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equipment” against host
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Mycobacterium tuberculosis (Mtb) is the deadliest bacterial infection worldwide,

but many molecular details of how it interacts with the innate immune

system remain obscure. In particular, although Mtb secretes a large number of

putative e�ector proteins, a relatively small number have assigned functions in

facilitating host-pathogen interactions. One particularly large family of secreted

mycobacterial proteins that remains poorly understood is the PE/PPE proteins.

Despite numerous lines of evidence for potential roles in virulence and in

mediating host-pathogen interactions, only a small fraction of these 170+

proteins have been well characterized. However, this large family of proteins is

likely key for understanding how Mtb subverts immune responses, manipulates

host cell biology, and establishes a successful infection. Here, we highlight

examples of PE/PPEs that have well-defined e�ects on cell intrinsic pathways

in macrophages during mycobacterial infection. Examples include PPE2, which

blunts production of reactive oxygen species and nitric oxide; PE_PGRS33,

which facilitates bacterial uptake; PE_PGRS29, which directly binds ubiquitin

to promote host autophagy and limit pathologic inflammation; MirA, which

facilitates actin tail formation to promote cell-to-cell spread; and others.

Understanding the full spectrum of PE/PPE functions is critical for understanding

Mtb pathogenesis and for developing new strategies to combat theworldwide TB

pandemic. Advancing the lagging research e�orts characterizing this mysterious

family of e�ector proteins is critical for the TB field.
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Introduction

Despite worldwide efforts to end the tuberculosis (TB) pandemic, around 10 million

people fall ill with TB annually, making TB the leading cause of death from an infectious

disease (1). While TB is a treatable infection, the alarming rise of drug resistant strains

(1–4), the lack of a highly protective vaccine (5, 6), and the shortage of reliable point-of-

care diagnostics (7, 8) make the development of new therapeutics an urgent necessity. To

develop new, effective TB treatments, we need a precise understanding of the molecular

mechanisms of TB pathogenesis.

TB is caused by the bacterium Mycobacterium tuberculosis (Mtb), an expert pathogen

capable of evading and manipulating the immune response for its benefit. Once infectious

droplets are inhaled by a new host, the bacterium reaches the lungs and is phagocytosed by

surveilling alveolar macrophages (9, 10). After engulfment by these macrophages,Mtb uses

its ESX-1 secretion system to permeabilize its phagosome, gain access to the macrophage
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cytosol, and modulate the host cell (11, 12). Using a wide

array of lipids and secreted proteins called effector proteins, Mtb

manipulates host cell biology to block antibacterial pathways and

create an intracellular replicative niche (13–15).

One class of Mtb effector proteins are the PE/PPE proteins,

named for the proline-glutamic acid (PE) or proline-proline-

glutamic acid (PPE) motifs in their N-terminal domains. Their C-

terminal domains vary widely but commonly contain disordered

domains or domains predicted to interface with host biology.

PE/PPEs were first identified upon the complete sequencing of the

Mtb genome (16, 17). Strikingly, this study showed that ∼10% of

theMtb genome coding capacity is dedicated to PE/PPEs (16). The

sheer genomic volume dedicated to these proteins, compounded by

their expansion specifically in pathogenic mycobacterium, suggests

they play a critical role in virulence. For example, the non-

pathogenic species M. smegmatis has approximately 10 PE/PPE

genes while the pathogens M. bovis and M. marinum have

approximately 160 and 280 PE/PPEs, respectively (18–20). Several

PE/PPE proteins are also associated with the genomic loci encoding

Mtb’s five ESX (type VII) secretion systems, which are tightly

associated with virulence (19, 21, 22). Furthermore, even the

dramatically reduced genome of the leprosy-causing bacterium M.

leprae has 12 potential PE/PPE genes (20, 23), again pointing to the

important role PE/PPEs play in mycobacterial pathogenesis.

In this mini review, we discuss a subset of PE/PPE proteins

that act as virulence factors during Mtb infection (Figure 1). By

highlighting examples of especially well-characterized PE/PPEs

that have a strong combination of microbiology and cell biology

evidence to support their roles during infection, we aim to

demonstrate the evidence necessary to establish PE/PPEs as

bona fide mycobacterial virulence factors. Moreover, we hope to

emphasize the importance of PE/PPEs in mediating Mtb virulence

and underscore the need to define the molecular functions of the

remaining PE/PPEs, many of which still have poorly defined roles

inMtb infection.

