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Changes in the rat urinary
bladder after the relief of
outflow obstruction – tracing
targets for treatment of
persistent symptoms in patients

Karl-Erik Andersson1,2* and Bengt Uvelius3,4

1Wake Forest Institute for Regenerative Medicine, Winston Salem, Winston Salem, NC, United
States, 2Department of Laboratory Medicine, Lund University, Lund, Sweden, 3Department of
Urology, Skåne University Hospital, Lund, Sweden, 4Department of Clinical Sciences, Lund
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Studies on patients with bladder outflow obstruction who have undergone

surgery for benign prostatic hyperplasia, successfully relieving the obstruction,

have revealed a persistence of storage symptoms associated with detrusor

overactivity (DO) in 20% to 40% of patients. To study the underlying

mechanisms, we have used a common rat model of obstruction/de-

obstruction, assuming that non-voiding contractions can be used as a

surrogate parameter for DO in humans. Using microarray analysis and

electron microscopic images from obstructed and de-obstructed bladder

tissue we have tried to identify changes that could serve as a basis for the

search of new targets for drugs. Even if voiding function is rapidly normalized

after release of outflow obstruction and many of the morphological changes

are reversed, the microarray analysis revealed that the de-obstructed rat

bladder has gene expressions, structural, and functional properties that make

it distinctly different from both control and obstructed bladders. We suggest

that whole bladder arrays can be used for identifying cellular mechanisms that

could be targets for drugs meant for treatment of persistent DO and LUTS after

de-obstruction. Based on available array information for some membrane

receptors and morphologic structures with corresponding changes in

bladder function, it seems worthwhile to re-assess the development

potential for e.g., endothelin receptor antagonists, purinergic receptor

antagonists and Rho-kinase inhibitors.

KEYWORDS

rat model, bladder, bladder outflow obstruction, microarrays, cystometry,
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Introduction

In patients with a clinical diagnosis of benign prostatic

hyperplasia (BPH) and bladder outlet obstruction (BOO),

lower urinary tract symptoms (LUTS) can be categorized as

storage, voiding, and postmicturition symptoms (1). The storage

(irritative) symptoms (overactive bladder syndrome: OAB;

detrusor overactivity, DO: cystometric diagnosis) have been

associated with the changes in the bladder caused by the

obstruction, whereas the voiding (obstructive) symptoms are

linked to the enlarged prostate (the static component), and the

tone of its smooth muscle (the dynamic component). In many

studies on BOO patients who have undergone surgery for BPH

successfully relieving the obstruction, persistence of storage

symptoms associated with DO has been reported. In fact, DO

has been shown to persist after prostatectomy in 20% to 40% of

patients treated for the disease (2–6).

The links between DO/LUTS and the changes in the bladder

occurring after relief of BOO have not been clarified. The

persistent symptoms have been attributed to changes within

the central nervous system or to changes within the bladder (7).

Interestingly, Seaman et al. (8) found that residual or recurrent

obstruction was a contributing factor in less than half of all

patients who had persistent symptoms. Cumming and Chisholm

(9) suggested that persistence of symptoms after prostatectomy

may be explained by failure of postoperative detrusor

reinnervation. However, studies in pigs with experimental

outflow obstruction/de-obstruction showed that the

relationship between the degree of reinnervation and the

persistence of DO is unclear and that there is a complex

relationship between outflow obstruction and detrusor

damage (10).

The relations between symptoms, BOO, bladder function

and changes in the bladder before and after de-obstruction can,

for obvious reasons, not be studied in humans. Rats subjected to

BOO will develop hyperactive voiding, characterized by

increased frequency and non-voiding contractions (NVCs),

which persist after de-obstruction in a significant proportion

of the animals (7, 11). Assuming that NVCs can be used as a

surrogate parameter for DO in humans, the rat model of

obstruction/de-obstruction may offer an opportunity to study

what occurs in the bladder after de-obstruction. Studies have

been performed on the functional and structural bladder

changes that occur after de-obstruction using different

approaches (12–17). In this study we have focused on the

molecular changes in the rat detrusor muscle observed after

obstruction/de-obstruction as revealed by mRNA analysis, and

on morphological changes studied by electron microscopy. The

aim of the study was to use these changes as a basis for the search

for new targets for drugs meant for treatment of persistent DO

and LUTS after de-obstruction.
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Methods of data collection

Some of the microarray data used in this study have been

discussed in other publications (see e.g., 18-20) and are publicly

available (GEO accession numbers GSE47080, GSE104540).

