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Designing of a Point-of-care test to diagnose tuberculosis (TB) is not an easy

task. This viewpoint stems from the dichotomous diagnostic approach, based

on the bacillary load estimated in latent tuberculosis infection (LTBI), thanks to

the isoniazid chemoprophylaxis strategy, as well as the importance of imaging

to di�erentiate between LTBI and TB. It integrates the “TB spectrum” elucidated

through positron emission tomography-computed tomography scan (PET-CT)

to highlight the dynamic nature of TB lesions. Additionally, it emphasizes the

relevance of animal models that support this perspective, including the drainage

of bacilli through foamy macrophages, which aids in understanding LTBI and

its chemoprophylaxis, and the significance of lung anatomy in TB induction.

Especially the role of interlobular septa and the encapsulation process and

its role in lung lobe predilection impact disease progression. Moreover, it

acknowledges the gender bias in TB, as its incidence is significantly higher in

men across various socioeconomic circumstances, suggesting an unidentified

biological mechanism. For a comprehensive approach, the impact of stress

and cortisol levels is suggested as a new parameter to be considered, given

their association with poverty, and social inequity, and their tendency to be

higher in men. All this information has to be contemplated when designing

an accurate point-of-care test. The test should encompass the complexity of

TB and necessarily integrate both bacillary and host response parameters. It

also should cover the diagnosis of extrapulmonary TB, and pay attention to

immunosuppressed and pediatric population.
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Introduction

There is an urgent need to find novel rapid tests for the diagnosis of tuberculosis (TB),

which are inexpensive and easy to perform in challenging environments. This is crucial in

order to achieve the EndingTB-2030 objective (1). Currently, one-third of TB patients go

undiagnosed, and this situation is even worse in the African region, where the percentage

rises to 50%. Therefore, point-of-care diagnosis of TB poses a significant challenge for the

scientific community.
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Discovering such methodologies necessitates a thorough

understanding and a continuous reconsideration of the relationship

between Mycobacterium tuberculosis load and its natural history

of infection.

The origin of Mycobacterium

tuberculosis

Tuberculosis (TB) remains a significant cause of mortality

worldwide. It belongs to the genera Mycobacterium, which

emerged relatively recently, approximately 36 million years ago

(2), as an evolution of the Nocardia genera. This bacteria

began developing a robust outer membrane to protect the

peptidoglycan layer using large fatty acids known as mycolic

acids, which can reach chain lengths of up to 60 carbon

atoms (3). The most common ancestor of Mycobacterium

closely resembles the M. abscessus-chelonae complex (4), a rapid

growing mycobacteria (RGM), incorporating even larger mycolic

acids (up to 90 carbon atoms), which enhance resistance to

environmental conditions, and gives the characteristic acid-fast

positivity of this genera (3). By abandoning the production

of hyphae observed in Nocardia, Mycobacterium were able to

colonize a new ecological niche: soil amoebae. Within these

amoebae, mycobacteria can survive intracellularly and benefit

from additional protection against harsh environmental conditions

present in the soil, particularly during the cystic phase of

the amoebae’s life cycle (5). Amoebae play a crucial role in

regulating bacterial populations in the soil and maintaining

a balanced rhizosphere microbiome, which provides essential

minerals, modulates plant hormonal balance, and suppresses

potential pathogens (6).

Evolution of RGM to slow growing mycobacteria (SGM)

is closely tied to their enhanced ability to enter amoebae,

which involves adaptation of the mce operon. This adaptation

allowed for better specialization within this niche, leading

to the gradual loss of gens required for essential nutrient

uptake and metabolism in the external environment, which

are no longer necessary (7). This specialization extends beyond

amoebae to their evolutionary counterparts found in multicellular

organisms, specifically macrophages (8). Consequently, SGM

can be transmitted to fish and amphibians through water,

especially after acquiring a new virulent mechanism (ESAT-6)

