasizes on a robust

surveillance system to integrate historical and current data to map

and identify areas at most risk with the aim towards reducing and

eradicating Aedes-borne diseases. Here, we model the geographic

distribution of Aedes aegypti sensu lato (s.l.) mosquito species –

using the maximum entropy approach implemented in the program

MaxEnt – in Kenya, to identify areas that are at high probabilities of

Ae. aegypti presence that may contribute to arboviral disease

outbreaks, inform future vector surveillance priority areas and

targeted vector control.
2 Methods

2.1 Assembling Aedes aegypti s.l.
occurrence data

Data on Aedes aegypti s.l. occurrence in Kenya (Supplementary

File 1, Supplementary Figure 1) were extracted from two global
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inventories: the Global Biodiversity Information Facility (GBIF;

http://www.gbif.org) and Walter Reed Biosystematics Unit’s

(WRBU) VectorMap (http://www.vectormap.si.edu) and

supplemented by an online literature search. The global

inventories were accessed on the 14th October 2024. The data

attributes of the occurrence data extracted included the location

name, county, coordinates (latitude and longitude), year of

collection, whether larvae or adults were sampled, the Aedes

species identified and the data sources. Data that had a

combination of missing location name and missing coordinates,

records with missing species information and records reporting

other Aedes species were excluded. Only data from field surveys

undertaken from 2000 were included to match available yearly

covariate extractions.

The online literature were searched in online databases including

EBSCOhost (MEDLINE, Academic Science Complete and CINAHL

Complete), Ovid (Embase and MEDLINE), ProQuest Dissertations

and Theses Global, PubMed, Scopus, Web of Science, and Google

Scholar. The searches were restricted to articles published from 2000

through to 2024. Boolean terms (OR and AND) and truncations (*)

were used to improve the search. The key terms used in the database

search include “Aedes” OR “Stegomyia” OR “Mosquito*” AND

“Kenya”. The search results were then imported to Zotero (version

7.0.15) for de-duplication and data synthesis. Data extraction was

undertaken and entered in Microsoft Excel, including (i) details on

the geographical location of each sampling site, including Global

Positioning System (GPS) recordings, village and county names, (ii)

survey dates and duration of surveillance, (iii)Aedes species identified

at each sampling site, (iv) whether larvae or adults and (v) publication

source citations and sources. These were then merged with equivalent

data fields from the GBIF and WRBU-VectorMap data repositories.

The literature searches identified multiple publications

reporting on the same surveys and were collapsed to a single row

of information per site-time indicating multiple sources.

Additionally, the same or different investigators reported the

same site sampled at different, but almost contiguous times

(within a year) of each other across several publications, these

were also collapsed to a single site entry, and surveillance periods

were extended. Data from the same sites collected more than 12

months apart were included as separate entries and indicated as

spatial and temporal duplicates within the database. The two open-

access global repositories, GBIF and WRBU-VectorMap contained

information shared across databases and those identified during the

literature search. Care was taken to removed likely duplicates or

replications of the same survey report.

The geographic information provided in publications and

reports were of varying precision and spatial resolutions,

sometimes with accompanying maps, more often without. Where

information was reported by county, sub-county or broad area only,

these were excluded from the database as they extended beyond a

~5 x 5 km resolution grid. Other source data were geo-coded to

provide a longitude and latitude for each survey location. Among

the data from the GBIF and WRBU-VectorMap repositories not

identified in the literature search, we have presumed the locations

were provided with Global Positioning System (GPS) coordinates at
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trap or larval sampling sites. Where these covered multiple sites

within a single village, these were combined to the village/year of

sampling. All other data were geo-coded using a variety of gazetteer

and digital online resources. Decimal degrees longitude and latitude

were as a default attributed using GPS coordinates when provided

in the report, the village name was searched using descriptions in

the report using Google Earth Pro (version 7.3.6.9796) and finally

using a national gazetteer of census village names (62). After the

geocoding process was completed for all combined data sources, the

current county and sub-county names were added from shapefiles

sourced from the County Integrated Development Plans (CIDP;

https://www.devolution.go.ke/) using the “Join attributed by

location” tool in Quantum Geographic Information System

(QGIS) software (version 3.32.2).
2.2 Covariates selection

A suite of potential covariates to be integrated in the ENM

analyses were selected from a systematic review undertaken for

Aedes ecological niche modelling (63). Across 113 studies reviewed,

the frequently used covariates for Aedes species modelling included

rainfall, temperature, elevation/slope, vegetation indices, population

density and land cover (Table 1; Figures 1, 2; 63). More information

on their relationship with suitability of Ae. aegypti has been detailed

in Supplementary File 1. Rainfall, daytime and nighttime land

surface temperature (LST), elevation, enhanced vegetation index

(EVI) and land cover datasets were accessed and downloaded

through the Google Earth Engine (GEE) platform (https://

earthengine.google.com/). Population density data was accessed

from the WorldPop website (https://www.worldpop.org/). We

generated distinct binary rasters for each land cover class to be

considered independently in the ENM analyses where a cell value of

0 indicated the absence of the considered land cover variable and 1

its occurrence. For the analysis presented in this manuscript, the

covariates were then resampled to a spatial resolution of

approximately 5 x 5 km and were linked and extracted to the

presence locations for the relevant start year of collection.