Electron microscopic images of own unpublished, normal,

obstructed and de-obstructed bladders were examined.

Literature searches on PubMed, Scopus and literature lists of

published publications in the field were performed.
Results and discussion

Functional voiding changes in
obstruction and de-obstruction

The obstructed bladder has been extensively characterized

cystometrically (18–21). Micturition pressure, threshold

pressure, bladder capacity, micturition volume, and residual

volume increase, and bladder compliance is decreased. Non-

voiding bladder activity (NVCs) is consistently observed.

After release of outflow obstruction, voiding function tends

to normalize. Cystometrically, there is a decrease in residual

volume, bladder capacity, maximal voiding pressure, voiding

amplitude, bladder contraction time. Bladder compliance is

increased (18, 21–23). Bladder overactivity can be observed

two weeks after de-obstruction in up to 46% of the animals

(21). Malmgren et al. (22) showed that the in vitro response to

carbachol and to electrical stimulation was similar in normal and

obstructed bladders. However, after removal of the obstruction a

supersensitivity to carbachol as well as to electrical stimulation

had developed, suggesting an increased excitability of the

detrusor muscle cells (22).
Spontaneous contractile activity and
cellular connections

The spontaneous contractile activity that can be observed in

isolated bladder tissue and during bladder filling in vivo is one of

the factors that may be important for DO and LUTS [e.g., 27-29].

It is obvious that many different factors can contribute or

influence this activity (24). including structures in the mucosa

(e.g., urothelium, nerves, interstitial cells) and detrusor muscle

changes. In this context it would be of particular interest to discuss

the role of changes in the detrusor muscle in the generation of DO

and LUTS that persist after relief of outflow obstruction.

Non-voiding contractions
Drake et al. (25) suggested that the detrusor is arranged into

component modules, each of which is capable of contracting
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autonomously. During bladder filling such a module, or active

autonomous unit, may create a contraction which may originate

in an individual myocyte that in turn activates a few nearby cells

within the unit (Figure 1). The innervation (afferent and motor)

of the cells is intact but there is no activity in the motor nerves.

One cell may act as a pacemaker and activate the others. Such a

spreading pattern was suggested to be generated solely by

mechanical stimulation (transmural pressure) (26). When

several active units are contracting simultaneously, this can be

reflected by increases in intravesical pressure in isolated perfused

bladders or in intact bladders during cystometry (NVCs). The

contractions can in vivo also generate afferent activity leading to

sensations of urge and urgency.

The contractile activity of such an autonomous unit requires

intercellular communication. Detrusor myocytes are electrically

coupled (27) - electrophysiologic data clearly indicate that

current injected into one cell flows into neighbouring cells (28,

29). Structural connections between cells can be observed in the

de-obstructed bladder (e.g., finger-like processes (30)). However,

even by electron microscopy classical gap junctions have been

difficult to demonstrate both in the normal and the obstructed

and de-obstructed bladders (30). However, the presence of small

junctional plaques between myocytes comprising connexins

(Cxs) have been demonstrated by different techniques (27).

Following 6 weeks of outlet obstruction in a rat model, a

dramatic increase of Cx43 mRNA levels associated with

bladder hypertrophy and overactivity was demonstrated (31).

The rat detrusor is richly innervated, and each myocyte has

at least one neuromuscular junction forming an innervated unit
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(Figure 2). Afferent fibres in the musculature are present in each

muscle bundle and are aligned with the muscle cells (32, 33). The

cells are also richly innervated by motor nerves. A detrusor

muscle cell can be innervated by more than one motor nerve

(34) and belong to more than one motor unit. In the obstructed

bladder it has been well demonstrated that some areas of the

bladder wall may be denervated – “patchy denervation”

(Figure 2) (35, 36). It is reasonable to expect that spontaneous

action potentials might appear in detrusor smooth muscle cells

in areas of denervation. The action potentials would then spread

to both denervated and innervated cells activating the latter (no

activity in motor nerves). The bigger the unit, the greater

number of cells would contract with consequent greater effect

on wall tension and (according to the law of Laplace) on bladder

pressure. If the contraction is spread to innervated areas, these

could be a source of afferent activity leading to LUTS (27).