that allowed the capacity to avoid the phagolysosome fusion

(9), allowing a better transmission among macrophages. This

is the case of M. marinum, and also through aerosols to

mammals and our non-human primate ancestors, as seen

in the case of M. kansasii. The modification of the outer

membrane’s polarity plays a crucial role in this process. The

transition from hydrophilic lipooligosaccharides and phenolic

glycolipids to hydrophobic phthiocerol dimycocerosates, di- and

pentaacyl trehaloses and sulfoglycolipids which confer increased

hydrophobicity, has facilitated more efficient aerosol transmission

(10). This transition occurred approximately 3 million years

ago, leading to the emergence of the most recent common

ancestor of the M. tuberculosis complex, resembling a Canetti-

like strain (11), becoming the transit toward obligate parasites

of humans.

Direct detection of Mycobacterium

tuberculosis: finding the bacilli at any
prize?

The detection of acid-fast bacilli has been a key method for

diagnosing M. tuberculosis (Mtb), particularly considering that the

primary route of infection is through the respiratory system. Before

the advent of molecular biology tools, the acid-fast stain of sputum

was the primary diagnostic tool for tuberculosis (TB). The presence

of even a single bacillus in the sputum is indicative of TB. This

technique has taught us several important lessons.

Firstly, the acid-fast stain has limited sensitivity. It requires

a concentration of 5,000–10,000 bacilli per milliliter (mL) of

sample for detection (12). A positive smear indicates a significant

burden of bacilli and suggests a severe form of the disease (13).

This underscores the importance of active and intensive contact

surveillance for individuals who have been in close contact with

TB patients.

The sensitivity of detection is increased when the sample is

cultured after decontamination. In this case, only 10 bacilli/mL

of sputum are required for a positive result. However, culturing

requires specialized infrastructure that may not be available in

many local laboratories, especially in countries with a high

incidence of TB. Consequently, significant efforts have been made

to incorporate molecular biology methodology in various settings,

as they do not require specific infrastructure. Notwithstanding,

molecular methods have lower sensitivity compared to culturing,

with a lower threshold of 15.6 bacilli/mL (14).

Dichotomous vs. spectrum model of
TB diagnosis management

In essence, the diagnosis of TB still follows a dichotomous

approach based on the sensitivity of culturing, which requires a

minimum of 10 bacilli per milliliter (mL) of sputum, ideally tested

using three consecutive morning sputum samples. However, let’s

imagine if we had a more sensitive technique that could detect 1

bacillus per mL.Would that be sufficient to validate a TB diagnosis?

If we calculate that the lungs drain approximately 500mL of

alveolar fluid every day, it can be argued that in a TB case, at

least 5,000 bacilli are drained from the lesions daily. Refining the

calculations, considering that TB predominantly affects the upper

lobes (which represent 20% of the total pulmonary volume), the

fluid volume is reduced to 100mL, or even 50mL if we focus on

a single upper lobe. This means that at least 500 bacilli need to be

drained from the infected area during sleep (morning sputum are

the best) to be detectable through culturing and confirm a TB case.

This calculation of bacillary load aligns with the dichotomous

model of TB, which originated with the initiation of preventive

TB therapy by the US Public Health Service in the 1950s (15).

Treatment with isoniazid (INH) for 9 months results in a reduction

of TB cases by approximately 90% in close contacts of active TB

patients (16). This effect is particularly significant during the first

year after infection, when the risk of developing TB is higher,

especially in children with <5 year of age and immunosuppressed

people (17, 18), to become negligible around 8 years post-infection

Frontiers in Tuberculosis 02 frontiersin.org

https://doi.org/10.3389/ftubr.2023.1243479
https://www.frontiersin.org/journals/tuberculosis
https://www.frontiersin.org


Cardona 10.3389/ftubr.2023.1243479

FIGURE 1

Evolution of the bacillary load after the acquisition of latent tuberculosis infection (LTBI). Doted lines mark the “LTBI threshold” in terms of bacillary

load, and the 1st year after infection, when the possibility of developing TB is higher. Blue stain range indicates the possibility of symptomatology. In

blue the kinetics of LTBI; in red the progression toward active TB during the 1st year; in pink acquisition of TB and recovery; in green the possibility of

cyclic bacillary regrowth and control.

