

OPEN ACCESS

EDITED AND REVIEWED BY Emanuele Nicastri, National Institute for Infectious Diseases Lazzaro Spallanzani (IRCCS), Italy

*CORRESPONDENCE

Angelica Gobbo

angelik.gobbo@gmail.com

Natália Aparecida de Paula

npbiomed@yahoo.com.br

Filipe Rocha Lima

rfilipelima@gmail.com

RECEIVED 01 August 2025 ACCEPTED 05 August 2025 PUBLISHED 15 August 2025

CITATION

Gobbo A, de Paula NA and Lima FR (2025) Editorial: Enhancing leprosy diagnosis: new tools and approaches for global health impact. Front. Trop. Dis. 6:1678063. doi: 10.3389/fitd.2025.1678063

COPYRIGHT

© 2025 Gobbo, de Paula and Lima. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Enhancing leprosy diagnosis: new tools and approaches for global health impact

Angelica Gobbo^{1*}, Natália Aparecida de Paula^{2,3*} and Filipe Rocha Lima^{2,3,4*}

¹Institute of Biological Sciences, Federal University of Pará, Belém, Brazil, ²Laboratory for Skin Studies and Alternative Models, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil, ³National Referral Center for Sanitary Dermatology and Leprosy, Dermatology Division, Department of Internal Medicine, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, ⁴Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil

KEYWORDS

Mycobacterium leprae, leprosy, applied immunology, laboratorial tests, biomarkers, immunopathogenesis, diagnosis, new treatments

Editorial on the Research Topic

Enhancing leprosy diagnosis: new tools and approaches for global health impact

Leprosy is a critical neglected disease caused by *Mycobacterium leprae* and *Mycobacterium lepromatosis*, which is marked by a complex spectrum of clinical presentation (1). Despite being an ancient disease, there is a lack of laboratory tests that make leprosy diagnosis simpler, safer, faster, effective, and accessible, since the majority of cases of the disease are clustered in developing countries with economic and social internal heterogeneity (2). Late diagnosis remains a frequent occurrence, presenting high rates of new cases annually, especially in children, which reinforces that the bacillus transmission is active (3). Physical disabilities or permanent sequelae are other highlights of late diagnosis that directly impact the patient's quality of life and could cause even economic limitations, and social stigma (4).

This editorial brings together studies that recognize the inherent complexity of leprosy diagnosis and present innovative approaches with the potential to overcome current limitations. All studies, ranging from reports of unusual clinical cases to those involving molecular or immunological algorithms, underscore the scarcity of leprosy diagnoses, the importance of practical laboratory tools in high-endemicity contexts, and the lack of drug support to mitigate the damage caused by the disease's neural progression.

Chen et al. highlighted that health systems often overlook leprosy as an initial diagnostic consideration, particularly when patients do not present with its classic clinical manifestations and negative usual laboratory tests. These factors, when associated with a lack of a trained health team, make leprosy diagnosis more onerous. In the present study, patients sought medical care due to a persistent fever suggestive of infection; however, screening tests did not yield results consistent with any diagnostic hypothesis of illness, despite a cerebrospinal fluid (CSF) pathological investigation. Only after the hypothesis of leprosy, histopathological examination, and slit-skin smear analysis were *M. leprae*

Gobbo et al. 10.3389/fitd.2025.1678063

confirmed. One interesting finding was that, when analyzing nucleic acid sequences through metagenomic next-generation sequencing (mNGS) on CSF, we observed that *M. leprae* may invade the CNS, possibly causing neurological complications.

The search for molecules capable of stimulating immune response in individuals with leprosy has been tested as possible targets for the development of diagnostic tools since 1980, when anti-phenolic glycolipid-I (PGL-I) was identified as an antibody specific to M. leprae (5). However, although serology contributes to the screening of leprosy cases even in endemic areas, there is still a significant limitation in the use of this tool as a diagnostic tool due to its limited sensitivity (6). Carvalho et al. associate the quantification of cellular immune response mediators with statistical tools and algorithmic methods to identify biomarkers that may be associated with leprosy and/or leprosy reactions and may help physicians in the diagnosis and prognosis of the disease. All biomarkers tested display an increase in immune cell mediators in leprosy patients compared to non-leprosy patients; however, CXCL10, CCL3, and CXCL8 chemokines, IFN-y, and IL-6 pro-inflammatory cytokines, and IL-9 regulatory cytokine showed greater clinical relevance and possible applicability in the diagnosis of leprosy. Additionally, using classification tree, it was possible to categorize patients according to the combination of plasma concentrations of two or more of these selected biomarkers, being CXCL8 the parameter that showed the highest accuracy and significance in household contacts and CCL3 was the only analyte with moderate applicability to differentiate paucibacillary (PB) x multibacillary (MB) patients or PB x non-leprosy cases.

The complexity of leprosy diagnosis is even greater when there are no skin lesions and only neural manifestations are found (7). Diagnostic support through nerve biopsy analysis is an invasive and low-sensitivity approach to identify the bacillus (8). De Athaide et al., in a broader evaluation of this nerve sample, showed differential expression of genes linked to neuronal development, autophagy disruption, and immune responses, with inflammasome activation emerging as a key pathological feature. Linking the autophagy and inflammasome pathways to the mechanism of neural damage caused by the specific bacillus in the nerve provides the possibility of specific markers for the laboratory diagnosis of neural injury, as well as new evidence and opportunities for studying these pathways, which are still understudied in disease progression.

