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Review Context and Objective: Artificial intelligence (AI) and machine learning

(ML) offer new tools to advance care in pediatric urology. While there has been

interest in developing ML models in the field, there has not been a synthesis of

the literature. Here, we aim to highlight the important work being done in

bringing these advanced tools into pediatric urology and review their

objectives, model performance, and usability.

Evidence Acquisition:We performed a comprehensive, non-systematic search

on MEDLINE and EMBASE and combined these with hand-searches of

publications which utilize ML to predict outcomes in pediatric urology. Each

article was extracted for objectives, AI approach, data sources, model inputs

and outputs, model performance, and usability. This information was

qualitatively synthesized.

Evidence Synthesis: A total of 27 unique ML models were found in the

literature. Vesicoureteral reflux, hydronephrosis, pyeloplasty, and posterior

urethral valves were the primary topics. Most models highlight strong

performance within institutional datasets and accurately predicted clinically

relevant outcomes. Model validity was often limited without external validation,

and usability was hampered by model deployment and interpretability.

Discussion: Current ML models in pediatric urology are promising and have

been applied to many major pediatric urology problems. These models still
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warrant further validation. However, with thoughtful implementation, they may

be able to influence clinical practice in the near future.
KEYWORDS

artificial intelligence, machine learning, pediatric urology, big data, personalizedmedicine
Introduction

Artificial intelligence (AI) has been gaining popularity over

the last decade, and with advances in computing, big data

analysis, and expertise, the pace will continue to accelerate (1,

2). Powered by machine learning (ML), new clinical models are

being deployed in urology to diagnose urological diseases, detect

abnormal imaging findings, and predict a patient’s clinical

trajectory (3). Although there has been great momentum and

promise, ML-based models require rigorous validation,

governance, and thoughtful deployment to achieve meaningful

real-world utility (4, 5). Within urology, ML models have been

applied to predict oncological outcomes, determine ideal

surgical candidates in functional urology, and predict stone

clearance in endourology, among many others (6–8).
How do machine learning models work?

ML approaches differ from regression models by employing

complex nonlinear mathematical models and automatically

accounting for interactions between variables. In other words,

combining clinical factors, or inputs, offers greater utility than

each part alone in determining the output. ML models differ in

their approach to combining input information when

determining an output. The most common models harnessing

ML generally fall into one of three categories: decision trees,

support vector machines (SVM), or deep learning (i.e. neural

networks) (Figure 1).

Decision trees are best thought of as physical trees

(Figure 1A) (9). The models are arranged with a starting root

and flow through a series of branches, and each branch

represents a decision. A leaf, or a final output, is at the end of

a series of branches. The inputs will define which branches are

selected and decide the final leaf. Decision trees can also be

collated or “ensembled” such that the final output is based on a

majority vote of the final leaf for each decision tree. Common

types include random forest algorithms, optimizable trees, and

gradient-boosted or bagged tree models.

SVMs are best thought of on a two-dimensional grid

(Figure 1B) (10). Input values from multiple groups are

organized along the grid, and the model is trained to create a
02
decision boundary which separates the two groups. Common

types include linear or non-linear SVM or kernel-based functions.

Neural networks work like biological neurons, where

multiple inputs feed into a given node, activated once a certain

threshold is reached (11). The node will propagate a signal which

serves as the input for the next layer of nodes. As the model is

trained, each node is given a certain weight in the network, and

the combinations from the initial input via the weights inform

an output. Common types include convolutional neural

networks (CNN) or artificial neural networks (ANN) and are

often applied to computer vision problems.

An important distinction should be made between

supervised and unsupervised learning, which applies to all ML

models. In supervised learning, the training datasets include

both the inputs and labelled output so that the model can

iteratively improve its accuracy. Classically, supervised learning

is used for classification or regression. In contrast, unsupervised

learning does not include labels and can determine “hidden”

patterns in datasets. This is often applied to determine clusters of

data, associations, or dimensionality reduction.