Afferent activity is a key factor for the generation LUTS and

among the approximately 16 000 axons that reach the bladder at

least half are sensory (37). Activity in afferent nerves is generated

during the filling phase (“afferent noise”) and may mediate

sensation of bladder filling and urgency (38).
Structural changes in obstruction and
de-obstruction

The changes occurring in the bladder following partial

bladder outflow obstruction (BOO) have been well studied.

Studies comprise investigations on bladder structure, blood
FIGURE 1

Autonomic unit. Each cell has at least one nerve connection (afferent and/or motor), but the motor nerves are not active during the bladder
storage phase. However, one of the cells may act as a “pacemaker”, activating the others and generating contraction of the unit and afferent
activity. When several units are contracting simultaneously this can lead to increases in bladder pressure (micromotions) leading to sensation of
bladder filling.
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flow, metabolism, receptors and nerves. As studied in a

commonly used rat model of BOO (18, 39), the bladder

increases in weight and the detrusor muscle responds to the

obstruction by hypertrophy-hyperplasia (40). The relative

volume of smooth muscle in the bladder wall increases (41)

with corresponding increases in contractile and cytoskeletal

proteins (42). Total bladder collagen increases, but the

increased relative amount of smooth muscle leads to a

decrease in collagen concentration (43). Concomitant with the

hypertrophy/hyperplasia the pelvic ganglionic neurons

innervating the bladder become enlarged (43, 44).
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After de-obstruction most of these changes are reversed (12,

13, 22) Bladder weight is almost normalized after 6 weeks, but

despite the loss of muscle mass, there seemed to be no

degeneration of muscle cells or nerve endings, but the detrusor

muscle will contain a large amount of intercellular material,

mainly collagen (13). However, structural normalization of the

muscle is far from complete (Figure 3). The muscle cells are still

larger than in controls and have very irregular shapes with long

processes, corrugations, deep laminar indentations and long

tubular invaginations. Many small cell contacts are formed

(13). In the pelvic ganglionic neurons innervating the bladder
FIGURE 3

Arrows show finger-like processes from adjacent muscle cells. Detrusor muscle, six weeks of obstruction, followed by six weeks of de-
obstruction. Base of micrograph corresponds to 5um. Modified from Uvelius and Andersson, Int J Mol Sci 2022, 23, 11330.
FIGURE 2

Innervated (motor and sensory) and denervated units. In areas of patchy denervation (denervated unit) of the bladder wall, spontaneous
contractile activity of the cells within unit can, via gap junctions, spread to the innervated unit with consequent contraction and activity in
afferent nerves (no activity in motor nerves) mediating sensations of bladder filling and urgency.
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the average neuronal size reversed to values very close to

controls (45), suggesting that the number of synapses per

postganglionic motor axon has normalized in the de-

obstructed detrusor.
Molecular changes in obstruction and
de-obstruction

The microarrays revealed a wide range of changes after de-

obstruction. Compared with the obstructed the de-obstructed

bladders had a significant difference for 1059 mRNAs (7.3%).

For 857 (5.9%) mRNAs the de-obstructed value was significantly

higher, and for 202 (1.4%) significantly lower than in the

obstructed bladder. Lee et al. (21) analyzed in female rats the

patterns of gene expression after bladder outflow obstruction,

and de-obstruction. They further analyzed the expression

profiles in de-obstructed rats with and without bladder

overactivity. They found that in the de-obstructed bladders

without overactivity the expression pattern was far from

normalized, with 3,472 upregulated and 4,025 down-regulated

genes. However, in those with persistent overactivity only 145

and 72 genes were up- or down-regulated, and they speculated

that the overactivity may play a protective role against the stress

to the bladder induced by outflow obstruction and de-

obstruction as a form of adaptive neuroplasticity. Our data on

the expression profile after de-obstruction are in general

agreement with those of Lee et al. (21). Since our data did not

allow a comparison between the de-obstructed groups with and

without overactivity, a confirmation and further analysis of the

results of Lee et al. (21) would be desirable since they may give

clues to changes that can be targets for treatment.

