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Introduction: Mycobacterium tuberculosis (Mtb) is the causative agent of

tuberculosis disease, the greatest source of global mortality by a bacterial

pathogen. Mtb adapts and responds to diverse stresses, such as antibiotics,

by inducing transcriptional stress response regulatory programs. Understanding

how and when mycobacterial regulatory programs are activated could inform

novel treatment strategies that hinder stress adaptation and potentiate the

e�cacy of new and existing drugs. Here, we sought to define and analyze Mtb

regulatory programs that modulate bacterial fitness under stress.

Methods: We assembled a large Mtb RNA expression compendium and applied

this to infer a comprehensive Mtb transcriptional regulatory network and

compute condition-specific transcription factor activity (TFA) profiles. Using

transcriptomic and functional genomics data, we trained an interpretable

machine learning model that predicts Mtb fitness from TFA profiles.

Results: We demonstrated that a TFA-based model can predict Mtb growth

arrest and growth resumption under hypoxia and reaeration using gene

expression data alone. This model also directly elucidates the transcriptional

programs driving these growth phenotypes.

Discussion: These integrative network modeling and machine learning analyses

enable the prediction of mycobacterial fitness across di�erent environmental

and genetic contexts with mechanistic detail. We envision these models can

inform the future design of prognostic assays and therapeutic interventions that

can cripple Mtb growth and survival to cure tuberculosis disease.

KEYWORDS

Mycobacterium tuberculosis, transcriptional regulation, network inference, network

modeling, interpretablemachine learning, growth regulation, stress adaptation, hypoxia

1 Introduction

Mycobacterium tuberculosis (Mtb) is a highly successful pathogen, infecting 10.6

million people and killing over 1 million people worldwide each year (1). A key

factor for Mtb’s success is its ability to adapt to a broad range of host-associated and

treatment-associated stresses. However, the mechanisms underlying howMtb dynamically
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regulates its growth and physiology in response to stress

remain incompletely understood. Understanding the gene

regulatory activities of transcription factors (TFs) under different

environmental or stress conditions could help inform interventions

that modulateMtb growth and survival to cure tuberculosis disease.

Several groups have previously characterized Mtb’s

transcriptional regulatory network (TRN) using experimental

and computational approaches (2–9). These efforts have largely

relied on two strategies: (1) detailed profiling of the molecular

effects of individual TFs on Mtb physiology using recombinant

TF induction and disruption strains, and (2) statistically informed

TRN inference using data from large transcriptomic compendia.

In principle, TRNs can be empirically assembled from

measurements of TF-DNA binding and gene expression under

conditions with known TF perturbations. This approach would be

expected to enable the inference of direct regulatory interactions

between TFs and their putative target genes, which would

be expected to exhibit altered expression in response to TF

perturbations and provide evidence of TF binding events proximal

to a gene. To leverage this strategy, we previously engineered

a library of Mtb recombinant TF induction (TFI) strains (2,

6). We profiled transcriptomes in 208 TFI strains using DNA

microarrays [GSE59086, (6, 10)] and detected ∼16,000 ChIP-seq

binding events for 154 TFs (∼80% of all Mtb TFs) and 2,843

genes (∼70% of all Mtb genes) (3, 10). While these ChIP-seq

and microarray experiments yielded important insights into the

regulatory programs active during Mtb broth culture, they also

possessed several limitations. For example, ourmicroarray profiling

efforts were unable to measure changes in expression for 1,190

genes (∼30% of Mtb genes) (6), and our ChIP-seq profiling

efforts were unable to detect TF binding for 1,040 genes (∼26%

of Mtb genes) (3). Moreover, these data were limited to log-

phase growth of the Mtb laboratory strain H37Rv in 7H9 media.

These excluded condition-specific interactions relevant to other

environments or strains. Thus, significant gaps remained in the

ability to comprehensively identify TF-gene regulatory interactions

using only experimental approaches alone.

Bioinformatic network inference provides a useful

complementary strategy for assembling TRNs. These statistically

informed approaches utilize large-scale expression compendia

(comprising transcriptomic profiles across diverse biological

conditions) to enable the inference of regulatory relationships

across a multitude of conditions. However, these computational

strategies are constrained by two limitations. First, large and

biologically diverse gene expression data are needed to enable the

identification of high-confidence statistical associations between

TFs and their putative target genes (11). Second, network inference

algorithms differ in the assumptions made on the training data and

on the interpretation of TF-gene associations. Biologically diverse

gene expression data may be curated from public microarray

(4, 10) or RNA-seq (7, 12, 13) data. However, the statistical

assumptions underlying most network inference methods are often

biologically inaccurate.

We previously performed computational network inference

analyses and were able to infer only 598 clusters of coregulated

gene expression for 3,922 genes (4). Others have performed

similar analyses and inferred either 80 clusters for 3,906 genes

(7) or 560 co-regulated gene modules for 3,912 genes (5). While

these studies successfully uncovered novel regulatory interactions

underlying Mtb stress adaptation, none of their network models

comprehensively revealed transcriptional programs for each of

Mtb’s 214 TFs, and none directly estimated TF activities [TFAs:

the extent of regulation that each TF exerts on its regulon (14)]

under different experimental conditions. Network inference studies

for other microbes, such as the DREAM5 challenge for E. coli and

S. aureus (15), demonstrated that robust TRNs may be assembled

by integrating the regulatory relationships inferred by different

network inference algorithms. We hypothesized that applying a

similar “wisdom of crowds” approach to aggregate complementary

TRNs from different inference methods would yield a more

comprehensive and higher quality Mtb TRN than from any single

method alone.