Lastly, it is important to understand how the performance of

ML models are assessed. The most widely used metric is area-

under-the-receiver-operator-curve (AUC), a number between 0

and 1 where 0.5 denotes random classification, and 1.0 denotes

perfect classification. The AUC curve is intrinsic to a developed

model – describing its ratio of true positive to false positive as the

model’s classification criteria is tuned. Thus, AUC offers an

aggregate measure of performance across all possible

classification thresholds. Other performance metrics should be

carefully considered depending on the clinical context. For

example, a model that achieves high sensitivity at the cost of

more false positives may be more clinically relevant if the disease

is serious with life-threatening sequelae if missed.
Methods and evidence synthesis

In this state-of-the-art review, articles regarding ML

applications and models applied to pediatric urology were

considered. We decided against performing a systematic

review a priori to ensure that we are able to provide a broad
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scope of a developing field while providing commentary on

current progress.

Articles were retrieved from the MEDLINE and EMBASE

databases without language restrictions and included hand-

searched references in August 2022. A pediatrics filter was

used with the following keywords: hydronephrosis, VUR,

urethral obstruction, spina bifida, urodynamics, Wilms tumor,

urolithiasis, hypospadias, artificial intelligence, and machine

learning. These keywords were meant to represent common

conditions that are managed by pediatric urologists. A sample

search is provided in Supplementary Table 1.

Only full published articles were included. Editorials,

conference abstracts, comments, reviews, and book chapters

were excluded but were searched for relevant full articles. In

cases where multiple publications about the same model were

found, the article with the largest model training size was

collated in the synthesis. Given the nature of this review and

subject matter, we did not perform a critical appraisal of

study quality.

Articles were included if they involved using ML models (i.e.

beyond logistic or multivariable regression) to determine a specific

outcome listed in their study objective. Articles including decision

trees, SVMs, or deep learning were automatically included for this

study. Articles were excluded if the performancemetrics of anML-

trainedmodelwerenot provided, suchas accuracyorAUC.Articles

were also excluded if the use of ML was for primarily basic science
Frontiers in Urology 03
study (e.g. genetic risk scores, image segmentation) without

addressing clinical outcomes.
Application of artificial intelligence
in pediatric urology

In total, 453 records were retrieved. After confirming the titles

and abstracts by two independent reviewers from both literature

search and hand-search, 27 uniqueMLmodels were available from

31 individual publications (Table 1). There has been a surge in

interest in ML-powered applications within pediatric urology,

which now encompasses VUR, urinary tract infections (UTIs),

hydronephrosis, pyeloplasty, posterior urethral valves, detrusor

activity, hypospadias, and others (Figure 2). Model approaches

included deep learning (16 models), tree-based classifiers (8

models), SVM (5 models), logistic lasso (1 model), manifold

learning (1 model), or combinations thereof. We will discuss

advances toward each clinical problem in the following sections.
Detrusor overactivity

Two models have been developed by Hobbs and Wang to

predictdetrusoroveractivity fromurodynamic studieswith thegoal

of automating readings (12, 13). Both models use similar input
A B

DC

FIGURE 1

Examples of (A) decision tree predicting UTI by urinalysis and fever, (B) SVM model predicting true UTI by age and temperature, (C) neural
network using age and sex to determine UTI and VUR risk, and (D) concept of model fitting.
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TABLE 1 Description of included AI models in pediatric urology.

Study Objective AI Approach
[Supervised/
Unsupervised]

Data
Source(s)

Model Input Variables Model Outcome
and Performance

[Validation
approach]

Usability and Data
Availability

Detrusor Overactivity

Hobbs 2022
(12)

To identify detrusor
overactivity from
urodynamic studies in
the spina bifida
population

SVM,
Dimensionality
reduction
[Supervised]

Institutional
series (805
urodynamic
studies)

15 features from urodynamic
study (time-based and
frequency-based), after
principal component analysis

Time-based detrusor
overactivity: AUC of
0.92
Frequency-based
detrusor overactivity:
AUC of 0.91
[85/15 holdout
validation]

Influence of important
predictors provided, no
available data, or predictive
tools provided.