(19). Considering that spontaneous mutation against INH occurs

once per 6.5–7 log10 bacilli (20), and that no INH resistance has

been described after chemoprophylaxis, it can be inferred that

individuals recently infected, with latent tuberculosis infection

(LTBI), have fewer than 6.5–7 log10 bacilli in their body (Figure 1).

Upward this threshold, the presence of TB is considered, requiring

treatment with at least three drugs to avoid the selection of strains

with spontaneous mutations, which could lead to a “fall and raise”

phenomenon (21).

In general, the dichotomous approach is used in contact

tracing, where LTBI is defined in individuals with a positive

Mantoux test or interferon gamma release assay (IGRA) but no

chest X-ray lesions, while pulmonary TB is diagnosed when a

lesion is detected and confirmed by microbiological methods. This

pragmatic approach links the size of the lesion with the bacillary

load and has been one of the key elements in TB diagnosis.

However, this paradigm may change with the increasing sensitivity

of imaging techniques, such as chest computed tomography (CT),

which can identify micronodules that are impossible to detect

on chest X-rays (22). Regardless of the feasibility of the method,

the question remains whether it is worthwhile to change the

existing paradigm.

Some years ago, with the onset of PET-TAC, a concept emerged

that challenged the dichotomous model of TB diagnosis: the “TB

spectrum” (23, 24). The TB Spectrum suggests that the evolution

from LTBI to TB involves intermediate steps, questioning the

notion of an “LTBI threshold”. It suggests that there can be cyclic

episodes of bacillary regrowth and control, as well as natural

healing of the lesions (13). Not to mention exogenous reinfections,

of special interest in countries with a high TB incidence (25).

Furthermore, the question of infection in naïve subjects arises,

whether it results from a single bacilli infection or multiple

consecutive infections (26).

The TB spectrum approach also emphasizes the relevance

of symptomatology in the diagnostic algorithm. However, TB

symptoms can be variable among patients and often indeterminate.

The common guideline that suggests “2 weeks of cough may

indicate TB” is vague, and physicians must consider various social,

economic, and geographic factors to make an accurate assessment.

Consequently, there is a significant diagnostic delay, with a median

of 52 days and up to 6.5 months in disseminated TB (27). It is

worth nothing that TB does not necessarily have to be linked to

symptomatology or organ failure. In fact, the low severity and

asymptomatic nature of TB in the Paleolithic era may explain the

origin of Mtb (28).

Considering the obligate nature of Mtb infection in humans,

it seems reasonable to orientate an eradication policy toward the

detection of Mtb at all cost, in a massive and cost-effective manner.

This approach is achievable when the bacillary load is detectable in

respiratory samples. However, the challenge lies in the detection of

extrapulmonary TB, where the bacillary load may be lower or more

difficult to access.

The host-pathogen interface: on foamy
macrophages, interlobular septa and soap
bubbles

Experimental modeling in laboratory animals, particularly

mice, has played a crucial role in understanding the natural history

of Mtb infection (Figure 2). These models have been instrumental

in demonstrating the critical role of interferon-gamma (IFN-g)

and Th1 response in activating infected alveolar macrophages

and controlling the infection (29). They have also highlighted the

significance of foamy macrophages (FM), which are old activated

macrophages, in carrying dormant bacilli out of the granuloma and
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FIGURE 2