Here, we assembled a biologically diverse and batch-corrected

Mtb RNA-seq gene expression compendium. We integrated this

RNA-seq compendium with a perturbative TFI microarray dataset

to infer a comprehensiveMtb TRN that included 214 TFs and 3,978

genes. We used this TRN to estimate TFA profiles corresponding

to individual RNA expression profiles. We trained an interpretable

machine learning regression model using growth phenotypes from

a pooled TFI screen (16) and calculated TFAs for individual TFI

strains. We demonstrated that this regression model can accurately

predict Mtb fitness under stress conditions such as hypoxia.

2 Methods

2.1 TFI microarray expression compendium
assembly and normalization

Microarray expression data corresponding to TFI strains were

downloaded from GEO (GSE59086). Experimental group numbers

were assigned to each sample based on the identity of each strain.

The Rv2160A gene fully encompasses the Rv2160c gene, so the

Rv2160A and Rv2160c samples were combined into a single Rv2160

TFI strain group. This resulted in 208 TFI strain groups. These 208

strain groups included Rv0560, Rv3164c, and Rv3692, which were

initially considered hypothetical during in TFI strain construction

(6) but later determined to not be true Mtb TFs (10). However, for

the purpose of the analyses presented here, each of these 208 strains

will be referred to as TFs. Smooth quantile normalization (17) was

performed using PySNAIL (18) using the assigned group definitions

(Supplementary Table 1).

2.2 RNA-seq expression compendium
assembly, quality control, and
normalization

The NCBI Sequence Read Archive (SRA) was queried

with “Mycobacterium tuberculosis” for RNA expression samples

containing raw FASTQ sequencing reads. Three thousand and

ninety eightFASTQ sequencing reads were downloaded and

combined with FASTQ sequencing reads from 312 unpublished

RNA-seq profiles generated by our labs. We aligned these
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sequencing reads against the NC_000962.3 Mtb H37Rv reference

genome using Bowtie 2 (19). Read counts were compiled using

featureCounts (20). Samples with fewer than 400,000 total gene

counts and duplicated samples were excluded from further

analysis. Sequencing counts were normalized by transcripts per

kilobase million (TPM). Group definitions representing unique

experimental conditions were assigned to each sample; biological

replicates were given the same group definitions. Smooth quantile

normalization (17) was performed using PySNAIL (18) using the

assigned group definitions (Supplementary Table 2). Quality data,

adapter and quality trimming statistics, and alignment and counts

metrics were compiled and assessed usingMultiQC (21).

2.3 UMAP visualization and cluster
estimation

RNA expression compendia and TFAs were visualized by

Uniform Manifold Approximation & Projection (UMAP) (22).

Clusters were estimated by DBSCAN using Euclidean distance

with a minimum cluster size of 3 (23). The ε hyperparameter was

optimized for each dataset by varying ε across 50 logarithmically

distributed values from 0.1 to 10 and selecting the value of the

elbow of the ε vs. Number of Outliers plot. This selection delivers

the minimum number of clusters that maximizes inclusion of

samples without overfitting the data (Supplementary Figure 1).

UMAP and DBSCAN analyses were performed in Python using

their implementations in umap-learn and scikit-learn (24).

2.4 Regulatory network inference

We implemented an ensemble of network inference methods

based on a selection of methods featured in the DREAM5

challenge (15), based on diversity in underlying statistical approach,

predictive performance reported in the DREAM5 study, and the

availability of a working implementation. Our initial selection

consisted of ARACNe (25, 26), CLR (27), and GENIE3 (28).

We chose an ARACNe implementation that employs adaptive

partitioning for more efficient processing (25, 26). We used

an R implementation of CLR available on CRAN from the

parmigene package (29). We used an R implementation of GENIE3

available on BioConductor (30). To supplement these methods,

we incorporated two other recent network inference approaches:

cMonkey2 (31, 32) and iModulon (33). We used a docker

image containing a Python implementation of cMonkey2, available

at https://hub.docker.com/r/weiju/cmonkey2. For iModulon, our

desired output was different from the output of this algorithm

implemented by the original authors; we created a custom

iModulon implementation in Python based on Sastry et al. (34).

We implemented an Elastic Net regularization-based network

inference approach in Python using scikit-learn (24). Elastic Net is a

regularizationmethod that takes advantage of the unique properties

of both lasso and ridge regression (35) and performs better than

either lasso or ridge regression when predictors are correlated

and/or under-determined (36). Wemodeled each gene individually

on the expression of all the TFs, and used the resulting coefficients

to both select significant relationships and score those relationships.

Descriptions of each inference method and the hyperparameters

used are provided in Supplementary Table 3.

Each method was wrapped to produce a ranked list of

putative TF regulator-target gene relationships in the order

of the inferred strength of the regulatory relationship, from

strongest to weakest. Execution was completed using docker

images (https://hub.docker.com/repositories/malabcgidr?search=

network-inference). Auto-regulatory (self-targeting) relationships

were excluded. Hyperparameters were chosen to match either

the original publications or the DREAM5 challenge when

possible. Execution for each method and optimization of their

corresponding hyperparameters were validated by testing against

the evaluation scripts provided in the Supplementary material of

Marbach et al. (15) and Reiss et al. (32).