Wang
2021a (13)

To identify detrusor
overactivity from
urodynamic studies

Manifold learning
[Unsupervised]

Institutional
series (799
urodynamic
studies)

Demographics, raw tracings
of vesical
pressure, abdominal pressure,
detrusor pressure, infused
volume, annotations

Detrusor overactivity:
AUC of 0.84
[5-fold cross-validation]

Extensive description of
model development and
performance, no available
code

Hydronephrosis

Blum 2018
(14)

To predict clinically
significant
hydronephrosis caused
by UPJ obstruction

SVM
[Supervised]

Institutional
series (55
children)

45 clinical factors including:
drainage curve features
(skewness, kurtosis), T1/2,
C30

Clinically significant
hydronephrosis
AUC of 0.96, accuracy
of 93%
[Leave-one-out
analysis]

No available code or
dataset, no usable
application

Cerrolaza
2016 (15)

To define sonographic
markers for
hydronephrotic kidneys
that predict need for
diuretic nuclear
renography

SVM
[Supervised]

Institutional
series (50
children)

131 parameters from 2D
sonography:
Size (size of collecting system,
renal parenchyma)
Geographic shape (circularity
ratio eccentricity),
Curvature descriptors (local
curvature)

T1/2 > 20 mins: AUC
of 0.98, accuracy of
0.96
T1/2 > 30 mins: AUC
of 0.94, accuracy of
0.78
T1/2 > 40 mins: AUC of
0.94, accuracy of 0.78
[Leave-one-out analysis]

Authors acknowledge the
study is not yet validated
for clinical follow-up. No
available code, dataset or
predictive tool available.

Erdman
2020 (16)

To predict obstructive
hydronephrosis requiring
surgery from renal
ultrasounds in children
with prenatal
hydronephrosis

CNN
[Supervised]

Institutional
series (294
patients, 1645
sonographic
images)

256 x 256 pixel images of
renal ultrasound

Requiring surgery:
AUC of 0.93, and
accuracy of 0.58
[70/30 holdout
validation]

No available code or
dataset, no accessible
predictive tool. Model
explainability provided
with Grad-CAM (overlayed
on input images).

Lorenzo
2019 (17)

To predict need for
surgical intervention in
prenatal hydronephrosis

Boosted decision
tree, neural
network
[Supervised]

Institutional
series (557
children)

Age, gender, affected side,
SFU grade, renogram
findings, ureteral dilatation,
anteroposterior diameter

Surgical intervention:
AUC of 0.90, accuracy
of 0.87
[70/30 holdout
validation]

No available code or
dataset, no usable
application. Linked to the
Microsoft Azure platform.

Smail 2020
(18)

To predict SFU grade of
hydronephrosis

CNN;
Layer-wise
propagation to
visualize output.
[Supervised]

Institutional
series (2420
sagittal
hydronephrosis
ultrasound
images)

256 x 256 pixel images of
sagittal ultrasound

SFU grade 0-IV: F1
score of 0.49, accuracy
of 0.51
Mild vs. severe: F1
score of 0.78, accuracy
of 0.78
SFU II vs. SFU III: F1
score of 0.71, accuracy
of 0.71

Layer-wise propagation to
visualize output. Datasets
available on request. No
available code or predictive
tool.

Hypospadias

Fernandez
2021 (19)

To classify distal versus
proximal hypospadias

CNN
[Supervised]

Hypospadias
image database
(1169
anonymized
images)

Image of hypospadias Distal vs. proximal
hypospadias: accuracy
90%

No available code or
dataset, no usable
application

(Continued)
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TABLE 1 Continued

Study Objective AI Approach
[Supervised/
Unsupervised]

Data
Source(s)

Model Input Variables Model Outcome
and Performance

[Validation
approach]

Usability and Data
Availability

Posterior Urethral Valves

Abdovic
2019 (20)

To predict late-
presenting PUV in boys
with urinary symptoms

ANN
[Supervised]

Institutional
series (201
uroflows)

Age, max flow-rate, time to
peak flow, volume, voiding
time, flow time, average flow
rate

Late-presenting PUV:
AUC 0.98, and
accuracy of 0.93
[K-fold cross-
validation]

Freely-available web
application, publicly
available code repository

Kwong
2021 (21)

To predict risk of CKD
progression, need for
renal replacement
therapy (RRT), and
clean-intermittent
catheterization (CIC)

Random survival
forest
[Supervised]

Institutional
series (103
patients),
one external
institutional series
(22 patients)

Nadir Creatinine, one-year
eGFR, VUR grade on VCUG,
and ultrasound findings of
renal dysplasia

CKD Progression: c-
index of 0.77
RRT: c-index of 0.95
CIC: c-index of 0.70
[80/20 holdout
validation]

Freely-available web
application, publicly
available code repository

Yin 2020
(22)

To diagnose children
with PUV

CNN with transfer
learning
[Supervised]