Natural history of Mtb infection. Entrance to the alveoli through aerosol (1). Macrophage entrance (2). The onset of the granuloma, which depending

on the infiltration percentage of polymorphonuclear leukocytes (PMNs) can be identified as proliferative (3b) or exudative (3a) when it is low or high,

respectively. The interaction with the regional lymph node (4), where Mtb can also infect macrophages, generate lesions which can be a source of

new reinfection of the lung once infected macrophages or extracellular bacilli reach the inferior vena cava to the right auricula and are pumped

again through the pulmonary artery. Once the adaptive immunity is triggered there is a control in the bacillary load in the case of the proliferative

granulomas thanks to a predominant Th1 response (6a, 7a) or a progressive increase thanks to the enhanced entrance of PMNs through a Th17

biased response, that allows an extracellular growth of the bacilli (6b, 7b) and the angiogenesis of new more fragile capillary, than can easily break

and promote extrapulmonary dissemination through the pulmonary veins (9). Proliferative lesions are rapidly encapsulated (8). In both lesions there is

a constant drainage of dormant bacilli carried by foamy macrophages toward the bronchial tree (11) which are mainly drained toward the

gastrointestinal tract (12) but can re-enter the lung parenchyma again after incorporating in the aerosols produced in the bronchioles (1). Obtained

with permission from Cardona et al. (86).

draining them through the bronchioles toward the upper bronchi

(30, 31). The periodic collapse of bronchioles during respiration

generates aerosols (32), providing a pathway for endogenous

reinfection after the lysis of infected FM and incorporation of

dormant Mtb into these aerosols. This mechanism supports the

“dynamic hypothesis” (33), which explains several aspects of TB

development. For example, it elucidates why the incidence of TB

decreases significantly 1 year after infection due to the constant

drainage of bacilli through the gastrointestinal tract, reducing the

chances of reinfection over time. It also clarifies the rationale

behind administering INH for LTBI, as INH has no effect on

dormant bacilli. INH chemoprophylaxis is useful when given for
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an extended period, as it corresponds to the average bacillary

“clean up” time from the granulomas through the gastrointestinal

tract. Maintaining constant levels of INH helps prevent the

regrowth of those dormant bacilli endogenously reintroduced to

the lung.

The Mtb infection in minipigs provided another clue. Is

not solely about the immune response, but there is also a

mechanical component in the lung that needs to be considered.

The interlobular septa, which divide de entire pulmonary

parenchyma into smaller sections to facilitate respiration through

the contraction of the diaphragm, play a role in this regard (34).

These septa contain fibroblasts that can detect any injury in the

parenchyma, leading to mechanical stresses on the tissue. This

triggers a switch to the myofibroblast phenotype (35), characterized

by elongation, stress fiber production, and rapid encapsulation of

the granulomas within approximately 10 days (36) (Figure 2).

Infection of the C3HeB/FeJ mouse strain has helped us

understand how to overcome this encapsulation process. This

strain exhibits exponentially increase in bacillary load due to

the neutrophilic infiltration surrounding infected FM, leading to

the generation of neutrophil extracellular traps, that facilitate the

extracellular growth of Mtb (37) and the development of cording,

which further amplifies inflammation (38). The drained and

infected FM also play a role by generating daughter lesions around

the initial one, which are rapidly infiltrated by polymorphonuclear

leukocytes (PMNs) and give rise to subsequent generations of

daughter lesions. Eventually, all these lesions grow and merge,

resulting in massive irregular necrosis that undergoes liquefaction

(39). This process resembles the formation of soap bubbles and

has been simulated using an “in silico” model known as the

“bubble model” (40). The significance of daughter lesions in the

progression toward liquefacted lesions has been confirmed in

experimental macaquemodels (41), and it aligns with recent studies

using human samples (42). The enlargement of the lesions and

modification of the parenchyma also requires neovascularization,

resulting in the formation of a fragile capillary network that can

be easily rupture and disseminate bacilli into the pulmonary veins,

leading to systemic dissemination (43) (Figure 2). From a point

of view focused on POC strategies, the use of a CT scan is not a

viable alternative, but the detection of increased angiogenesis or

collagen turnover (e.g., metalloproteinase activity) could support a

biosignature approach.