A network was generated for each dataset (RNA-seq or TFI

microarray) using the 6 inference methods, yielding 12 total

constituent networks. Pairwise comparisons between inferred

networks weremade using rank-biased overlap (RBO) as previously

described (37). The base RBO score was calculated with a p-

value chosen to yield 50% weight for the first 1,000 relationships

(p = 0.9997325) and a depth capped at about 25,000. RBO was

performed using a custom Python implementation borrowing

heavily from https://github.com/dlukes/rbo.

2.5 Inferred network truncation and
aggregation

The 12 constituent networks were combined using Robust

Rank Aggregation (RRA) (38). A p-value cutoff was calculated from

aMonte Carlo simulation of possible Mtb regulatory network sizes.

To compute these network sizes, a range of network out-degree

distributions was generated, each conforming to 214 regulators,

∼4,000 genes, a power-law exponent from −0.5 to −2, and a

power-law multiplier ranging from 10−10 to 1010 on a logarithmic

scale. Bounds for the power-law exponent were estimated based

on RegulonDB E. coli networks (39) and Bhan et al. (40). For

each putative out-degree distribution, the size of the network was

calculated, yielding a sample of 175,000 plausible sizes. In the

ranked list of edges output by RRA, all edges were kept for which

the associated p-value score was less than the empirical probability

of a simulated network having a size greater than or equal to the

edge’s associated network size (i.e., its rank); all remaining edges

were discarded (Supplementary Figure 2).

2.6 Principal component analysis

Principal component analysis (PCA) was performed on the

inferred networks (after truncating each to the size of the overall

aggregate), the dataset-level aggregate networks, and the overall

aggregate network, using the 30,912-dimensional space represented

by the ranks of edges shared across at least 3 of the truncated

inferred networks. All missing edges in each network were assigned

a rank of 30,912, the size of the space.
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2.7 Directionality of TF-gene regulatory
interactions

Directionality for TF-gene regulatory interactions was

determined using the regression models and measured TFI gene

expression values (Supplementary Table 4). Two Elastic Net models

and two unpenalized linear models were used to infer direction of

regulation based on the sign of the regression coefficients, one of

each for each dataset (RNA-seq compendium and TFI microarray

profile). We supplemented these regression associations with

the directionality of significant differential gene expression (i.e.,

upregulated vs. downregulated expression) measured from the

TFI microarray dataset. Linear models were fit in Python with

the statsmodels package. Coefficients with an FDR < 0.05 were

selected as evidence. Elastic Net models with an R2 of < 0.8 were

excluded; coefficients that were included by the remaining models

were selected as evidence. TFI differential expression from the

microarray dataset was filtered using an FDR < 0.05 and requiring

at least 2-fold change in either direction. Elastic Net models

and TFI differential expression were considered strong evidence,

whereas the unpenalized linear models were considered weak

evidence. A flow chart depicting how the information from these

models and differential expression analyses were used to define up

vs. down regulation is shown in Supplementary Figure 3.

2.8 TRN validation

TRNs were validated by testing against a literature-curated

TRN formed via the union of the H37Rv regulatory networks from

BioCyc (41) and Sanz et al. (8). Sanz et al. Supplementary Material

S1 was filtered for relationships whose supporting evidence

included at least one high-confidence physical methodology:

LacZ-promoter fusion, GFP-promoter fusion, proteomic studies,

electrophoretic mobility shift assays (EMSA), one hybrid reporter

system, and chip-on-chip. This yielded a set of 433 high-confidence

regulator-target relationships, including 51 regulators and 160

total target genes, that had little to no dependence on the

transcriptional information used to build the constituent networks.

The BioCyc regulatory network consisted of 1,565 relationships

of 102 regulators on 802 unique targets. The union of these two

regulatory networks was taken and used to calculate the Matthews

correlation coefficient (MCC), as described previously (42, 43), for

each network, truncated to the size of the aggregate network to

produce comparable results.

2.9 TRN gene ontologies

Gene ontology enrichment analysis was performed to

characterize biological functions for genes associated with

each TF (44, 45). For each TF, genes identified as upregulated,

downregulated, or regulated in both directions were analyzed for

GO enrichment at an FDR < 0.05. All identified GO annotations

that had a child annotation also identified for a given TF were

removed for simplicity. Results were filtered to TFs receiving at

least 3 remaining significant GO enrichments for further manual

inspection and analysis (Supplementary Table 5). TFs with an

annotated name and considered to have a literature-supported

role listed in the Mycobrowser annotation (46) were assessed

for network validation (Table 1). GO analysis was performed in

Python using the goatools package (47). Gene ontology data was

taken from the 2024-06-17 release of go-basic.obo from the Gene

Ontology knowledgebase (48) (https://purl.obolibrary.org/obo/go/

releases/2024-06-17/go-basic.obo), and mappings to Mtb genes

were taken from the European Bioinformatics Institute GOA

project, release 20240805 (https://ftp.ebi.ac.uk/pub/databases/GO/

goa/proteomes/30.M_tuberculosis_ATCC_25618.goa).

2.10 Calculating transcription factor activity
profiles from network component analysis

TFAs for each expression profile were computed using Robust

Network Component Analysis (ROBNCA) (49). ROBNCA

was implemented in Python, using code adapted from https://

github.com/CovertLab/WholeCellEcoliRelease/tree/00cf7738cb/

reconstruction/ecoli/scripts/nca (50).

2.11 Associating network activity with
bacterial fitness

We constructed a model associating mycobacterial growth

with TFAs estimated from gene expression data. The GSE59086

microarray dataset was again used as a broad measure of TFI

conditions, with relative growth data for 194 matching TFI

conditions added from Ma et al. Supplementary Table S1 as

training data (16). TFAs were computed from log2 fold-change

expression using the control strengths calculated by ROBNCA from

the aggregate network and RNA-seq compendium. An Elastic Net

model was trained to regress growth on TFAs, using a grid search

cross-validation scheme to optimize hyperparameters. The model

was implemented in Python using the scikit-learn package (24).