For the models to produce accurate and reliable results, the

covariates were tested for multicollinearity using Pearson’s

correlation coefficient with a cut-off value of |0.7|. The covariates’

relative importance (RI) were then tested using the Jackknifing

procedure within MaxEnt (64). RI is a percentage measure of how

much the model performance drops by when the variables are

randomly permuted. For highly correlated variables (>|0.7|), the

covariate with the higher importance was maintained for prediction

leaving a set of relatively uncorrelated variables.
2.3 Maximum Entropy (MaxEnt) analyses

Maximum entropy (MaxEnt) is a general-purpose ENM

approach for making predictions and widely used in ENM

analyses conducted for Aedes spp. distribution modelling (63).

MaxEnt aims to estimate a target probability distribution by
frontiersin.org
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finding the probability distribution of maximum entropy (i.e. most

spread out or closest to uniform; 64), subject to a set of constraints/

rules that represent our incomplete information about the target

distribution. The target/unknown probability distribution, which is

denoted as p is over a finite set X (set of pixels). The distribution p
assigns a non-negative probability p(x) to each point (x; 64). The

approximation of p is also a probability distribution denoted as w .
Frontiers in Tropical Diseases 04
The entropy is defined as:

H(w) =  −  ow(x)ln(w(x))  

Where ln is the natural logarithm. Entropy as defined by Shannon is

a measure of howmuch ‘choice’ is involved in the selection of an events.

Thus, a distribution with higher entropy involves more choices (less

constrained; 65). MaxEnt provides a logistic output that considers the
TABLE 1 Covariates used and their key characteristics (see Supplementary Figures 2, 3 for the panel of covariates for Kenya).

Covariate Source Type Units Interval Temporal extents Spatial resolution

Rainfall CHIRPS Dynamic
Total Rainfall in
mm

Annual 1981-Date
0.05 decimal degrees
(~5 x 5 km)

Enhanced Vegetation Index (EVI) MODIS Dynamic – Annual 2000-Date ~250 x 250 m

Land Surface Temperature (LST) – Day and
Night

MODIS Dynamic Kelvin Annual 2000–Date ~1 x 1 km

Elevation SRTM Static Metres – 2000 ~30 x 30 m

Land cover MODIS Dynamic Land cover classes Annual 2001-2023 ~500 x 500 m

Population density WorldPop Dynamic Population per pixel Annual 2000-2024 ~1 x 1 km
FIGURE 1

Maps of environmental covariates at their original resolutions for the latest years (see Table 1) showing: annual total rainfall (A), annual mean enhanced
vegetation index (EVI; B), annual daytime land surface temperature (LST; C); annual nighttime LST (D); population density (E), and elevation (F).
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species’ prevalence, which is defined as the fraction of occupied places.

MaxEnt’s default prevalence value of 0.5 indicates that the species is

present in half of all feasible sites.

MaxEnt software (version 3.4.4) was used for implementation

of the MaxEnt model predictions (66). All MaxEnt features (linear,

quadratic, hinge, produce, and threshold) were tested, and the

appropriate regularization parameters (for penalising complexity)

were evaluated using the Corrected Akaike Information Criterion

(AICc) using the “ENMeval” R package. The features/constraints

with the lowest AICc value were used in the final model. Presence

data is often clustered around areas of known epidemics. Due to

lack of presence records in some locations and absence data

identified in the Ae. aegypti s.l. data assembled, we created a bias

file using a kernel density estimation (KDE) surface created from

the presence points. We generated the same number of pseudo-

absence points as the presence points, and those pseudo-absence

points were solely simulated within the areas of highest density of

presence points to match with the sampling bias of presence points.

We ran 10 MaxEnt replicate analyses, and the average prediction

and standard deviation surfaces were produced.
2.4 Model evaluation

Presence and pseudo-absence points were split randomly into

10 folds for MaxEnt replicate analyses using the k-fold cross-
Frontiers in Tropical Diseases 05
validation technique and the area under the receiver operating

characteristic curve (AUC) statistic calculated on the validation sets.