PE/PPE proteins

Broadly speaking, the N- and C-terminal domains of PE/PPE

proteins are predicted to carry out divergent functions, with the

N-terminus facilitating secretion and the C-terminus exerting

biological functions (24, 25). The N-termini of PE and PPE proteins

contain alpha helices that form hydrophobic faces through which

they interact as heterodimers (26–28). These heterodimers are

bound by the chaperone EspG, which delivers them to an ESX

secretion system for export (26–30). The C-termini of PE/PPE

proteins, on the other hand, are predicted to carry out biological

functions, whether in bacterial physiology or in mediating host

interactions. The PGRS regions that define the PE_PGRSs are

the best characterized PE/PPE domains due to their documented

ability of many to alter host cell biology. For example, PE_PGRS5's

C-terminal PGRS domain drives the protein’s ER localization

and ability to induce ER stress regardless of the specific PE

domain that is fused to it (31). Similarly, the PGRS domain

in the M. marinum PE_PGRS protein MMAR_0242 prevents

phagosome-lysosome fusion in macrophages and is both required

for intracellular M. marinum replication and sufficient to enhance

M. smegmatis survival (32). The theme of PE/PPEs’ C-terminal

domains driving their virulence functions holds true for a vast

majority of characterized PE/PPEs and is discussed in detail below

for the functional C-terminal domains of PPE2, PE_PGRS33,

and MirA.

PPE2

Because PPE2 has been identified in culture supernatants, it is

categorized as a secreted protein (33), and studies have sought to

identify its function in host cells. One study ectopically expressed

PPE2 in macrophages to assess how it affected host cell biology

and found that PPE2 expression decreased nitric oxide (NO)

production upon LPS stimulation (34). Importantly, another study

demonstrated that macrophages infected with1PPE2Mtb produce

higher levels of NO (33), further indicating that PPE2 blunts

this critical antibacterial response. PPE2 has also been tied to

NO production via its nuclear localization and impact on gene

expression. PPE2 possesses a nuclear localization signal (NLS) that

binds to importin proteins, which mediate nuclear trafficking (34).

The authors demonstrated that through its NLS, PPE2 localizes

to the nucleus where it binds to the GATA region of the Nos2

promoter (34). As a result, PPE2 represses Nos2 expression and

NO production by macrophages, restraining their antibacterial

capacity (34).

PPE2 is also required to dampen the oxidative burst duringMtb

infection (35). Macrophages infected with 1PPE2 Mtb generated

more reactive oxygen species (ROS) compared to those infected

with wild-type Mtb (35). This was further supported by the

finding that macrophages ectopically expressing PPE2 had lower

ROS generation (35). In determining the mechanism for PPE2-

dependent ROS differences, the authors of this study found

that PPE2-expressing macrophages had reduced recruitment of

p47phox and p67phox to the phagosome and decreased NADPH

oxidase activity in phagosome-containing membrane fraction (35).

Furthermore, the authors identified an interaction between PPE2

and p67phox, which is thought to prevent p67phox recruitment to

the phagosome and assembly of the NADPH oxidase complex. The

authors also determined that a specific residue in the C-terminal

domain of PPE2, W263, was required for PPE2′s interaction with

p67phox, and therefore, its ability to blunt ROS production (35).

Together, these studies suggest that individual PE/PPE proteins can

affect more than one pathway via more than one mechanism to

effectively subvert macrophage defenses.

PE_PGRS33

PE_PGRS33 localizes to the mycobacterial cell wall and elicits

an immune response, indicating it interacts with host cellular

machinery during Mtb infection (36–38). In a study examining

the entry of a 1PE_PGRS33 Mtb mutant, PE_PGRS33 was

found to be required for uptake specifically in macrophages but

dispensable for Mtb’s intracellular replication of Mtb (39). Because

pathogens are known to hijack TLR2 signaling for uptake into

immune cells, the authors examined the requirement of TLR2 for
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FIGURE 1

Mycobacteria use PE/PPE proteins to hijack host cell biology and evade antibacterial defenses. PE_PGRS33 is surface exposed and promotes Mtb

uptake by macrophages. PPE2 binds p67phox to inhibit assembly of phagosomal NADPH oxidase and blunt ROS production, and it also translocates

into the nucleus to block Nos2 transcription and blunt NO production. PE_PGRS29 binds polyubiquitin chains to enhance targeting of Mtb to

autophagy and regulate inflammatory responses, while PE_PGRS47 binds to Rab1a to block autophagy induction and formation of the isolation

membrane. The M. marinum PGRS protein MirA recruits the actin nucleator N-WASP to the bacterial surface to polymerize actin into tails for

cell-to-cell spread. Created with BioRender.com.