2.12 Hypoxia time-course experiment

Wildtype H37Rv (ATCC 27294) transformed with a

control anhydrotetracycline (ATc)-inducible expression vector

(H37Rv::pEXCF-empty, which does not induce recombinant gene

expression) were cultured under inMiddlebrook 7H9 with the oleic

acid, bovine albumin, dextrose, and catalase (OADC) supplement

(Difco) and with 0.05% Tween 80 at 37◦C. H37Rv::pEXCF-empty

was grown with the addition of 50µg/mL hygromycin B to

maintain the plasmid and induced with 100 ng/mL ATc 1 day

prior to onset of hypoxia. For hypoxia, strains were cultured in

oxygen-limited conditions (1% aerobic O2 tension) for 7 days,

followed by reaeration on day 7–12, initiated by transferring

cultures into continuously rolled bottles with 5:1 head space ratio

using methods described previously (2, 51–53). Bacterial survival

and growth were enumerated by plating for colony forming units

(CFU) on Middlebrook 7H10 solid media plates using standard

microbiological methods.
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TABLE 1 Network regulators: annotation vs. gene set enrichment analysis of inferred regulon.

Regulator Name Mycobrowser gene product and function information Inferred Regulon GO Annots.
(FDR < 0.05)

# Summary

Rv0353 hspR Probable MerR family heat shock protein transcriptional repressor. Involved in

repression of heat shock proteins. Binds to three inverted repeats in the promoter region

of the DnaK operon. Induced by heat shock.

15 Heat and stress response, protein

refolding

Rv1657 argR Probable arginine repressor (AHRC). Regulates arginine biosynthesis genes. 5 Cobalamin, nucleobase, arginine

synthesis

Rv2215 dlaT Dihydrolipoamide acyltransferase, component of pyruvate dehydrogenase. Involved in

TCA cycle; converts pyruvate to acetyl-CoA and CO2 . Also involved in defense against

oxidative stress.

45 TCA cycle, respiration, gluconeogenesis,

ROS response

Rv2359 zur Probable zinc uptake regulation protein. Acts as a global negative controlling element,

with Zn2+ binds operator of repressed genes.

6 Starvation response, ETC; translation

repression

Rv2374c hrcA Probable heat shock protein transcriptional repressor. Involved in repression of class I

heat shock proteins. Prevents heat-shock induction of these operons.

12 Primary metabolism, translation

termination

Rv2610c pimA Alpha-mannosyltransferase. Involved in the first mannosylation step in

phosphatidylinositol mannoside biosynthesis (transfer of mannose residues onto PI).

42 Amino acid synthesis, respiration, cell

wall formation

Rv2720 lexA Repressor. Represses genes involved in nucleotide excision repair and SOS response.

Binds 14-bp palindromic sequence.

10 DNA repair

Rv3301c phoY1 Probable transcriptional regulatory protein PhoU-homolog 1. Involved in regulation of

active transport of inorganic phosphate across the membrane.

6 Respiration

Rv3417c groEL1 60 kDa chaperonin 1 (protein CPN60-1). Prevents misfolding, promotes refolding and

proper assembly of unfolded polypeptides generated under stress conditions.

15 Heat and ROS response, protein

refolding, Arg synthesis

Rv3574 kstR Transcriptional regulatory protein (probably TetR-family). Involved in transcriptional

mechanism. Predicted to control regulon involved in lipid metabolism.

10 Cholesterol metabolism, lipid synthesis

Rv0491 regX3 Possible antitoxin. 3 RNA processing

Rv0599c vapB27 Possible antitoxin. 6 Growth regulation, toxin sequestration

Rv0608 vapB28 Possible antitoxin. 6 Growth regulation, toxin sequestration

Rv0623 vapB30 Possible antitoxin. 9 Growth regulation, toxin sequestration,

RNase activity

Rv1560 vapB11 Possible antitoxin. 12 Growth regulation, nuclease activity

Rv2009 vapB15 Antitoxin. 9 Growth regulation, RNase activity, gene

expression regulation

Rv2760c vapB42 Possible antitoxin. 5 DNA repair

Transcriptomes were generated by RNA-seq from bacterial

cultures sampled from the aforementioned conditions using

methods described previously (54). Briefly, bacterial pellets

suspended in TRIzol were transferred to a tube containing Lysing

Matrix B (QBiogene) and vigorously shaken in a homogenizer.

The mixture was centrifuged, and RNA was extracted from the

supernatant with chloroform, followed by RNA precipitation

by isopropanol and high-salt solution (0.8M Na citrate, 1.2M

NaCl). Total RNA was purified using a RNeasy kit following the

manufacturer’s recommendations (Qiagen). rRNA was depleted

from samples using the RiboZero rRNA removal (bacteria)

magnetic kit (Illumina Inc., San Diego, CA). Illumina sequencing

libraries were prepared from the resulting samples using the

NEBNext Ultra RNA Library Prep kit for Illumina (New

England Biolabs, Ipswich, MA) according to the manufacturer’s

instructions, and using the AMPure XP reagent (Agencourt

Bioscience Corporation, Beverly, MA) for size selection and

cleanup of adaptor-ligated DNA. We used the NEBNext Multiplex

Oligos for Illumina (Dual Index Primers Set 1) to barcode

the libraries to enable sample multiplexing per sequencing

run. The prepared libraries were quantified using the Kapa

quantitative PCR (qPCR) quantification kit and sequenced at the

University of Washington Northwest Genomics Center with the

Illumina NextSeq 500 High Output v2 kit (Illumina Inc., San

Diego, CA). The sequencing run generated an average of 75

million base-pair paired-end raw read counts per library. Read

alignment and gene expression estimation was carried out using

a custom processing pipeline in R that harnesses the Bowtie 2

utilities (19, 55), which is publicly accessible at https://github.

com/robertdouglasmorrison/DuffyTools and https://github.com/

robertdouglasmorrison/DuffyNGS.