Lee et al. (21) commented on the gene expression profiles in

different functional categories but did not discuss their potential

for translation into targets for therapeutic intervention. Below a

number of the mRNA changes in our material believed to reflect

protein changes in the obstructed and de-obstructed bladders

with such a potential have been selected for further discussion.

Connexins
In the microarrays it was found that mRNA for this protein

increased to 1.79 in the obstructed bladders but normalized

(0.91) following de-obstruction. In denervated bladders,

connexin 43 mRNA increased 3.30 fold in comparison with

the controls, suggesting that cell to cell contacts increase in the

absence of nerves. Connexins are the principal protein

component of the gap junction (GJ), responsible for the

functional generation of gap junction channels (46). GJs arise

from the interaction between 2 hemichannels (HCs) of

neighboring cells, which in turn are composed of 6 connexin

(Cx) proteins (47). There are 12 different subunits in the

connexin family, and their diversity is still poorly understood.
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Several connexins, including Cx40, Cx43, and Cx45, are

confirmed to be in the detrusor myocytes, and Cx43 is the main

one (45). These connexins are assumed to be essential for the cell-

cell communication observed between detrusor cells. In the

human bladder Cx43 interstitial cells are the major site for the

gap junction protein Cx43, which would allow propagation of

electrical and Ca2+ signals (48, 49).

The microarrays revealed that mRNA for Cx43 increased in

the obstructed bladders but normalized following de-

obstruction. Denervated rat bladders have high expression of

connexin 43 mRNA, and this is associated with a high

spontaneous contractile activity. Thus, detrusor muscle from

denervated bladders produce in vitro spontaneous phasic

contractions with amplitudes up to 40% of maximal

activation (50).

It is unclear whether Cxs can be reasonable targets for drugs

meant for de-obstruction LUTS. Cx antagonists have been used

experimentally with some success (51–53). Kim et al. (53) found

an upregulation of Cx43 and Cx26 after BOO in rat bladder, and

that connexin inhibitors glycyrrhetinic acid and oleamide relieved

BOO-induced detrusor overactivity. However, the many Cx

inhibitors available do not always strictly distinguish between

gap junctions, connexin hemichannels and pannexin channels,

and may have effects on other targets as well (54). An exception

lies with mimetic peptides, which reproduce specific amino acid

sequences in connexin or pannexin primary protein structure. The

effects of such peptides have been explored in several organs/

tissues (54) but, to the best of our knowledge, not in the

urinary bladder.
Membrane receptors

Following BOO in rats there are non-uniform changes in

bladder membrane receptors (55). Some receptors are up-

regulated and can be associated with increased agonist

responses whereas other can be down-regulated leading to

decreased responses. Some of these BOO-induced changes

remain after de-obstruction. Although the functional

consequences of these changes are not known they can be

targets for drugs. At present it has not been established

whether agonists or antagonists of the receptors would inhibit

the persistent OAB after de-obstruction.

Endothelins
In the microarrays endothelin-1 mRNA was significantly

increased in the obstructed bladders and stayed so after de-

obstruction. Endothelin receptor typ A mRNA increased

significantly (2.05) in obstructed bladders. The mRNA level

remained significantly increased during de-obstruction.

Bladder denervation induced an even higher level (2.51) of

endothelin A receptor mRNA. In the normal bladder
frontiersin.org
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endothelins (ET-1, ET-2, ET-3) and endothelin receptors (ETA,

ETB) have been demonstrated (56). Through their receptors,

ETs can initiate both short-term (contraction) and long-term

(mitogenesis) events in targets cells in the bladder and urethra.

In the obstructed rat bladder, we found that ET-1 mRNA was

significantly increased, and it remained elevated also after de-

obstruction. ETA mRNA increased significantly in obstructed

bladders and the level remained significantly increased during

de-obstruction. Bladder denervation induced an even higher

level of endothelin A receptor mRNA.

Saenz de Tejada et al. (57) suggested that ETs may act as an

autocrine hormone in the regulation of bladder wall structure

and smooth muscle tone, and that it may regulate cholinergic

neurotransmission by a paracrine mechanism. The contractile

effect of ETs seems to be mediated mainly by the ETA receptor

(58), and the molecular mechanism by which ET-1 causes

contraction involves the ROK pathway (59).