Mtb’s PE_PGRS33-dependent uptake. They found that blocking

TLR2 through genetic or chemical means dramatically decreased

macrophages’ uptake of wild-typeMtb (39). By complementing the

knockout with several PE_PGRS33 truncations, the authors found

that the C-terminal PGRS domain, and particularly amino acids

140–260, was required for mediating TLR2-dependent uptake (39).

Another study exploring the intracellular function of PE_PGRS33

found that when ectopically expressed in T cells, PE_PGRS33

colocalizes with mitochondria and induces apoptosis (40). This

observation is supported by a study using purified PE_PGRS33 and

PE_PGRS33 ectopically expressed in M. smegmatis that similarly

found PE_PGRS33 induces cell death in macrophages (41).

Interestingly, despite these cell biology phenotypes, 1PE_PGRS33

Mtb exhibits no defects in intracellular replication or growth

defects in a mouse infection model (39, 42). However, deletion of

PE_PGRS33 leads to enhanced pathogenesis during the chronic

stage of infection (42), suggesting that uptake via TLR2 is key for

Mtb pathogenesis.

Clinical isolates of Mtb commonly harbor polymorphisms in

the PE_PGRS33 gene, and many of these mutations result in

frameshifts and truncations in the PGRS domain (43, 44). In a

study exploring the ramifications of these clinical mutations, the

authors found that complementing1PE_PGRS33Mtbwith clinical

variants of PE_PGRS33 did not rescue the mutant’s defect in uptake

by macrophages (42). Moreover, complemented strains exhibited

more extracellular bacilli in murine lungs and induced more

tissue damage at later time points post-infection (42). Together,

these studies suggest that PE_PGRS33 promotes Mtb’s uptake by

macrophages and loss of this gene, as is frequently observed in

clinical strains, may promoteMtb pathogenesis.

PE_PGRS47

Interest in PE_PGRS47 initially stemmed from its identification

in a screen identifyingMtb factors that inhibit antigen presentation,

which is a major virulence strategy employed by Mtb (45). The

authors of this study introduced an Mtb cosmid library into M.

smegmatis and identified bacterial clones that decreased MHC-

II antigen presentation in dendritic cells. The authors found that

expression of PE_PGRS47 in M. smegmatis not only decreased

antigen presentation but also enhanced intracellular bacterial

survival (45). To explain these two phenotypes, the authors
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measured autophagy, which is a potent antibacterial response

initiated by macrophages to control intracellular Mtb infection. In

macrophages infected with1PE_PGRS47Mtb, there was increased

autophagy induction and more Mtb surrounded by autophagy

machinery (45). Critically, the authors also demonstrated that

1PE_PGRS47 Mtb was attenuated in a mouse model of

infection (45).

Because the mechanism of how PE_PGRS47 inhibits autophagy

was unknown, a subsequent study investigated this by ectopically

expressing PE_PGRS47 in macrophages. The authors found that

expression of PE_PGRS47 blocked the induction of autophagy

and promoted bacterial survival (46). Using immunoprecipitation

paired with mass spectrometry, the authors determined this was

due to PE_PGRS47′s interaction with Rab1a, which the authors

found to be required for autophagy induction duringMtb infection

(46). The mechanism by which PE_PGRS47 may block recruitment

of autophagy machinery to Mtb remains to be determined, but

decreased LC3 recruitment to Mtb may arise from Rab1A’s role

in elongating the isolation membrane (46). In a related study, the

same authors identified five PE/PPEs in addition to PE_PGRS47

(PE_PGRS21, PE_PGRS30, PPE44, and PPE51) that are required

forMtb’s intracellular replication and for inhibiting bulk autophagy

(47). However, the specific mechanisms by which each inhibits

autophagy during Mtb infection, including the domains required

for these functions, remain to be defined.