Corresponding TFAs were estimated by applying the

ROBNCA-parameterized TRN to each gene expression profile.

These were applied as inputs to the TFA–fitness Elastic Net model

to predict relative fitness level at each time point. Predictions were

faceted by day and biological replicate. TF expression, activity, and
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impact (product of respective regression coefficient and TFA) were

normalized to z-score across all samples and TFs for comparison.

These were then grouped by condition (hypoxic or normoxic), and

TFs with mean impact z-score of a greater absolute value than 1.96

were selected for further analysis and visualization.

2.13 False discovery rate correction

False discovery rate correction was performed using the two-

stage Benjamini-Krieger-Yekutieli method (56).

3 Results

3.1 Assembly of a large and biologically
diverse Mtb gene expression compendium

Our previous efforts to characterize Mtb’s TRN relied on

microarray expression profiles from recombinant TFI strains

as perturbative training data [GSE59086, (6)]. However, while

these data enabled some detailed characterization of Mtb’s

transcriptional programming during log-phase broth culture, they

lacked biological diversity. UMAP and DBSCAN analyses reveal

that expression profiles from these 698 microarray experiments

and 208 TFI conditions formed only 15 unique expression

clusters (Figure 1A). This poor biological diversity stems from

the original experimental design, in which each TFI strain

was grown to log-phase in albumin-dextrose-catalase (ADC)-

supplemented 7H9 media before RNA isolation. In addition,

microarray technologies possess poor sensitivity and limited

dynamic range (57). We found that 101 genes in this dataset did

not possess expression measurements >10 log2 units, indicating

poor sensitivity (Figure 1B, Supplementary Table 1). Moreover, the

median absolute deviation (MAD) was small (<1) for nearly

all genes, indicating limited dynamic range. These limitations

motivated the need to assemble a larger and more biologically

diverse RNA expression compendium.

Thus, we curated an RNA-seq expression compendium using

samples from the NCBI Sequence Read Archive (SRA) and

unpublished samples from our own labs. We aligned, filtered,

normalized, and batch-corrected these samples to form our final

compendium (see Section 2). Batch correction is an important

pre-processing step for unifying data from different sources

that has been frequently overlooked in previous Mtb RNA

expression compendium analyses (4, 7, 12, 13). After performing

these pre-processing steps, our final compendium comprised

3,410 RNA-seq samples from 1,422 experimental conditions

(Supplementary Table 2). Expression counts for the RNA-seq

compendium can be queried at https://tfnetwork.streamlit.app/.

UMAP and DBSCAN analyses validated the biological

diversity of our batch-corrected RNA-seq expression compendium

(Figure 1C). These analyses identified 150 unique expression

clusters. The dynamic range and variation in gene expression was

significantly greater in this RNA-seq expression compendium than

in the TFImicroarray dataset (Figure 1D). Of note, most genes with

high variation (high MAD) were well-characterized stress response

genes [e.g., Rv2031c (hspX), Rv2626c (hrp1), Rv2623 (TB31.7),

and Rv2007c (fdxA)]. Interestingly, many of these genes possessed

higher variation than the commonly studied stress response

regulator Rv3133c (devR). These overall results are consistent with

expectation, as most stress response genes would be expected to

only be induced in the presence of their specific stressor.

3.2 Transcriptional regulatory network
interactions enrich for shared function

Network inference studies in other bacteria have shown that

aggregate TRNs, formed by integrating regulatory relationships

derived from multiple inference algorithms, outperform networks

generated by individual methods (15). To comprehensively model

Mtb transcriptional regulation, we employed a “wisdom of crowds”

ensemble inference approach. Using our RNA-seq compendium,

we generated a set of 6 TRNs using different network inference

methods (see Section 2). These methods were selected because

they have either been shown to be sensitive to distinct types

of regulatory relationships (15) or have been previously applied

to infer regulatory relationships in Mtb (4, 5, 7). To further

diversify the inferred networks, we also applied these methods to

the TFI microarray dataset. Collectively, these activities yielded 12

networks that described ∼783,400 unique relationships between

214 regulators and 4,029 target genes. Pairwise comparisons

revealed that the networks predicted by the different inference

methods were mostly dissimilar (Supplementary Figure 4). From

these, we constructed aggregate networks for the RNA-seq

compendium, TFI microarray dataset, and the combination of both

datasets using Robust Rank Aggregation (RRA) (38) (see Section 2).

Principal component analysis on the individual and aggregate

networks corroborated the substantial diversity derived from the

different network inference methods and datasets (Figure 2A).