The functional role of ETs in the detrusor has not been

established. However, in the rat bladder Donoso et al. (60) found

that ET-1 potentiated the contractions evoked by both

transmural nerve stimulation (ACh and ATP) and applications

of ATP at peptide concentrations 10-fold below those needed to

produce an increase in bladder tone. Locally generated ET-1 may

thus not only exert a direct contractile effect on the myocyte, but

also indirectly increase the effects of other mediators that

influence myogenic activity.

The ETA selective receptor antagonist, YM598, dose-

dependently reduced the frequency of NVCs in BOO rats

without effects on other voiding parameters (61). Further,

inhibition of the endothelin-converting enzyme, which

metabolizes big endothelin to ET-1, decreased bladder

overactivity in BOO rats (62). Several ET receptor antagonists

have been tested in humans (mostly in cancer treatment) which

means that they are available for human use. Since ET-1 receptor

antagonists can reduce spontaneous activity in the detrusor (61)

and decrease DO in animal models (63), they have a promising

profile for treatment of bladder disorders, but their effect on LUT

dysfunction in humans remains to be established.

Purinergic receptors
Among purinergic receptors, the P2x1 receptor mRNA level

was unaffected by obstruction or de-obstruction. On the other

hand, the P2x5 receptor mRNA was significantly increased in

both obstructed and de-obstructed bladders. P2y1, P2y2, P2y4,

and P2y6 mRNAs were not affected by obstruction or

de-obstruction.

ATP is released from the umbrella cells when the urothelium

is stretched during bladder filling. P2X3 and several other P2X

receptors are expressed in the lamina propria, urothelium and

detrusor smooth muscle of rat and human bladder. ATP

stimulates purinergic receptors on suburothelial sensory

nerves, leading to the sensation of bladder filling and urgency
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but also to initiation of the voiding reflex (64). In the rat

microarrays the P2x1 receptor mRNA level was unaffected by

obstruction or de-obstruction. On the other hand, the P2x5

receptor mRNA was significantly increased in both obstructed

and de-obstructed bladders. P2y1, P2y2, P2y4, and P2y6 mRNAs

were not affected by obstruction or de-obstruction. The

adenosine A2B receptor mRNA was similar in control and

obstructed bladder, but significantly higher in de-obstructed

bladders. Adenosine relaxes agonist-induced detrusor

contractions (65) and attenuates stretch-activated urothelial

ATP release (66). These effects are exerted partly via A2B

receptors (67).

The purinergic signaling in the bladder may be changed in

different LUT disorders. In the diseased human detrusor P2X3

receptors seem to mediate the non-adrenergic, non-cholinergic

(NANC) contraction (68, 69), and for decades P2X3 receptors

have been the target for drugs intended for treatment of LUT

disorders. Selective P2X3 antagonists, such as A-317491, and

AF-353 were shown to be effective in several animal models of

bladder dysfunction, but not taken into clinical use. The new

selective P2X3 antagonists, gefapixant reduced urinary urgency

and a positive trend in the improvement of pain in patients with

IC/BPS (70). Also eliapixant (BAY 1817080) is a highly potent

and selective P2X3 receptor antagonist that has promising effects

on disorders associated with hypersensitive nerve fibers in

different relevant rodent models (71). This would make these

drugs, particularly eliapixant, of interest for treatment of

different types of bladder disorders, e.g., OAB and LUTS

(including de-obstruction LUTS) and painful bladder

syndrome/interstitial cystitis (PBS/IC). However, such clinical

studies are still to be performed.

b3-Adrenoceptors
The b3-adrenoreceptor mRNA was significantly decreased

(10 days 0.39, 6 weeks 0.56) in the obstructed bladders. The de-

obstructed bladders were not (0.76) significantly lower in mRNA

compared with the control bladders. The urinary bladder

expresses mRNA for all three b‐adrenoceptor subtypes (72),

but the predictive value of b3‐adrenoceptor mRNA for the

presence of functional receptor protein remains uncertain (73).

In the microarrays of the obstructed rat bladder, b‐adrenoceptor
mRNA was significantly decreased. Compared with the mRNA

in control bladders the mRNA in the de-obstructed bladders was

also reduced (0.762). Zeng et al. (58) found that the b3‐
adrenoceptor CL316243 caused a concentration- dependent

relaxation in control rat bladder strips but had little effect in

strips from obstructed bladders This is in agreement with the

decrease in b‐adrenoceptor mRNA in the obstructed bladder

and, if valid also in humans, may explain why the storage

symptoms improvement was less in patients with BOO than in

those without (74). Since there was a decrease (although n.s.) in

b‐adrenoceptor mRNA also in the de-obstructed bladder, it may
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be expected that the effect on symptoms persisting after

prostatectomy may be small.