Institutional
series (157
children: 3504
sagittal
ultrasounds, 2558
transverse
ultrasounds)

Sagittal and/or transverse
features of renal ultrasounds

PUV, with multiple
views: AUC of 0.96 and
accuracy of 0.93
[5-fold cross-validation]

Publicly available code
repository, no readily
available tool

Pyeloplasty

Bagli 1998
(23)

To predict sonographic
outcome after
pyeloplasty in children
with UPJ obstruction

ANN
[Supervised]

Institutional
series (100
children)

242 variables Predicting sonographic
outcomes after
pyeloplasty: AUC of 1.0
and accuracy of 1.0 [on
16 testing set]
[84/16 holdout
validation]

No available code or
dataset, no usable
predictive tool

Drysdale
2021 (24)

To predict risk of and
time-to re-intervention
after pyeloplasty

Logistic Lasso
[Supervised]

Institutional
series (543
patients)

43 clinical factors, most
importantly: anteroposterior
diameter on ultrasound

Risk of re-intervention:
AUC of 0.86
Time to re-
intervention: c-index of
0.78
[Leave-one-out
analysis]

Freely-available web
application, publicly
available code repository

Vesicoureteral Reflux and Urinary Tract Infections

Bertsimas
2021 (25)

To predict which
patients with VUR are
most likely to benefit
from continuous
antibiotic prophylaxis

Optimal
classification trees
[Supervised]

Multi-
institutional trial
dataset (RIVUR,
607 patients)

Race, gender, VUR grade,
serum creatinine, prior UTI
symptoms, weight percentiles

Risk of recurrent UTI:
AUC of 0.82
[80/20 holdout
validation]

Easily accessible decision
trees and available mobile
application

Eroglu 2021
(26)

To determine VUR grade
using images from
VCUGs

Hybrid CNN (+
K-nearest
neighbors or +
SVM)
[Unsupervised]

Institutional
series (1228
images)

Raw VCUG images To predict each normal
and each VUR grade:
AUC of 0.99, and
accuracy of 97%
[80/20 holdout
validation]

No available code or
dataset, no usable
predictive tool

Keskinoglu
2020 (27)

To determine a diagnosis
of VUR versus UTI

ANN
[Supervised]

Institutional
series (611
children)

39 variables (clinical,
laboratory, and
ultrasonographic)

VUR/UTI: AUC of
0.81, and precision of
0.78
[k-fold cross-validation]

No available code or
dataset, no usable
predictive tool

Khondker
2021 (28)

To predict high-grade
VUR from quantitative
features annotated from
VCUGs

Random Forest
[Supervised]

Web scraping (41
renal units),
institutional series
(44 renal units)

Ureter tortuosity, UPJ width,
UVJ width, and maximum
ureter width on VCUG

High-grade VUR: AUC
of 0.83, accuracy of
0.90
[Leave-one-out cross-
validation]

Freely-available web
application, publicly
available dataset.

(Continued)
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TABLE 1 Continued

Study Objective AI Approach
[Supervised/
Unsupervised]

Data
Source(s)

Model Input Variables Model Outcome
and Performance

[Validation
approach]

Usability and Data
Availability

Kirsch 2014
(29)

To predict spontaneous
resolution of VUR in
children less than 2 years
of age

Random forest
[Supervised]

Institutional
series (229
children)

Gender, VUR timing (early-
mid, late, voiding), ureteral
anomalies, high-grade VUR

VUR timing 100% (i.e.
most influential),
female gender 31.9%,
ureteral anomalies
22.3% and high-grade
reflux 14.8%
[ML used to determine
feature importance]

Available scoring chart. No
available code.

Logvinenko
2015 (30)

To predict VUR grade
from renal and bladder
ultrasound findings on
the same day

ANN
[Supervised]

Institutional
series (2259
children)

RBUS findings, sex, age,
circumcision status (in boys),
febrile UTI, first (vs.
recurrent) UTI

Any VUR: AUC of 0.69
VUR grade > II: AUC
of 0.67
VUR grade > III: AUC
of 0.79
[Unclear validation
method]

No available code or
publicly available tool.

Seckiner
2008 (31)

To predict the resolution
of VUR

ANN
[Supervised]

Institutional
series (145
ureteric units)

Age, sex, the cause and grade
of VUR, the affected ureter,
the type of treatment,
existence
of renal scar on DMSA scan,
follow-up times, the number
of
injection

VUR resolution:
accuracy of 0.98
VUR improvement:
accuracy of 1.0
VUR persistent or
worse: accuracy of 0.92
[68/32 holdout
validation]

No available code or
dataset, no usable
predictive tool.