The final overall aggregate network model comprised 24,543

regulatory relationships linking 214 transcriptional regulators

with 3,978 target genes. Among these relationships, 16,292

were associated with transcriptional activation, 3,247 with

transcriptional repression, 1,093 with context-dependent

regulation, and 3,911 with undetermined directionality

(Supplementary Table 4). These relationships represent both

direct biophysical interactions as well as indirect regulatory

relationships mediated through intermediate regulators. The

distribution of regulatory relationships for each TF largely followed

a power law distribution; this is consistent with the scale-free

network architectures found in the transcriptional networks

of other bacteria (Figure 2B, Supplementary Figure 2C) (58).

The networks are accessible at https://tfnetwork.streamlit.app/.

TF-gene relationships are provided in Supplementary Table 4.

To validate our aggregate network, we benchmarked it against

previously established regulatory relationships gleaned from the

literature (see Section 2). We evaluated the consensus between

this high-confidence regulatory interaction dataset and our inferred

regulatory networks using the Matthews correlation coefficient

(MCC) (42, 43). We found that all of the inferred networks

possessed significant MCCs and that the overall aggregate network

outperformedmost of the networks derived using only one network

inference method (Figure 2C).
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FIGURE 1

A biologically diverse Mtb RNA expression compendium. (A) UMAP visualization of biological diversity in the TFI microarray data. TFI data were

batch-corrected by smooth quantile normalization before computing the UMAP. Density-based spatial clustering (DBSCAN) was performed on the

UMAP to identify clusters of samples with similar gene expression. UMAP and DBSCAN analyses revealed 15 total gene expression clusters in the TFI

dataset. (B) Median vs. median absolute deviation (MAD) plot of expression for each gene across the TFI dataset. Each point represents a gene.

Median expression and MAD were calculated for each gene across the 698 samples. Colors reveal point density (yellow: high density, blue: low

density). (C) UMAP visualization of samples from the normalized and batch-corrected RNA-seq compendium determined by gene expression. UMAP

and DBSCAN analyses reveal 150 clusters of samples with similar gene expression. (D) Median vs. MAD plot of expression for each gene across the

RNA-seq compendium.

We also assessed the extent to which the regulatory

relationships captured by the aggregate network preserved

biologically meaningful functional relationships between

TFs and target genes. For well-studied TFs, gene ontologies

for their predicted target genes were highly consistent with

what has been reported for that TF in the literature (Table 1,

Supplementary Table 5A). For example, Rv3574 (kstR) is a TF that

has been linked to cholesterol metabolism (59) and the target genes

associated with kstR possess gene ontology annotations linked to

cholesterol metabolism (Table 1). Additionally, toxin-antitoxin

target genes were enriched for growth regulation, highlighting that

the regulatory relationships captured by the aggregate network

include indirect regulatory interactions. These results suggest that

the ontologies and functional annotations predicted for poorly

characterized TFs may provide experimentally testable insights

on their function. This is one of the major advances from the

aggregate network.

3.3 Network component analyses reveal
condition-specific TF activities

Understanding when TFs actively regulate their target genes

can reveal mechanistic insights into bacterial physiology and stress

response. Network component analysis (NCA) is an efficient way

of estimating TFA profiles from expression data by using a TRN

to perform matrix decomposition (14). Robust NCA (ROBNCA)

is a variant of NCA that improves the performance of NCA

calculations on noisy data with outlier measurements (49). We
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FIGURE 2

Mtb transcriptional regulatory network. (A) PCA was performed on individual and aggregate TRNs generated by di�erent network inference

algorithms. PC1 is highly correlated with the dataset used; PC2 is highly correlated with the method used. (B) Out-degree distribution of TF-gene

interactions (edges) from the overall aggregate network. The distribution of transcriptional regulatory programs largely follows the power law. Highly

impactful regulators of hypoxia, in addition to the general stress response regulator Rv3133c (devR) are annotated. (C) Validation of each network

against literature-curated TRNs. The Matthews correlation coe�cient (MCC) was computed between each individual or aggregate TRN and the union

of manually curated TRNs by Sanz et al. (8) and BioCyc (41). Blue bars depict the MCC for aggregate networks; the other colors depict the MCC for

the individual inferred networks. The horizontal dashed line represents the 95th percentile MCC performance of 1,000 randomly generated networks.

applied ROBNCA to estimate TRN control strengths and TFAs

corresponding to each sample in our TFI microarray and RNA-

seq compendium.

We applied ROBNCA to our RNA-seq compendium using

the aggregate TRN inferred from the RNA-seq compendium

and TFI microarray data (Supplementary Table 6). UMAP and

DBSCAN analyses revealed less biological diversity in ROBNCA-

predicted TFAs than RNA expression profiles alone (67 clusters

of TFAs vs. 150 clusters of expression; Figure 3A). Amongst

the TFs with the highest level of median activity were the

lipid metabolism regulatory Rv3574 (kstR) and sigma factor

Rv0182c (sigG) (Figure 3B). Consistent with expectation, the

well-characterized stress response regulators Rv0757 (phoP) and

Rv1994c (cmtR) were amongst the TFs with the highest TFAMAD.

Interestingly, the distribution of TFAs appeared different from

that of TF expression levels measured for each RNA-seq sample

across the compendium (Figure 3C). We tested the correlation

of expression level vs. activity for each TF across the entire

compendium and found that expression and activity were poorly

correlated across the dataset (Pearson’s r = 0.22 ± 0.23 median

± MAD). Six TFs were strongly correlated (| Pearson’s r |

≥ 0.7), 25 TFs were moderately correlated (0.7 > | r | ≥

0.5), and 60 TFs were weakly correlated (0.5 > | r | ≥ 0.3).

These suggest that TF expression is not the key determinant for

TFAs for most TFs. Rather, expression and activity convey two

distinct but complementary insights into transcriptional regulation,

highlighting the importance of accounting for network interactions

when investigating transcriptional regulation.