Studies testing alternatives of treatment are even rarer, especially when related to leprosy reactions, even though about 30%~50% of patients develop any symptoms before, during, or after multidrug therapy (MDT). One of these immune hyperactivities that could progress to physical disability and deformities is leprosy neuritis. Dos Santos et al. demonstrate the effectiveness of using intravenous methylprednisolone in both attack and maintenance applications. All evaluated nerves showed similar motor scores, similar to what is observed in traditional treatment using prednisone. Extensive nerve damage, as observed through electroneuromyographic studies, supports the irreversible sequelae of participants and the limitation of recovery. Although there is no clinical improvement with the use of intravenous methylprednisone, the lack of neural worsening supports the hypothesis that this treatment proposes a reduction in the oral dose of oral corticosteroids and, consequently,

minimizes systemic side effects associated with long-term corticosteroid use.

Among the complications in the progression of leprosy, we can also mention treatment-related problems. Since the 1940s, dapsone has been one of the main antibiotics used in treatment. However, especially for Asian populations (9), there is great concern due to its potential for severe adverse reactions. Approximately 1.4% of patients (global prevalence) develop Dapsone Hypersensitivity Syndrome (DHS), which has a mortality rate of 9.9% (10). Due to its severity, early diagnosis is of great importance (11). In 2013, the HLA-B*13:01 allele was found to have a strong relationship with the development of DHS, present in a significant percentage of the Chinese population, but absent in Western populations (12). Menaldi et al., who found a strong relationship between this same allele in an Indonesian population, are essential to validate this genetic marker as a screening tool to identify individuals at high risk of DHS before starting dapsone, potentially improving management and preventing serious adverse events.

In summary, the development of new therapeutic regimens, diagnostic and monitoring platforms, and the application of new biomarkers are key strategies for subclinical and challenging diagnosis, preventing disabilities and halting the disease's spread.

Author contributions

AG: Data curation, Methodology, Conceptualization, Supervision, Validation, Writing – review & editing, Investigation, Software, Formal Analysis, Writing – original draft, Visualization, Resources, Funding acquisition, Project administration. NP: Writing – original draft, Resources, Investigation, Funding acquisition, Writing – review & editing, Project administration, Validation, Conceptualization, Visualization, Supervision, Formal Analysis, Methodology, Data curation, Software, FL: Conceptualization, Funding acquisition, Software, Project administration, Validation, Formal Analysis, Writing – review & editing, Methodology, Data curation, Supervision.

Conflict of interest

The authors declare that the editorial was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Gobbo et al. 10.3389/fitd.2025.1678063

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- Scollard DM. Infection with Mycobacterium lepromatosis. Am J Trop Med Hyg. (2016) 95:500-1. doi: 10.4269/ajtmh.16-0473
- 2. van Hooij A, Geluk A. In search of biomarkers for leprosy by unraveling the host immune response to Mycobacterium leprae. $Immunol\ Rev.\ (2021)\ 301:175-92.$ doi: 10.1111/imr.12966
- 3. Costa ILV, da Costa PF, da Silva SM, Gobbo AR, Pinto PD do C, Spencer JS, et al. Leprosy among children in an area without primary health care coverage in Caratateua Island, Brazilian Amazon. *Front Med.* (2023) 10:1–9. doi: 10.3389/fmed.2023.1218388
- 4. van Brakel WH, Sihombing B, Djarir H, Beise K, Kusumawardhani L, Yulihane R, et al. Disability in people affected by leprosy: the role of impairment, activity, social participation, stigma and discrimination. *Glob Health Action*. (2012) 5:1–11. doi: 10.3402/gha.v5i0.18394
- 5. Barrow WW, Ullom BP, Brennan PJ. Peptidoglycolipid nature of the superficial cell wall sheath of smooth-colony-forming mycobacteria. *J Bacteriol.* (1980) 144:814–22. doi: 10.1128/jb.144.2.814-822.1980
- 6. Oliveira Jorge EV, Gobbo AR, Costa ILV, Bouth RC, da Silva SM, Cunha Messias AC, et al. Leprosy in blood donors. *Trop Med Int Heal.* (2025) 1–5. doi: 10.1111/tmi.70007

- 7. Tomaselli PJ, Dos Santos DF, Dos Santos ACJ, Antunes DE, Marques VD, Foss NT, et al. Primary neural leprosy: clinical, neurophysiological and pathological presentation and progression. *Brain.* (2022) 145:1499–506. doi: 10.1093/brain/awab396
- 8. Dos Santos DF, Antunes DE, Dornelas BC, da Cunha BA, Oliveira TJ, Pereira RC, et al. Peripheral nerve biopsy: a tool still needed in the early diagnosis of neural leprosy? *Trans R Soc Trop Med Hyg.* (2020) 114:792–7. doi: 10.1093/trstmh/traa053
- 9. Tian W, Shen J, Zhou M, Yan L, Zhang G. Dapsone hypersensitivity syndrome among leprosy patients in China. $Lepr\ Rev.\ (2012)\ 83:370-7.\ doi: 10.47276/lr.83.4.370$
- 10. Lorenz M, Wozel G, Schmit J. Hypersensitivity reactions to dapsone: A systematic review. *Acta Dermato-Venereol.* (2012) 92:194–9. doi: 10.2340/00015555-1268
- 11. Zhao Q, Sun L, Sun Y, Naisbitt D, Liu H, Zhang F, et al. Dapsone hypersensitivity syndrome. Chin Med J (Engl). (2023) 136:1560-2. doi: 10.1097/CM9.0000000000002492
- 12. Zhang FR, Liu H, Irwanto A, Fu XA, Li Y, Yu GQ, et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome. $N\ Engl\ J\ Med.$ (2013) 369:1620–8. doi: 10.1056/NEJMoa1213096