AUC is a measure of how well the model differentiates suitable and

non-suitable areas and ranges from 0 to 1 where a value of 0.5

indicates a random model (67), and values above 0.7 indicating

reliable estimates (68). We report the final average AUC, its 95%

confidence intervals (CI) and the AUC plot of sensitivity against 1 –

specificity. Sensitivity is defined as the probability of a true positive

while specificity is the probability of a true negative result.

Essentially then, 1 – specificity returns the false positive rate. K-

fold cross-validation and calculation of the AUC values were

conducted with the program MaxEnt.
3 Results

3.1 Occurrence data assembled

524 records were extracted from the GBIF repository. 136 were

excluded as no information existed on the survey location and 284

pre-2000 surveys were excluded (Supplementary File 1,

Supplementary Figure 2). The remaining 388 GBIF site location

data were collapsed to single site entries as they were spatial and

temporal duplicates. For spatial duplicates covering multiple years

of collection, these were separated to annual periods, and there was

a record for each spatial duplicate for each year. The final GBIF site
FIGURE 2

Moderate Resolution Imaging Spectroradiometer (MODIS)-defined land cover for 2023.
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location data covered 30 time-site locations between 2007 and 2024.

3,388 records were extracted from the WRBU VectorMap database.

Through a process of de-duplication and collapsing to single time-

sites only, 85 time-site records remained sampled between 2005 and

2021 (Supplementary File 1, Supplementary Figure 2).

After the literature review and de-duplication, 266 records at 231

time-site locations were eventually extracted. It was possible to link

19/30 site specific entries extracted from the GBIF database to the

publications identified during the online literature searches. Similarly,

data extracted from the WRBU VectorMap portal were cross-

referenced to the data sourced from the online literature searches.

26/85 site entries in the WRBU-VectorMap data were identified

during the online literature searches (Supplementary File 1,

Supplementary Figure 2). 221 occurrence records were identified

from online literature sites which were not in both GBIF and WRBU

VectorMap databases and they were combined into a single database.

The final composite database provided information of Ae.

aegypti s.l. from 336 records. However, 8 records corresponded to

administrative polygons and were excluded from the analyses,

which led to a total of 328 occurrence records at 291 unique

locations within a ~5 x 5 km grid sampled between 2000 and

2024 (Supplementary File 1, Supplementary Figure 2). The

geographical distribution of the combined wide-area and point

data between 2000 and 2024 where Ae. aegypti s.l. had been

sampled is shown in Figure 3.
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3.2 Covariate selection

Environmental covariates were extracted at Ae. aegypti s.l.

presence locations prior to a preliminary correlation analysis.

Elevation and nighttime LST showed a strong negative correlation

(r = -0.92). Elevation was excluded from the model due to its lower

RI (1.2%) compared to 3.2% RI by nighttime LST from the

Jackknifing method. Built-up areas and population density —

both indicators of urbanisation — were moderately correlated

(r = 0.45; Figure 4). Other covariates exhibited low correlations

and were retained for the ENM analyses.
3.3 Prior analysis to select the optimal
settings for final model

We tested a combination of different MaxEnt features (linear,

quadratic, product, threshold and hinge) and different

regularisation multipliers using the “ENMevaluate” R package to

select the optimal settings to be applied to the Ae. aegypti s.l. final

ecological niche models. The model with the combination of linear,

quadratic and hinge features with the regularisation multiplier of

one was selected as the best model as it had the lowest AICc

(3237.52) followed closely by a model with hinge features only and a

regularisation multiplier of one (AICc = 3245.99). The combination
FIGURE 3

Geographic distribution of Ae. aegypti s.l. occurrence records between 2000 and 2024 (red dots), i.e. 328 unique records corresponding 291 unique
locations. The waterbodies are displayed in blue and county boundaries in grey.
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of linear and quadratic features with a regularisation parameter of

five was the worst model (AICc = 3423. 90; Supplementary File 1,

Supplementary Figure 3).
3.4 Model prediction performance

The predictive performance of the ecological niche models

trained for Aedes aegypti s.l. species was evaluated using the area

under the receiver operating characteristic curve (AUC; Figure 5).

The AUC curve plots sensitivity (1 - omission rate/true positive

rate) against 1 - specificity (false positivity rate). The mean AUC

curve, represented by the red line, achieved AUC of 0.732 (0.653-

0.779), indicating a moderate prediction model (Figure 5). The blue

shaded area around the mean curve represents one standard

deviation, measuring variability in the model’s performance. The

black diagonal line represents a random prediction baseline. The

high AUC value demonstrates the model’s effectiveness in

distinguishing between suitable and unsuitable habitats for Aedes

aegypti s.l.
3.5 Modelled probability of occurrence of
Aedes aegypti s.l.

The highest probabilities of occurrence of Ae. aegypti s.l. were

predicted along the coast, in western Kenya around Lake Victoria
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and areas in northeastern Kenya in Mandera and Wajir (Figure 6).