Serrano-
Durba 2004
(32)

To predict the results of
endoscopic treatment for
VUR

ANN
[Supervised]

Institutional
series (261
ureteric units)

Age, sex, cause/grade of VUR,
type/number of implanted
substance, number of
treatments, affected ureter,
endoscopic findings, type of
cystography

Success of endoscopic
treatment: AUC of 0.77
[67/33 holdout
validation]

No available code or
dataset, no usable
predictive tool.

Estrada
2019 (33)

To predict the
probability of recurrent
UTI and associated VUR
after initial UTI but
before VCUG

Optimal
classification
Trees, random
forest, gradient-
boosted trees
[Supervised]

Multi-
institutional trial
dataset (RIVUR,
305 patients;
CUTIE, 195
patients)

Age, age, gender, race, weight,
antibiotic resistance in urine
culture, urine protein,
dysuria, medications,
antibiotics in last 6 months,
blood pressure

VUR-associated
recurrent UTI: AUC of
0.76

Easily accessible decision
trees, freely accessible
GitHub and available
mobile application

Lee 2022
(34)

To predict the recurrence
of UTI after 99mTc-
DMSA renal scan

CNN
[Supervised]

Institutional
series (180
patients)

Pre-processed 99mTc-DMSA
images

Recurrent UTI:
accuracy of 0.91
[3-fold cross-validation]

No available code or
dataset, no usable
predictive tool

Miscellaneous

Santorini
2007 (35)

To predict delayed
decrease in serum
creatinine in pediatric
kidney recipients

ANN
[Supervised]

Institutional
series (148
patients)

20 variables (incl: patient
demographics, early serum
creatinine, urine volume, pre-
transplant characteristics)

Predicting delayed
increase in creatinine:
AUC of 0.89, accuracy
of 0.87
[72/28 test/validation
based on timing of data
collection]

Code is described (Visual
Basic, C++) and may be
available upon contact or
readily generated on
Statistica, no dataset or
predictive tool.

Tokar 2021
(36)

To predict enuresis in
children

Logistic regression;
also used Trees,
Bayes, SVM, deep
learning
[Supervised]

Administrative
dataset (8071
children)

14 variables (clinical factors,
urinary habits, family history,
lower urinary tract
symptoms)

Enuresis: AUC of 0.81,
accuracy of 0.81
[70/30 holdout
validation]

No available code or
dataset, no predictive tool.

Wang
2021b (37)

To predict the time
pediatric urologists
require to complete a
clinic visit

Random forest
[Supervised]

Institutional
series (256 visits)

Demographics, visit-level
covariates (incl: diagnosis)

In-room doctor visit
time: accurate to 3.6
minutes for new patients,
and within 5 minutes for
returning patients
[80/20 holdout
validation]

Model reduced patient wait
times from 54% to 24%

(Continued)
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variables, include > 800 samples each, and were thoughtfully

developed by using feature extraction, data windowing, and

describing their pre-processing workflow. Hobbs created a time-

based and frequency-based model, achieving similar performance

withAUCabove 0.90.Meanwhile,Wangusedmanifold learning to

characterize waveforms suggestive of detrusor overactivity on

urodynamic studies and created a library to define the outcome

of interest. The use of unsupervised learning to learn from tracings

and output a binary outcome of detrusor overactivity is especially

interesting to inform which patterns that providers should be

monitoring for. This offers a new method to define detrusor

overactivity, which may supersede current guidelines with further

training and standardization.
Hydronephrosis

ML has been used to evaluate hydronephrosis severity, predict

long-term renogram findings, and obstructive hydronephrosis
Frontiers in Urology 07
using images from renal ultrasounds. Smail used deep learning,

which inputs from sagittal images of renal ultrasounds and

generates a Society of Fetal Urology (SFU) grade from I-IV (18).