PE_PGRS29

Interaction between a PE/PPE and the same autophagy pathway

but with opposite consequences is mediated via PE_PGRS29 (48).

PE_PGRS29 is a surface-exposed PE protein that contains a

ubiquitin-associated (UBA) domain, which directly interacts with

polyubiquitin chains (48). The interaction between PE_PGRS29

and ubiquitin recruits downstream selective autophagy machinery,

including p62 and LC3, which targets Mtb to xenophagy for

bacterial clearance (48). The authors studied 1PE_PGRS29 Mtb

and found that in macrophages, the deletion mutant recruits

less ubiquitin, p62, and LC3, and is better able to survive

and replicate intracellularly (48). While recruiting autophagy

machinery enhances Mtb killing, the authors argue this is a cost

that may be outweighed by the substantial benefit of dampening

host cell responses and preventing excessive inflammation in order

to prolong infection and establish latency. Indeed, mice infected

with 1PE_PGRS29 Mtb exhibited worse immunopathology,

including larger lung lesions, more cellular infiltrates in the

lung, and increased expression of proinflammatory cytokines (48).

Intriguingly, PE_PGRS29 represents a rare example where the

functional domain/residue resides in the PE domain (L65) rather

than in the PGRS domain (48). Whether the PGRS domain of

PE_PGRS29 plays additional roles interfacing with host cell biology

remains to be determined.

MirA

M. marinum, which is primarily a fish pathogen but also causes

infection in humans, exhibits actin-based motility within infected

cells to enable its cell-to-cell spread. However, the molecular

mechanism governing this virulence strategy was unknown. In

a recent study using transposon mutagenesis and fluorescence

microscopy, the authors identified the PE_PGRS gene responsible

for M. marinum’s actin tail formation (MMAR_3581) and named

it mirA (mycobacterial intracellular rocketing A) (49). The authors

found that MirA interacts with the host actin nucleator N-WASP

to induce actin polymerization, and while MirA is not required

for intracellular growth, it is required for M. marinum to form

actin tails and spread from cell to cell (49). Interestingly, ectopic

expression of MirA in host cells induces the formation of actin tails

on lipid droplets, mirroring the actin tails on intracellular bacilli

(49). An amphipathic helix within MirA’s PGRS domain is required

for MirA to promote actin-based motility and for MirA to localize

to lipid droplets, but this helix is dispensable for MirA’s interaction

with N-WASP (49). These findings indicate that this helix anchors

MirA in the mycobacterial cell wall where it recruits N-WASP to

polymerize actin and propel the bacterium through the cytoplasm.

Importantly, the authors identified similar amphipathic helices in

many PGRS domains (49), suggesting it may be a common feature

of PE_PGRS proteins wherein they are tethered to the bacterial

surface to interface with host cell machinery.

Additional functions of PE/PPE
proteins

Upon the initial discovery of PE/PPEs, they were hypothesized

to play a role in immune evasion via antigenic variation due to their

highly repetitive gene structures (50). This is a common strategy

used by pathogens in which they alter their cell surfaces to make

them unrecognizable to the host’s adaptive immune system. This

hypothesized role for PE/PPEs is supported by studies identifying

PE/PPE antibodies in infected hosts (38, 51, 52), which indicates

the adaptive immune system does recognize this protein family

and suggests an evasion mechanism would be beneficial to the

bacterium. However, studies have shown that antibodies capable of

detecting PE/PPEs usually target their conserved N-terminal region

rather than their highly variable and repetitive C-termini (38, 53).

Therefore, while a role in antigenic variation has not been ruled

out, it appears the host develops broadly neutralizing antibodies

rather than antibodies against antigens undergoing antigenic

shift or drift.

A growing body of evidence also indicates that a subset of

PE/PPEs act as channels to transport nutrients and even protein

dimers across the especially thick mycomembrane (54). In most

cases, PE proteins appear to help export PPE proteins to the

outer membrane where PPEs function independently. For example,

PPE51 export to the outer membrane requires PE19 (55), and once

there, PPE51 promotes phosphate and disaccharide uptake (55, 56).