More specifically, the highest probabilities were estimated around

urban centres, with prediction probabilities ranging between 0.6

and 1. The lowest probabilities of occurrence (between 0.0 and 0.2)

were estimated for the high elevation areas including Mount Kenya,

Mt. Elgon, the Aberdare Forest and Mau escarpments, Mt.

Marsabit, across forested areas and in areas where the population

is less than 1,000 people per ~5 x 5 km grid cell including protected

areas (national parks and reserves; Figure 6; Supplementary File 1,

Supplementary Figure 1). The prediction uncertainties (standard

deviation) ranged from 0 to 0.14 with the highest uncertainty values

in the northeastern part of Kenya in Marsabit, Isiolo, Wajir and

Mandera and the lowest values around in the protected areas in the

Maasai Mara and Tsavo national parks and the high elevation areas

where the lowest probabilities were predicted (Supplementary File

1, Supplementary Figures 1, 4).
3.6 Covariate relative importance

Population density was the most important variable (52.7%),

followed by daytime LST (40.5%) and nighttime LST (3.2%).

Evergreen broadleaf land cover variable followed with a 1.9% RI.

Woody savannah land cover variable had a 0.8% RI while rainfall

had a 0.6% RI. Permanent wetlands and savannahs had a 0.1% RI

each. Barren areas, built-up, closed shrublands, croplands,

deciduous broadleaf, EVI, grasslands, mixed forest, natural
FIGURE 4

Pearson’s correlation coefficient matrix results for environmental covariate values extracted from Aedes aegypti s.l. occurrence points. “LST” refers to
land surface temperature; “EVI” refers to “enhanced vegetation index”.
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FIGURE 5

The receiver operator characteristic (ROC) curves used to estimate the area under the curve (AUC) measuring the predictive of the ecological niche
models trained for Ae. aegypti s.l., and here averaged over ten replicate analyses (red curve). The blue area shows the area of uncertainty (+/-
standard deviation).
FIGURE 6

Ecological niche modelling analysis for Aedes aegypti s.l. in 2024 in Kenya. High probabilities of occurrence were predicted along the coast, the
northeastern central and western parts and low probabilities of occurrence predicted in sparsely populated areas (Figure 1E).
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vegetation, open shrublands, and water had zero RI to the

model (Table 2).
3.7 Response curves

The response curves illustrate the individual effects of each

environmental covariate on predicted probabilities of occurrence/

habitat suitability, thus aiding in the interpretation of the ecological

preferences of a given species. For population density, there is a

sharp increase in the predicted probability of occurrence with an

increase in population density and maximum probability is reached

when the population density is 1,000 people per ~5 x 5 km grid cell,

and from there it plateaus, showing there is no difference in increase

in population density and the probability of occurrence of Ae.

aegypti s.l. (Supplementary File 1, Supplementary Figure 5).

For daytime LST, the predicted probability of occurrence

increases with an increase in temperature up to 303 K (29.9°C)

where the predicted probability of occurrence is 0.72

(Supplementary File 1, Supplementary Figure 5). There is a very

slight reduction in probabilities from 0.72 up to ~0.70 at 313 K

(39.9°C) where the probability of occurrence drops slightly again to
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0.68 at 314 K (40.9°C) from which the probability remains at 0.68

until the maximum daytime LST (~316 K; 42.9°C). Similarly, the

probability of occurrence of Ae. aegypti s.l. increased exponentially

with an increase in nighttime LST up to 288 K (14.9°C) where the

probability of occurrence is 0.62. There is a linear increase in

probability of occurrence between 288 K (14.9°C) and 297 K

(23.9°C) where the probability then increases to 0.72. The

probability of occurrence then starts to fall until maximum

nighttime LST of 304 K (30.9°C) where the probability of

occurrence is close to 0 (Supplementary File 1, Supplementary

Figure 5).

For rainfall, there is then a very sharp increase in probability

from 0.18 at 200 mm of annual rainfall to 0.65 at ~700 mm of

annual rainfall. The probability of occurrence of Ae. aegypti s.l. then

reduces exponentially from 0.65 at ~700 mm of total annual rainfall

to 0.46 at ~4000 mm of annual rainfall thereafter a plateau in

probability until maximum rainfall (Supplementary File 1,

Supplementary Figure 5).