Why upper lobes and men?

Pulmonary TB in immunocompetent individuals tends to

primarily affect the upper lobes of the lungs. In fact, bats (that hangs

upside down during most part of the day) develop TB mostly in the

bases of their lungs. Accordingly, in four-legged animals the lesions

concentrate in the dorsal regions of the lung (44, 45). There are

several factors that contribute to this localization. Firstly, the small

breathing amplitude in the upper lobes creates an environment

that facilitates the local accumulation of bacilli, making it more

favorable for disease to occur (46). Additionally, the upper lobes

have larger alveoli, which experience increased strain due to the

effect of gravity (47). This increased strain can have an impact on

the reactivity of fibroblasts in the upper lobes, potentially making

them less responsive.

The combination of these factors creates a stressful

environment in the upper lobes of the lungs, leading to

the attraction of PMNs. The presence of PMNs promotes

the extracellular growth of the bacilli and enables them to

overcome the encapsulation process that typically occurs in

response to infection. The reduced reactivity of fibroblasts

in the upper lobes may also contribute to the diminished

encapsulation efficacy. These mechanisms collectively contribute

to the predilection of pulmonary TB for the upper lobes in

immunocompetent individuals.

The higher incidence of TB in men compared to women

has been observed globally, with a ratio of approximately 65:35

in WHO reports (48). Several factors contribute to this gender

disparity. One significant factor is the under-notification of TB

cases in women due to inequities in accessing healthcare systems,

particularly in developing countries (49). However, this gender

imbalance persists worldwide, suggesting the presence of biological

sex-biases that are not yet fully understood. These biases may be

related to factors such as sexual hormones, sex-related genetic

backgrounds and genetic regulations, metabolism, or other yet-to-

be-identified factors (50). Further research is needed to elucidate

the specific mechanisms underlying the higher susceptibility of

men to TB.

One potential explanation for the development of severe TB

disease in humans relates to the neuroendocrine stress response.

This response, known as the “fight or flight” reaction, involves

the secretion of glucocorticoids (GCs), such as cortisol (51).

Research has shown that lower socioeconomic status is associated

with chronic stress and elevated cortisol levels (52). The onset

of the agricultural revolution introduced social imbalances and

transitioned society into an unequal one, diverging from the

collaborative nature of the Paleolithic era (53, 54).

The development of severe forms of TB can be attributed to

chronic cortisol elevation rather than an increase in Mtb virulence.

In fact, modern Mtb lineages are generally less proinflammatory

(55) and less likely to induce severe lesions. This perspective

aligns with the concept of TB as a disease affecting lower social

classes and reflecting societal inequality (56). Several observations

support this hypothesis. For example, studies have documented

elevated basal cortisol levels in farmers in Kenya who rely solely

on agriculture for their income (57), and in non-politically

influential men of the Bolivian Tsimane forager-horticulturalists

(58). Additionally, studies in various primate species have

demonstrated that subordinate individuals exhibit higher resting

cortisol levels compared to their dominant counterparts (59). Even

in the absence of baseline differences, research has found that

men produce higher circulating cortisol levels than women during

psychological stress tests (60–62). This may explain why major

depression increases the risk of TB, but specifically in men, as

observed in a nationwide population study in Korea (63).

In immunosuppressed individuals, such as children under

the age of 5 and AIDS patients, the tropism for the upper

lobes in pulmonary TB is not necessarily observed. In these

cases, the development of TB is associated with inadequate
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cellular immunity. The lack of activation of infected macrophages

contributes to easier dissemination of the bacilli, as there is

limited activation of infected macrophages due to reduced

Th1 response, as well as reduced attraction of PMNs caused

by a diminished Th17 response (Figure 2). Consequently, TB

lesions can develop in all pulmonary lobes in these hosts,

and cavitation of the lesions is less frequent. Additionally,

systemic dissemination of the infection is more common, leading

to the development of extrapulmonary lesions with greater

frequency (64).