Themodel is believed to be comparable to physicians in predicting

SFU grade II and III, where there is the most variability, and

performedwithanaccuracyof 71%.Similarly,Erdmanused sagittal

and transverse images from renal ultrasounds to determine

whether the hydronephrosis was obstructive or physiologic, with

an accuracy of 58%and anAUCof 0.93 (16). Bothmodels provided

good explainability for deep learningmodels by identifying regions

of interest to determine the corresponding outcome. These studies

showpromising results and the strength of deep learningmodels. It

is unclear if the former model outperforms the reliability between

clinicians performing SFU gradingwhile the latter has not yet been

clinically validated.

Cerrolaza similarly used renal ultrasounds; however, the

authors manually pre-processed images and segmented the

kidney (15). This resulted in 131 variables corresponding to size,

geometric shape, and curvature. The variables were then used to
TABLE 1 Continued

Study Objective AI Approach
[Supervised/
Unsupervised]

Data
Source(s)

Model Input Variables Model Outcome
and Performance

[Validation
approach]

Usability and Data
Availability

Zheng 2019
(38)

To classify kidneys of
normal children and
those with CAKUT

SVM and CNN
with transfer
learning
[Supervised]

Institutional
series (100
children)

Features from segmented
kidneys by transfer learning
and conventional imaging

CAKUT (bilateral,
right, left), AUC
between 0.92, accuracy
between 0.81 and 0.87
[10-fold cross-
validation]

Extensive model
description, available
dataset, no available code
or predictive tool.
A B

FIGURE 2

(A) Number of ML models published per year, (B) distribution of research topic studied by included ML models.
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predict T1/2 thresholds, which was superior to using SFU grade.

This promising model could decrease the number of diuretic

renograms in 62% of children safely. Furthermore, Blum

predicted clinically significant obstruction using 43 variables

directly from drainage curves (14). They used an SVM model,

which primarily includes numeric inputs, and showed that tracer

clearance 30 minutes after furosemide was the strongest predictor

of the outcome. An important strength of this model is that no

interpretation or manipulation is required; instead, the user

provides recorded values from standardized renogram drainage

curves. With both these models, clinical and external validation is

warranted before translating into practice.

Alternatively, Lorenzo used patient variables and clinical

factors without raw images to predict the need for surgery in

prenatal hydronephrosis (17). The model performed well with

an accuracy of 0.87 on a publicly available platform; however,

this work did not include a usable model, had a limited

description of the ML model development resulting in a “black

box” phenomenon, and used the arguably subjective decision of

performing surgery as the endpoint. Nevertheless, this work

shows a potential application of ML from any readily available

database at other institutions and describes methods by which

researchers can accelerate the use of ML in the field.
Hypospadias

There is significant subjectivity in classifying hypospadias,

which limits comparisons between surgeons and outcomes.

Fernandez trained an image-based ML model on a large dataset

of penile images to predict which patients had proximal vs. distal

hypospadias (39). Themodel was 90% accurate in determining the

correct classification, while urology practitioners were 97%

accurate based on clinical assessment. Although the model falls

short of urologist’s accuracy, themodel had stronger reliability than

urologists. Hypospadias classification is inherently subjective, and

the authors should be commended for performing significant

assessment of the reliability in the validity of the hypospadias

outcome before implementing ML methods.
Posterior urethral valves

Two studies aimed to diagnose boys with PUV with very

different approaches. Yin utilized computer vision models and

features from the first postnatal renal ultrasounds to predict

PUV in images showing hydronephrosis and achieved high

accuracy and reliability. Importantly, their most accurate

model used both transverse and sagittal views, for which the

authors publicly shared their code (22). Alternatively, Abdovic

used age and uroflowmetry findings to predict which boys from

3 to 17 years old with lower urinary tract symptoms have

underlying PUV (20). They also employed a neural network
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model, achieving high accuracy and reliability. Notably, the

authors released a publicly available user-friendly application

for clinicians to use in practice.

Kwong attempted to predict which boys with PUV will have

chronic kidney disease (CKD) progression, need renal replacement

therapy, or require clean-intermittent catheterization by using

nadir creatinine, VUR presence, and renal dysplasia findings

(21). The model used random survival forests and Cox

regression, representing the first instance of individualized

survival curve prediction in pediatric urology. The authors shared

their code and usable clinical tools publicly.
Pyeloplasty

The first documented ML model in pediatric urology was

developed by Bagli, who used a neural network to predict the

outcome of interest (improvement, same, worse) after

pyeloplasty (23). In a sample of 100 children, the authors

demonstrated that neural networks had superior sensitivity

and specificity than simple linear regression and demonstrated

the potential of ML. Since then, Drysdale has used a logistic

Lasso model to predict recurrent obstruction risk and time to re-

operation after failed pyeloplasty (24). They reported that the

post-operative anteroposterior diameter was a significant

predictor of this event. This was the first instance of post-

selection inference techniques being deployed in pediatric

urology ML models, which allows for accurate determination

of which predictors, among many, are the most significant.
Vesicoureteral reflux and urinary
tract infection