The probability of occurrence of Ae. aegypti s.l. was lower in

evergreen broadleaf areas (0.44) than in non-evergreen broadleaf

areas (0.63). There was an almost equal probability of occurrence of

Ae. aegypti in areas classified as woody (0.62) and non-woody

savannah areas (0.63). In contrast, the predicted probability of

occurrence was higher in permanent wetland areas than in non-

permanent wetland areas (0.71 vs 0.63 respectively). For areas

covered by savannah, the predicted probability of occurrence was

lower (0.6) than in non-savannah areas (0.64; Supplementary File 1,

Supplementary Figure 6).
4 Discussion

The study assembled data on the occurrence of Aedes aegypti s.l.

species in Kenya at 291 unique locations from 2000 to 2024 and

predicted the probability of occurrence using the ecological niche

modelling approach implemented in the program MaxEnt. Using

the maximum entropy approach available in this program, we

identified population density, daytime and nighttime LST as the

most influential predictors of Ae. aegypti s.l. probability of

occurrence and the model had a moderate predictive performance

(AUC = 0.732; 0.653-0.779). The highest probabilities of occurrence

for Ae. aegypti s.l. were predicted along the coast and northeastern

Kenya ranging between 60% and 100% occurrence probabilities,

and the lowest probabilities in high altitude and low population

density areas of the country.

High prediction Aedes aegypti s.l. probabilities from the model

include the northeastern, coastal and western areas of the country

(Figure 6). It is worth mentioning that the current study predicts

high probabilities in some areas in the northeastern region where no

occurrence data were available (Figure 3), however the current

environmental conditions are suitable. In the past ten years,

outbreaks of DENV and CHIKV have been documented in the

northeastern (1, 16, 17, 23) and coastal Kenya (16, 18, 20, 24), which

is consistent with the high probabilities predicted by our ENM

analyses. Furthermore, evidence from existing literature report high
TABLE 2 Summary of covariate relative importance in the prediction
models for Aedes aegypti s.l. “LST” refers to land surface temperature.

Environmental
covariates

Relative importance to the
ecological niche model

Population density 52.7% (48.0-57.3)

Daytime LST 40.5% (36.3-43.6)

Nighttime LST 3.2% (2.4-5.0)

Evergreen broadleaf 1.9% (0.8-2.8)

Woody savannahs 0.8% (0.3-1.4)

Rainfall 0.6% (0.3-0.9)

Permanent wetlands 0.1% (0-0.3)

Savannahs 0.1% (0-0.3)

Barren 0%

Built-up 0%

Closed shrublands 0%

Croplands 0%

Deciduous broadleaf 0%

Enhanced vegetation
index (EVI)

0%

Grasslands 0%

Mixed forest 0%

Natural vegetation 0%

Open shrublands 0%

Water 0%
The values in brackets indicate their 95% credible intervals.
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seroprevalences of DENV and CHIKV along the Kenyan coast

corroborating with our findings. The standard deviation of the

model probabilities were moderate to high in northeastern Kenya

(Supplementary File 1, Supplementary Figure 4). The value of the

variance lies in guiding future surveillance efforts to prioritise areas

with high prediction uncertainties and/or sparse data coverage. It is

important to note that despite high probabilities of occurrence

western Kenya, no arboviral disease outbreaks have been reported

there, although seroprevalence studies indicate moderate to high

exposure to DENV and CHIKV (69–71).

The probability of occurrence of Ae. aegypti s.l. in Kenya was

mainly driven by population density (Table 2; Figure 1E).

Population density has been identified as the most important

variable for Ae. aegypti in multiple studies (54, 72–75). Aedes

aegypti has been described to be involved in the urban

transmission cycle of various arboviruses and this confirms the

species as an urban vector (76). Four studies have identified urban

variables i.e. urban building density, percent urban, built-up areas as

a categorical variable (contrary to the study’s result) and distance to

urban areas as the most important variables (77–80).

Daytime and nighttime LSTs have also been identified as

important covariates determining the presence of Ae. aegypti s.l.

(Table 2; Figures 1C, D). From the ENM analyses, Ae. aegypti s.l.

was found to be highly suitable in areas where the daytime LST is

between 29.9°C and 42.9°C. For nighttime LST, Ae. aegypti s.l.

probabilities rose between ~2°C and 23.9°C (Supplementary File 1,

Supplementary Figure 5). Brady et al. (81) estimated that the

optimal temperatures for Ae. aegypti survival was about 21°C but

the species can survive temperatures from 0°C to 40°C though for

both extremes, they survive for a very short time.

Surprisingly, rainfall was one of the least important variables for

Ae. aegypti s.l. suitability in predicting occurrence (Table 2;

Figure 1A). Two studies have predicted precipitation of the driest

month/quarter as the most important variable for the probability of

occurrence of Ae. aegypti s.l., in Tanzania (60) and the other in

China (82). However, many studies have also shown that other

factors such as temperature, population, land cover and dry season

duration have a more dominant impact on Ae. aegypti presence

than rainfall (37, 42, 83–87). In concert with rainfall, EVI had zero

RI (Table 2; Figure 1B). This was contrary to global ecological niche

modelling studies of Ae. aegypti s.l. where EVI was a dominant

variable for model predictions (12% RI; 42) and (8% RI; 37).