Discussion on existing methodologies

This perspective highlights several aspects that need to be

considered when designing a new POC test for diagnosing

tuberculosis (TB).

On the direct approach side, there are various methods for

detecting the presence of Mtb. Culture systems, particularly

those using liquid media such as the Mycobacteria Growth

Indicator Tube (MGIT) has the highest sensitivity. Smear

detection using light-emitting diode (LED) based fluorescence

microscopy has also been improved (65). Antigenic methods

have focused on detecting lipoarabinomannan (LAM),

a major component of the Mtb cell wall. Soluble LAM,

actively secreted by Mtb and infected macrophages, can be

detected in urine and holds potential as a POC test (66).

However, the most widely used method with high sensitivity

is the Xpert MTB/RIF test, which utilizes DNA detection

for Mtb and rifampicin resistance in various specimen

types (67–70).

On the indirect approach side, the host interface is considered.

The classical test uses purified protein derivative (PPD) of a

Mtb extract, or tuberculin, standardized by Florence Seibert

(71). Its intradermal injection using the Mantoux technique

induces a delayed-type hypersensitivity response in individuals

with a LTBI. A more specific version uses antigens such

as ESAT-6 and CFP-10 to avoid cross-reactivity with BCG-

vaccinated or most of non-TB mycobacteria infected individuals

(72, 73). On the other hand, Interferon-gamma release assays

(IGRAs) detect specific Th1 effector memory cells in the

blood by quantifying IFN-g production upon stimulation with

antigens like ESAT-6 and CFP-10 using ELISA or ELISPOT

technologies (74).

Direct methodologies are valuable for diagnosing TB,

while indirect methods cannot distinguish between LTBI and

TB. Further refinement may involve using easily obtained

samples like saliva for Mtb DNA detection or detecting host

salivary proteins as biosignatures, although specificity remains a

challenge (75, 76). Biosignatures based on metabolomics, IFN-

g induced agents, or microRNAs have also been explored

(74, 77), also in blood-based tests, including dry blood

testing (78, 79).

The main challenge with these approaches is that the

cellular immune response cannot determine the localization

of the lesion or the risk of progression to TB. In contrast,

the humoral response offers a combination of bacillary load

detection and host response. Antibody production is primarily

induced after extracellular bacillary growth, making it a potential

marker for TB diagnosis. This methodology has been under

development for several years (80), and has shown promising

results, particularly when combined with IGRAs (81), an

approach that merits further development. However, due to the

proliferation of inaccurate tests, the Indian Ministry of Health

banned the import and sale of antibody-based TB tests in

2012 (82, 83).

Special attention should be given to TB diagnosis in children

(84), as they often present with atypical pulmonary TB and

face challenges in obtaining good sputum samples. Additionally,

there is an increased risk of extrapulmonary dissemination.

Detecting specific metabolomic biosignatures in urine shows

promise as a potential option for diagnosing TB in children,

although further development is needed in terms of cost and

feasibility (85).

In conclusion, tuberculosis (TB) diagnosis remains a

significant global healthcare challenge. Current diagnostic

methods have limitations in sensitivity and infrastructure

requirements, hindering timely and accurate detection, especially

in resource-limited settings and for extrapulmonary cases. A

paradigm shift is needed, moving toward a comprehensive

understanding of TB as a spectrum of infection, from latent

to active disease. By considering the dynamic nature of TB

and key factors such as foamy macrophages, interlobular septa,

and anatomical location, innovative diagnostic approaches

can be developed. Factors like male susceptibility and the

impact of chronic stress emphasize the need to consider

social, genetic, and environmental aspects in TB diagnosis

and management. Collaboration and innovation are crucial to

develop rapid, sensitive, and cost-effective diagnostic tests that can

be implemented in challenging environments. By improving early

detection and reducing diagnostic delays, we can effectively control

the spread of TB and work toward the goal of ending the disease

by 2030.
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