To evaluate the performance of our TRN in predicting

TFAs under stress, we performed experiments that profiled

Mtb expression during hypoxia and reaeration. We grew

the Mtb H37Rv empty vector control strain from our TFI

strain library (2, 6) to exponential phase in 7H9 media

supplemented with OADC and subjected cells to 7 days

hypoxia, followed by 5 days reaeration (see Section 2). We

sampled and sequenced RNA at several time points to profile

changes in Mtb expression under hypoxia-reaeration stress. We

estimated TFAs corresponding to each time point using our

ROBNCA-trained TRN and evaluated the TF with the greatest

predicted changes in activity during hypoxia (Figure 3D). Our

analyses predicted significant changes in activity for several

TFs that were previously described in the literature, including

the general stress response regulator Rv3133c (devR), Rv0081

(early responder under hypoxia), and Rv2250c (late responder

under hypoxia) (7, 60–62). Interestingly, changes in TFA during

hypoxia and reaeration were not strongly correlated with changes

in expression for these TFs (Figure 3E), further supporting

our interpretation that TFA and expression convey different

biological insights.

3.4 Transcription factor activity profiles can
predict bacterial fitness under stress

Because transcriptional programs mediate Mtb’s response to

changing environmental conditions, we asked whether our TRN

could predict the Mtb growth fitness under stress. To test this

hypothesis, we applied Elastic Net regularization to construct

an interpretable machine learning regression model that could

predict Mtb fitness from calculated TFA profiles alone. We

trained this model using the TFAs computed by ROBNCA for
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FIGURE 3

Transcription factor activities. (A) UMAP visualization of samples from the normalized and batch corrected RNA-seq compendium as determined by

TFA. UMAP and DBSCAN analyses reveal 67 clusters of samples with similar TFAs. (B) Median vs. MAD plot of activity for each TF across the RNA-seq

compendium. (C) Median vs. MAD plot of expression for each TF across the RNA-seq compendium. (D) TFAs highly active under hypoxia, as

calculated using control strengths derived from ROBNCA calculation on the RNA-seq compendium, throughout a 12-day hypoxia-reaeration

experiment. TFs plotted in color have been previously found to correlate with hypoxia (7, 60–62). (E) Corresponding expression levels of TFs with

high activity during hypoxia. Rv3133c (devR) is included as a point of reference.

each recombinant TFI strain from the microarray expression

profiles and paired with fitness phenotypes that we previously

measured in a Transcriptional Regulator Induced Phenotype

(TRIP) screen (16). Both of these datasets were measured

under log-phase, aerated culture conditions. The resulting TFA–

fitness regression model explained ∼80% of the observed

variation in growth between the TFI strains in the TRIP screen

(Supplementary Figure 5).

To determine if this TFA–fitness regression model could

predict changes in Mtb fitness in conditions not included in

the training data, we predicted the fitness of wildtype H37Rv

cells undergoing hypoxia and reaeration stress based on time-

varying RNA expression data during stress each phase. From

the TFA profiles calculated for hypoxia-exposed cells, the TFA–

fitness regression model predicted a significant decrease in

growth over the entire hypoxia period (Figure 4A). From the

TFA profiles calculated for cells under reaeration, the model

predicted a recovery in Mtb growth comparable to log-phase

culture. The predicted kinetics of shifts in growth aligned with

the experimental measurements of Mtb bacteriostasis during

hypoxia and regrowth during reaeration, thus validating the

model predictions. Importantly, our TFA–fitness regression model

performed better than a regression model trained only on

TF expression (Supplementary Figure 6). These results further

supported our hypothesis that TFAs more effectively capture

condition-specific transcriptional regulation than TF expression

alone, thus implying that the activation and regulation of

transcriptional programs under hypoxia and reaeration involve

non-linear mechanisms.

Because the TFA–fitness regression model is directly

interpretable, we examined which TFAs most strongly predicted

the fitness changes under hypoxia and reaeration. Our TFA–fitness

model predicted that growth restriction during hypoxia is primarily

driven by 5 TFs whose TFA profiles changed significantly during

hypoxia [Rv0020c (fhaA), Rv3249c, Rv0067c, Rv0485, and Rv2711

(ideR)] (Figure 4B). Again, TF activity was a stronger predictor

of fitness impact than expression. Importantly, each of these

TFs possesses direct or indirect links to hypoxia in the literature
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FIGURE 4

Machine learning predictions of Mtb fitness under hypoxia-reaeration stress. (A) Top: Mtb growth during hypoxia and reaeration. Mtb

H37Rv::pEXCF-empty cells were to log-phase in 7H9 medium supplemented with OADC for 2 days (Day 0). Cells were subjected to 7 days hypoxia,

followed by 5 days reaeration. Hypoxia induced growth arrest. Reaeration induced resumption of growth. Bottom: Elastic Net model predictions of

Mtb fitness during hypoxia and reaeration. TFAs were estimated for each RNA-seq sample collected at di�erent time points during the

hypoxia-reaeration experiment. TFAs for each time point were supplied as inputs to the Elastic Net model to predict fitness at each time point. Model

predicts decreased fitness during hypoxia and restored fitness during reaeration. Model predictions were made for each biological replicate in the

experiment (depicted as separate lines). (B) The Elastic Net-predicted transcriptional regulators of Mtb fitness during hypoxia. Fitness impact scores

were computed for each TF using the Elastic Net model. The fitness impact score for each TF is computed from its TFA and the regression coe�cient

for that TF in the Elastic Net model. Fitness impact scores were averaged over the period of hypoxia (days 2–7). Five TFs were predicted to be highly

influential for growth arrest during hypoxia. Depicted is the gene expression, ROBNCA-predicted activity, and Elastic Net-predicted fitness impact for

each TF. Error bars represent 95% confidence intervals.