It is notable for example that the widely cited global Ae. aegypti

and Ae. albopictus predictions show almost universal high

probabilities of occurrence of both species across Kenya’s

landmass (42). Using global models, and globally defined

covariate associations with restricted occurrence data per country

(in Kenya only 42 presence locations were included – all Ae. aegypti;

42) might reduce prediction accuracies at country-level scales. Ae.

albopictus has yet to be identified in Kenya (42, 88). However, with

the Ae. albopictus rapid niche expansion due to factors such as

increased urbanicity and human mobility, the species is a threat to

future arboviral epidemics in the country (88). There is need to
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ecological niche modelling to support national level vector control

and disease predictions.

The present study is associated with a series of limitations that

might be addressed in future work. The maximum entropy

approach used in the current analysis led to ecological niche

models associated with a relatively high predictive performance,

but there are several caveats. First, this approach adopts an

exponential model for probabilities, which is unbounded and may

yield inflated predictions for environmental conditions beyond the

study area’s observed range (89). Second, MaxEnt is somehow a

black box, i.e. it relies on an assumption of prevalence and hence

cannot perform your own spatial cross-validation and predicts

many false absences (90, 91). Despite a high predictive

performance, some assumptions apply, including interspecific

competition between species was not considered and nor was

dispersal/movement of species. However, the results of the model

are a starting point to prioritize surveillance in highly probable

areas. Furthermore, other covariates were not explored including

access to roads, rivers and waterbodies, livestock density, within

urban agricultural areas and other land use surfaces. Future work

should explore these local covariates at higher resolution for

improved predictions.

We have used two open access geo-coded databases to identify

reported sampling of Aedes aegypti s.l. in Kenya. However, it is

important to note that a formal literature search identified an

additional 221 records not found in these data repositories

(Supplementary File 1, Supplementary Figure 2). This highlights

the need to constantly update mosquito species inventories to

provide nationally led data platforms for future distribution

modelling.

Most arboviral diseases including DF and CHIKF, are classified

as neglected tropical diseases (NTDs) and are often absent from the

global health agenda, resulting in limited resources and access to

global funding support (92). For instance, very little is known about

the epidemiology of CHIKV in Africa and in Kenya (93, 94). Most

vector surveillances in Kenya are focused on Anopheles species

given the persistent endemicity of malaria. However, we must also

consider the potential emerging threats posed by arboviral diseases

that are transmitted by these less-studied vectors and future vector

surveillance should be encouraged to include Aedes and Culex

species sampling.
5 Conclusion

The goal of the study was to use occurrence data together with

publicly available environmental covariates to predict the

probability of occurrence Ae. aegypti s.l. in Kenya given local

environmental condition. This research serves as a foundation for

future studies to compare various ecological niche modelling

approaches. The modelling results are vital for identifying areas at

risk of arboviral infections such as dengue fever and Chikungunya,
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predicting potential establishment zones, and enhancing vector

surveillance in regions with poor entomological reporting,

ultimately aiding in vector control efforts.
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67. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT.
Methods and uncertainties in bioclimatic envelope modelling under climate change.
Prog Phys Geogr. (2006) 30:751–77. doi: 10.1177/0309133306071957

68. Drew C, Wiersma Y, Huettmann F. Predictive Species and Habitat Modeling in
Landscape Ecology: Concepts and Applications. New York, NY: Springer (2011) p.
139–59.

69. Awando JA, Ongus JR, Ouma C, MwauM. Seroprevalence of anti-dengue virus 2
serocomplex antibodies in out-patients with fever visiting selected hospitals in rural
parts of western Kenya in 2010-2011: a cross sectional study. Pan Afr Med J. (2014)
16:73. doi: 10.11604/pamj.2013.16.73.2891

70. Khan A, Bisanzio D, Mutuku F, Ndenga B, Grossi-Soyster EN, Jembe Z, et al.
Spatiotemporal overlapping of dengue, chikungunya, and malaria infections in children
in Kenya. BMC Infect Dis. (2023) 23:183. doi: 10.1186/s12879-023-08157-4

71. Grossi-Soyster EN, Cook EA, de Glanville WA, Thomas LF, Krystosik AR, Lee J,
et al. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk
Frontiers in Tropical Diseases 13
factors in a rural community in western Kenya. PloS Negl Trop Dis. (2017) 11:e0005998.
doi: 10.1371/journal.pntd.0005998

72. Ducheyne E, Tran Minh NN, Haddad N, Bryssinckx W, Buliva E, Simard F, et al.
Current and future distribution of Aedes aEgypti and Aedes albopictus (Diptera:
Culicidae) in WHO Eastern Mediterranean Region. Int J Health Geographics. (2018)
17:4. doi: 10.1186/s12942-018-0125-0