VUR and UTIs are among the most common conditions

managed by pediatric urologists and have garnered significant

interest in developing ML solutions. To predict the diagnosis of

VUR in patients presenting with an uncomplicated UTI before

voiding cystourethrogram (VCUG), Keskinoglu developed a neural

network from clinical, laboratory, and ultrasound features (27). The

model is limited by poor specificity, likely caused by the variable

presentationofVURon themodel inputsused. Similarly, Logvinenko

created a neural network to predict VUR grades in patients (30). The

developers showed that predictors, such as circumcision status, UTI

history, or ultrasound findings, can be significant in simple regression

models yet futile in predictive ML models.

Two models have attempted to determine VUR grade from

VCUGs (26, 28). The model by Eroglu inputs images of raw

VCUGs, while the model in Khondker used four annotated

features from each VCUG (ureter tortuosity and ureter diameter

at proximal, distal and point of maximum dilatation). The former

achieved reliability with an AUC of 1.0 in determining VUR grade

with a hybrid deep learning approach. However, the validation of
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this model and inclusion of VCUGs without any VUR limit the

model’s usability and uptake. The latter model in Khondker

achieved a poorer AUC of 0.83 in predicting grade IV or greater

VUR. However, the model was the first in pediatric urology to use

explainableAI [set offrameworks to improveunderstandingofhow

ML models work to predict the specified outcome (40)] to show

which VUR features directly with the grade (41), validated on two

datasets, and the authors publicly released their code and data.

These two distinct approaches have risks and benefits, but a direct

comparison has not been conducted.

Three models by Kirsch, Seckiner, and Serrano-Durba were

developed to predict the resolution of VUR (29, 31, 32). VURx, a

score-based tool to predict the resolution of primary VUR, was

developed by Kirsch. After traditional multivariate analysis to

determine predictors for the outcome, the authors used random

forest models to ascertain which predictors to use in the final

scoring chart.This is auniquecombinationof thepowerofMLwith

score-based clinical assessments that are common in medicine to

facilitate translation to practice. Seckiner similarly created a model

to predict the resolution of VUR based on age, sex, and VUR grade

and included a treatment approach into their model. Lastly,

Serrano-Durba predicted the outcome of endoscopic treatment of

VUR and showed that their ML model was superior to a simple

regression model. They emphasize that the interaction between

multiple predictors (VUR grade, age, sex, primary vs. secondary

VUR) added value to prediction, while regression only determined

VUR grade to be a predictor of resolution.

From large multi-center trial data, two models can predict

which patients with VUR are at increased risk for recurrent UTI

and who will benefit from continuous antibiotic prophylaxis.

Estrada developed easily-accessible decision trees using simple

clinical and laboratory measures to predict the risk of recurrent

UTI in VUR with moderate reliability (33). Bertsimas built on

this idea to determine which patients would best benefit from

continuous prophylaxis by using the model to predict which

children had a 10% recurrent UTI risk and offering treatment

(25). Their retrospective analysis would significantly reduce the

incidence of recurrent UTIs from 19.4% to 7.5%. Although

prospective validation is warranted, this model has identified

which children are in the highest risk groups by age, sex, VUR

grade, symptoms, and weight percentiles.

Lastly, Lee used the presence of VUR, cortical defect, or split

renal function from nuclear medicine scans to predict which

patients would have recurrent UTIs (34). They showed that their

ML model combining these features had superior accuracy and

specificity than the features alone but similar sensitivity.
Current challenges with artificial
intelligence in pediatric urology

Here, we demonstrate the immense potential of AI in

pediatric urology and highlight models informing practice. We
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decided a priori not to critically appraise each model, as ML

applications in pediatric urology are the early stages of

development, and most were published prior to the

establishment of current ML reporting standards (5). Instead,

we identified four key areas for future development that apply to

both the novice and seasoned developer and clinician: validity,

outcome choice, transparency, and thoughtful implementation.