(Supplementary Table 7) (9, 60, 83–85). These results validate the

ability of our model to directly predict mechanisms underlying

Mtb stress response biology.

4 Discussion

Understanding the molecular drivers of phenotypic changes

in an organism is a fundamental goal in biological research. In

this study, we applied machine learning approaches to construct

an interpretable TFA–fitness regression model that could predict

changes in Mtb growth under stress. Our model builds upon

previous experimental profiling and network inference modeling

efforts to characterize Mtb’s TRN by integrating the data and

algorithms from prior studies (2–7, 14, 15, 49). Moreover, by

training on Mtb fitness profiles from TRIP screens, our model can

directly predict growth phenotypes from condition-specific gene

expression profiles alone.

Our “wisdom of crowds” approach for inferring transcriptional

regulatory interactions delivered significant enrichment of known

regulatory relationships while also broadening the scope of

represented experimental conditions. Our resulting TRN is

substantially larger than the networks inferred by many individual

algorithms and performed better at recovering experimentally

validated interactions (Figure 2C). This highlights the utility of

ensemble inference algorithms (15).

Importantly, our results demonstrate how network models can

generate experimentally testable hypotheses in at least two ways.

First, our gene ontology enrichment analysis revealed significant

associations between the annotated function of a TF’s target

genes and the condition-specific regulatory roles of the TF. It

is important to note that the regulatory relationships identified

by our aggregate TRN include both direct physical interactions

between a TF and its putative target gene as well as indirect

associations mediated by other factors. Both direct and indirect

regulatory associations are important for coordinating changes

in bacterial physiology (63), so it is expected that both types of

interactions share annotated ontologies. Because ∼25% of Mtb

genes lack functional annotation (64), we think that the regulatory

relationships identified in our TRN can generate hypotheses

for the functions of poorly characterized or unknown genes

(Supplementary Table 5).

Second, we demonstrate that TFA regression models can be

trained to predict Mtb fitness under stress. Notably, we show that

our TFA–fitness regression model was able to predict Mtb growth

and bacteriostasis under hypoxia and reaeration—environmental

conditions not used for training the TFA regression model.

Thus, our results suggest that TFAs are a useful determinant
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of condition-specific changes in bacterial growth. Moreover, we

show that TFAs are more predictive of growth phenotypes

than TF expression alone (Supplementary Figure 6). This is

consistent with expectation as Mtb uses transcriptional regulation

to orchestrate behavioral adaptations to varying environments,

including growth phenotypes. Our modeling analyses also reveal

which TFAs underlie the predicted bacterial fitness outcomes.

This directly generates hypotheses for the mechanisms underlying

how TFs and their corresponding transcriptional programs

are activated (e.g., via allosteric mechanisms and/or network

interactions). Thus, our TRN and TFA–fitness models could

potentially inform the identification of regulatory mechanisms

mediating Mtb response and adaptation to clinically relevant stress

conditions where gene expression profiling data are available. The

TFs and target genes highlighted by these models may reveal

druggable targets for manipulating Mtb’s fitness under stress.

In light of the growing crisis of antimicrobial resistance (65)

and multi- and extensively-drug-resistant tuberculosis (66), we

think our approach will be important for curing tuberculosis

disease (67).

More broadly, our work demonstrates how network models

can be leveraged for biologically meaningful interpretable machine

learning applications. A fundamental challenge in machine

learning is the difficulty in understanding how a machine learning

model makes predictions (68, 69). We previously demonstrated

that machine learning regression models can elucidate metabolic

mechanisms underlying antibiotic lethality in E. coli (70) as well

as predict multidrug interaction outcomes in Mtb (54). Our study

here analogously extends this approach by training a regression

model on TFAs to predict changes in Mtb growth under stress.

The advantage of this strategy over other contemporary machine

learning approaches is the explicit utilization of prior knowledge

in the form of biological network models, which directly enables

the generation of hypotheses for mechanisms linking network

interactions to cell phenotypes. These hypotheses can then be

experimentally tested (54, 70) and used as the basis for further

mechanistic study (71) and investigation of translational potential.

Looking ahead, we envision that our TRN and our TFA–

fitness regression model will be useful for several facets of

tuberculosis research. We demonstrated that our regression model

can predict changes in Mtb fitness under environmental stress

from RNA expression profiles alone. Thus, our model may

inform on fitness under clinically relevant conditions where

standard microbiological tools are unavailable. In addition, there is

increasing appreciation that Mtb drug susceptibility is regulated by

its environment (72, 73). Our interpretable TFA–fitness regression

model can be used to elucidate the molecular mechanisms

underlying these phenotypes. Moreover, functional genetic datasets

from different technologies are increasingly available (16, 74–

79). These data can be applied to train next-generation TFA–

fitness regression models with improved predictive power. Finally,

detailed characterizations of Mtb clinical strains are now providing

significant insights into howmutations and other forms of genomic

diversity regulate drug susceptibility in human patients (79–82).

We envision the TRN and TFA–fitness regression framework

established here can be extended to not only study the mechanisms

underlying differences in drug susceptibility amongst clinical

isolates but also anticipate drug susceptibility phenotypes of new

strains as they are curated.
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