73. Fatima SH, Atif S, Rasheed SB, Zaidi F, Hussain E. Species Distribution
Modelling of Aedes aEgypti in two dengue-endemic regions of Pakistan. Trop Med
Int Health. (2016) 21:427–36. doi: 10.1111/tmi.12664

74. Holeva-Eklund WM, Young SJ, Will J, Busser N, Townsend J, Hepp CM. Species
distribution modeling of Aedes aEgypti in Maricopa County, Arizona from 2014 to
2020. Front Environ Sci. (2022) 10:1001190. doi: 10.3389/fenvs.2022.1001190

75. Nurjanah S, Atmowidi T, Hadi UK, Solihin DD, Priawandiputra W, Santoso B,
et al. Distribution modelling of Aedes aEgypti in three dengue-endemic areas in
Sumatera, Indonesia. Trop Biomedicine. (2022) 39:373–83. doi: 10.47665/tb.39.3.007

76. Diallo D, Sall AA, Buenemann M, Chen R, Faye O, Diagne CT, et al. Landscape
ecology of sylvatic chikungunya virus and mosquito vectors in southeastern Senegal.
PloS Negl Trop Dis. (2012) 6:e1649. doi: 10.1371/journal.pntd.0001649

77. Cardo MV, Vezzani D, Rubio A, Carbajo AE. Integrating demographic and
meteorological data in urban ecology: a case study of container-breeding mosquitoes in
temperate Argentina. Area. (2014) 46:18–26. doi: 10.1111/area.12071

78. Espinosa M, Weinberg D, Rotela CH, Polop F, Abril M, Scavuzzo CM. Temporal
dynamics and spatial patterns of Aedes aEgypti breeding sites, in the context of a
dengue control program in Tartagal (Salta province, Argentina). PloS Negl Trop Dis.
(2016) 10:e0004621. doi: 10.1371/journal.pntd.0004621

79. Espinosa MO, Polop F, Rotela CH, Abril M, Scavuzzo CM. Spatial pattern
evolution of Aedes aEgypti breeding sites in an Argentinean city without a dengue
vector control programme. Geospatial Health. (2016) 11:471. doi: 10.4081/gh.2016.471

80. Romero D, Olivero J, Real R, Guerrero JC. Applying fuzzy logic to assess the
biogeographical risk of dengue in South America. Parasit Vectors. (2019) 12:428.
doi: 10.1186/s13071-019-3691-5

81. Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, et al.
Modelling adult Aedes aEgypti and Aedes albopictus survival at different temperatures
in laboratory and field settings. Parasites Vectors. (2013) 6:351. doi: 10.1186/1756-3305-
6-351

82. Liu B, Ma J, Jiao Z, Gao X, Xiao J, Wang H. Risk assessment for the Rift Valley
fever occurrence in China: Special concern in south-west border areas. Transboundary
Emerging Dis. (2021) 68:445–57. doi: 10.1111/tbed.13695

83. Hussain SSA, Dhiman RC. Distribution expansion of dengue vectors and climate
change in India. GeoHealth. (2022) 6:e2021GH000477. doi: 10.1029/2021GH000477

84. Johnson TL, Haque U, Monaghan AJ, Eisen L, Hahn MB, Hayden MH, et al.
Modeling the environmental suitability for Aedes (Stegomyia) aEgypti and Aedes
(Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. J Med
Entomology. (2017) 54:1605–14. doi: 10.1093/jme/tjx163

85. Khan SU, Ogden NH, Fazil AA, Gachon PH, Dueymes GU, Greer AL, et al.
Current and Projected Distributions of Aedes aEgypti and Ae. albopictus in Canada
and the US. Environ Health Perspect. (2020) 128:057007. doi: 10.1289/EHP5899

86. Santos JM, Capinha C, Rocha J, Sousa CA. The current and future distribution of
the yellow fever mosquito (Aedes aEgypti) on Madeira Island. PloS Negl Trop Dis.
(2022) 16:e0010715. doi: 10.1371/journal.pntd.0010715

87. Valdez LD, Sibona GJ, Condat CA. Impact of rainfall on Aedes aEgypti
populations. Ecol Model. (2018) 385:96–105. doi: 10.1016/j.ecolmodel.2018.07.003

88. Longbottom J, Walekhwa AW, Mwingira V, Kijanga O, Mramba F, Lord JS.
Aedes albopictus invasion across Africa: the time is now for cross-country collaboration
and control. Lancet Global Health. (2023) 11:e623–8. doi: 10.1016/S2214-109X(23)
00046-3

89. Syfert MM, Smith MJ, Coomes DA. The effects of sampling bias and model
complexity on the predictive performance of MaxEnt species distribution models. PloS
One. (2013) 8:e55158. doi: 10.1371/journal.pone.0055158

90. Merow C, Smith MJ, Silander JA Jr. A practical guide to MaxEnt for modeling
species’ distributions: what it does, and why inputs and settings matter. Ecography.
(2013) 36:1058–69. doi: 10.1111/j.1600-0587.2013.07872.x

91. Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH,
et al. Presence-only modelling using MaxEnt: when can we trust the inferences?
Methods Ecol Evol. (2013) 4:236–43. doi: 10.1111/2041-210x.12004

92. World Health Organization. Neglected tropical diseases (2025). Available online
at: https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-
diseases (Accessed January 31, 2025).