Importantly, these future pursuits in AI need to foster

multicenter collaboration to make significant impact.

First, validity is inherently difficult in pediatric research

given smaller sample sizes and the lack of multi-institutional

datasets relative to the adult population (42). For example, a ML

model is ideally trained on data from a large number of

individuals and externally validated across multiple

institutions, which may be particularly challenging in pediatric

urology. Most published articles used variations of holdout

validation, where a single randomly selected subset of data is

held from model training to act as a validation set. Holdout

validation often results in inflated model performance metrics,

which may not translate into real-world clinical use. Instead, a

small external database from an outside institution or cross-

validation is a preferred approach to improve the generalizability

of ML models from training to practice.

Second, ML models which classify subjective outcomes are

more susceptible to bias, such as hydronephrosis severity, VUR

grade, or hypospadias classification. For example, ML models on

hydronephrosis use pyeloplasty as the primary outcome (16, 24).

This can be a subjective clinical decision, and its validity as a

primary outcome is debated. ML can play a role in standardizing

these outcomes in the long-term; however, at this time, authors

should tie subjective outcomes to objective measures. In this

case, follow-up nuclear imaging or kidney function

measurements offer an additional secondary outcome which

can validate the primary outcome. In conjunction, authors can

determine the reliability in the subjective outcome itself and use

this to perform bias assessment of their models (28, 39).

Next, a core principle in AI is transparency in model

development and data sharing (43, 44). This is inherently

difficult in medicine because of patient confidentiality and

intellectual property conflicts. Regardless, most reviewed

publications were clear in their ML approach description but

unclear regarding their variable selection. For example, more

than one-third of models included >10 variables to predict the

respective outcome without justification for why each variable

was included. To avoid creating a “black box” model, where

users cannot understand a model’s complexity or “logic,”

developers should be cautioned from a shotgun approach

where all available data is used to train a model without

thoughtful consideration. Authors can consider publicly

depositing their model code with directions for use with the

user’s institutional data. Guidelines have been developed to

improve transparency and reproducibility to help standardize

reporting of ML studies in urology. Before embarking on model
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development, developers should be aware of STREAM-URO and

DECIDE-AI frameworks (4, 5). Recent advances have also

helped reduce training time, improve data quality, and model

performance when working with datasets with many variables.

These dimensionality-reduction techniques, such as principal

component analysis and discriminant analysis, retain the

information from the data while removing noisy or irrelevant

features to improve computational efficiency (45).

Lastly, most ML models in pediatric urology are difficult to

interpret andpoorlydeployed (3, 17, 46).Mostpublications include

some description of the model training, approach, and validation;

however, only one-third of publications provided usable clinical

web applications or clinically useful decision trees. The former is

especially helpful for the “busy” clinician who is less interested in

the technical aspectsofMLandmore interested in thedirect clinical

outcomes that each model predicts. Most ML models can be

translated into data science web applications with open-source

tools such as R Shiny and Streamlit (47, 48). Although application

development takes time and learning, easy-to-use ML models

facilitate improved model understanding and increase the

likelihood of clinical uptake. At the very least, ML model

developers should deposit training and validation code within the

supplementary information or a publicly hosted platform (i.e.

GitHub). Understandably, certain models and datasets will not be

shared widely to protect private or commercial interests. This lack

of transparency has created a “reproducibility crisis” that has been

felt across all domainsofAI research (49).Efforts shouldbemadeby

researchers and journals to encouragedata andmodel sharing; or at

minimum, clearly outline their specific data sharing policy.
An outlook on artificial intelligence

The number of publications utilizing AI in medicine is

increasing exponentially, and ML is becoming increasingly

accessible to clinical research. Without a doubt, the future of

personalized medicine will be driven by data, and AI will support

clinical decision-making and define new areas of study. Future

studies should explore the impact of these models on clinical

practice. However, we must endorse caution with both

developing and using ML models in pediatric urology. For
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developers, it is important to recognize that applying ML to a

dataset does not justify its use without thoughtful consideration

of included variables, intended utility, and clinical context. ML

and its application to clinical problems are exciting and novel,

but it is not necessarily superior to less complex models or

clinical suspicion. Clinicians should recognize that AI in

pediatric urology is still in its infancy compared to other

medical fields, and further clinical impact assessment is required.
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