Likewise, PE20 promotes export of PPE31 to facilitate magnesium

uptake (55). Similarly, PPE36 and PPE62 are anchored to the outer

cell membrane and directly bind to heme, playing a role in iron

acquisition, and PPE36 transport to the outer membrane has been

shown to be facilitated by PE22 (57). Conclusively determining

whether porin-like structures are formed exclusively by PPEs or

by complexes of PE/PPEs has been challenging since most studies

examining porin function have relied on genetic approaches.

Moreover, how PPE porins contribute to Mtb physiology during
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infection and whether they can be considered bona fide virulence

factors is not well established.

Recent reports have also provided compelling evidence

demonstrating that PE/PPE proteins themselves form channels

in the mycomembrane to facilitate their own secretion. Two

recent studies used cryo-electron microscopy to determine the

structure of EspB, a noncanonical PE/PPE protein that contains

both PE and PPE domains and is cleaved in the periplasm

(58, 59). These studies found that EspB forms a large channel

capable of accommodating folded proteins, including PE/PPE

heterodimers (58, 59). Moreover, the authors found that channel-

like structures were only formed by EspB proteins from slow-

growing mycobacteria (58), suggesting EspB channels may play

a critical role in pathogenesis. These studies help clarify the

mechanism by which PE/PPEs form channels or porins and

illustrate how PE/PPEs may be secreted into the extracellular space

where they interact with the host cell.

Perspectives

Here we have highlighted PE/PPE proteins with well-

defined host targets and well-characterized virulence roles during

mycobacterial infection (Figure 1). For a vast majority of these

studies, authors have identified an interaction with a host protein,

determined the region of the PE/PPE required for its function,

discovered a cell biology phenotype, and demonstrated that an

Mtb mutant exhibits a similar phenotype during infection. While

addition of purified PE/PPEs to host cells and ectopic expression

of PE/PPEs in M. smegmatis provides useful initial data on

possible virulence functions, ectopic expression in macrophages

and infections with Mtb knockout and complemented strains

has provided robust physiological data on PE/PPE functions

during infection.

The most well-characterized PE/PPEs belong to the human

pathogen Mtb due to its large public health impact. However,

other mycobacteria express numerous diverse PE/PPE proteins

with the potential to provide novel insight into mycobacterial

virulence strategies. M. marinum’s MirA is a prime example

as it revealed that many PGRS proteins possess amphipathic

helices that likely facilitate tethering to the mycobacterial surface

(49). Exploration of PE/PPEs from non-tuberculous mycobacteria

(NTM), such as M. abscessus, will be critical for the development

of new therapeutic interventions for these emerging pathogens

that are even more challenging to successfully treat than Mtb.

Additionally, since PE/PPEs are primarily studied in the context

of pathogenesis, the small subset of non-virulence related PE/PPEs

has been underexplored and may hold valuable insights into

mycobacterial physiology.

One major motivation for studying PE/PPEs as potential

virulence factors lies in their significant variability between Mtb

strains and lineages (60, 61). For example, the hypervirulent Beijing

strains in lineage 2 have amutation in the gene encoding PPE38 that

prevents its secretion (62). Because PPE38 assists in the secretion of

ESX-5-dependent PE/PPEs, this mutation in PPE38 renders Beijing

strains defective for secretion of many PE/PPEs (62). Interestingly,

this secretion defect increases the virulence of Beijing strains, and

introducing wildtype PPE38 reverts these strains’ hypervirulence

phenotypes (62), suggesting that PE/PPEs can not only drive strain-

specific virulence phenotypes but also play complex roles mediating

Mtb pathogenesis. Together with the studies reviewed above, this

illustrates how Mtb has evolved to carefully balance and fine tune

the use of effectors to both subvert and exploit host defenses for

its benefit.

In reviewing a handful of well-characterized PE/PPEs,

we have highlighted the challenge ahead performing detailed

characterization of the many remaining weakly characterized

PE/PPE proteins. Future efforts should focus on identifying precise

mechanisms by which individual PE/PPEs promote mycobacterial

infection, including performing structural, biochemical, molecular,

and cellular studies. Elucidating the roles of these 200+ proteins

will deepen our understanding of mycobacterial pathogenesis and

help identify novel targets and intervention strategies for future

TB treatments.
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