93. Nyamwaya DK, Otiende M, Omuoyo DO, Githinji G, Karanja HK, Gitonga JN,
et al. Endemic chikungunya fever in Kenyan children: a prospective cohort study. BMC
Infect Dis. (2021) 21:186. doi: 10.1186/s12879-021-05875-5

94. Nyamwaya DK, Thumbi SM, Bejon P, Warimwe GM, Mokaya J. The global
burden of Chikungunya fever among children: A systematic literature review and meta-
analysis. PloS Global Public Health . (2022) 2:e0000914. doi: 10.1371/
journal.pgph.0000914
frontiersin.org

https://doi.org/10.1186/s12936-017-1734-y
https://doi.org/10.1371/journal.pone.0163863
https://doi.org/10.1186/s13071-021-05017-5
https://doi.org/10.1186/s13071-023-05959-y
https://doi.org/10.1038/s41598-017-13822-1
https://doi.org/10.1038/s41598-017-13822-1
https://doi.org/10.4081/gh.2014.10
https://doi.org/10.1016/j.dib.2017.11.097
https://doi.org/10.3402/iee.v3i0.21748
https://doi.org/10.1016/j.jag.2018.11.004
https://doi.org/10.1051/parasite/2021030
https://doi.org/10.1016/j.parepi.2021.e00225
https://doi.org/10.1371/journal.pone.0162649
https://doi.org/10.1371/journal.pone.0162649
https://www.who.int/publications/i/item/9789240088948
https://www.who.int/publications/i/item/9789240088948
https://www.knbs.or.ke/reports/kenya-census-2009/
https://doi.org/10.1186/s13071-023-05912-z
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://biodiversityinformatics.amnh.org/open_source/maxent/
http://biodiversityinformatics.amnh.org/open_source/maxent/
https://doi.org/10.1177/0309133306071957
https://doi.org/10.11604/pamj.2013.16.73.2891
https://doi.org/10.1186/s12879-023-08157-4
https://doi.org/10.1371/journal.pntd.0005998
https://doi.org/10.1186/s12942-018-0125-0
https://doi.org/10.1111/tmi.12664
https://doi.org/10.3389/fenvs.2022.1001190
https://doi.org/10.47665/tb.39.3.007
https://doi.org/10.1371/journal.pntd.0001649
https://doi.org/10.1111/area.12071
https://doi.org/10.1371/journal.pntd.0004621
https://doi.org/10.4081/gh.2016.471
https://doi.org/10.1186/s13071-019-3691-5
https://doi.org/10.1186/1756-3305-6-351
https://doi.org/10.1186/1756-3305-6-351
https://doi.org/10.1111/tbed.13695
https://doi.org/10.1029/2021GH000477
https://doi.org/10.1093/jme/tjx163
https://doi.org/10.1289/EHP5899
https://doi.org/10.1371/journal.pntd.0010715
https://doi.org/10.1016/j.ecolmodel.2018.07.003
https://doi.org/10.1016/S2214-109X(23)00046-3
https://doi.org/10.1016/S2214-109X(23)00046-3
https://doi.org/10.1371/journal.pone.0055158
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1111/2041-210x.12004
https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases
https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases
https://doi.org/10.1186/s12879-021-05875-5
https://doi.org/10.1371/journal.pgph.0000914
https://doi.org/10.1371/journal.pgph.0000914
https://doi.org/10.3389/fitd.2025.1641807
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org

	Predicting the ecological niches of Aedes aegypti s.l. using maximum entropy in Kenya
	1 Introduction
	2 Methods
	2.1 Assembling Aedes aegypti s.l. occurrence data
	2.2 Covariates selection
	2.3 Maximum Entropy (MaxEnt) analyses
	2.4 Model evaluation

	3 Results
	3.1 Occurrence data assembled
	3.2 Covariate selection
	3.3 Prior analysis to select the optimal settings for final model
	3.4 Model prediction performance
	3.5 Modelled probability of occurrence of Aedes aegypti s.l.
	3.6 Covariate relative importance
	3.7 Response curves

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