Arginine vasopressin
The arginine vasopressin mRNA level was significantly

decreased (0.53) in the obstructed bladders but had

normalized in the de-obstructed bladders.

The biological effects of AVP are mediated by three receptor

subtypes: the V1a and V1b receptors and the V2 receptor (72).

The V2 receptor is located mainly in the collecting ducts and

distal tubule and facilitates water reabsorption but has also been

demonstrated in the bladder mucosa (73). The V1 vasopressin

receptors are present in the rat and rabbit bladder (75, 76), and

mediates the contractile effects of AVP on the detrusor. A

decreased contractile effect of AVP has been reported in the

obstructed rat bladder (77). Zeng et al. (58) demonstrated that

this was associated with a reduced level of V1a receptor mRNA

and protein. mRNA for AVP on the other hand was unchanged,

arguing that vasopressin is synthesized in the rat bladder but that

its synthesis is unchanged after obstruction. After de-obstruction

the AVP mRNA levels are normalized.

Ikeda et al. (78) found a direct role for VRs in regulating

detrusor tone with V1Rs causing contraction and V2Rs

relaxation. They also found that in aged bladders, the

relaxation response to V2R activation is attenuated by lack of

release of a mucosal factor that contributes to V2R-induced

relaxation and speculated that administering an exogenous V2R

agonist (e.g., desmopressin) could counteract this defect and

potentially increase nighttime bladder capacity through detrusor

relaxation. Together with the V2R receptor decrease in urine

production this could contribute to reduced nocturnal

voiding frequency.

The RhoA/Rho-kinase pathway
Rho is a family of small signaling G proteins. ROCK1 and

ROCK2 ar e ma jo r downs t r e am e ff e c t o r s o f t h e

small GTPase RhoA. Both ROCK1 and ROCK 2 isozymes

have been demonstrated in the rat bladder but the complete

functional differences between the ROCK1 and ROCK2 isoforms

have not been elucidated (59).

Rho-kinase and the RhoA/ROCK pathway appears to play a

critical role in normal bladder function. This pathway is

important for the maintenance of basal detrusor muscle tone

and also serves as a common final pathway of various contractile

stimuli in animals as well as humans by acting as a “calcium

sensitizer”. The RhoA/Rho-kinase pathway can be activated by

e.g, muscarinic acetylcholine receptors, endothelin, angiotensin,

P2-type purinoceptors, lysophosphatidic acid, and prostaglandin

F2a (59, 79, 80).

Our microarrays showed a significant upregulation of

ROCK1 both after 10 days (1.532) and 6 weeks (1.566)

obstruction; after de-obstruction the increase (1.361) was non-
Frontiers in Urology 07
significant. ROCK2 showed a non-significant increase 10 days

and 6 weeks after BOO, but a significant increase (1.225) after

de-obstruction. Similarly, Takahashi et al. (81) found an

increased expression of RhoA, ROCK1 (ROKa), and ROCK2

(ROKb) after 4 weeks of BOO in the male rat. In the obstructed

male rabbit bladder, Guven et al. (82) found that ROKa was

upregulated but there was a simultaneous significant decrease in

the expression of ROKb. The importance of this is unclear.

Inhibitors of Rho kinase such as Y 27,632, GSK 269,962 and

fasudil inhibit bladder contraction in in vitro preparations from

multiple species and Rho-kinase would be an interesting target

for drugs aimed at treatment of LUTS/OAB (80, 83). Fasudil has

been approved in some countries for clinical use in indications

unrelated to the bladder. It seems that the drug (or the principle

of Rho-kinase inhibition) has a therapeutic potential in the

management of LUTD, including symptoms persisting after

de-obstruction. However, no clinical studies of Rho kinase

inhibitors in LUTD seem to have been performed and such

studies are urgently needed to prove the principle.
Conclusions

Whole bladder arrays is a method to find possible changes of

mRNA expression simultaneously for a huge number of proteins

in the obstructed and de-obstructed bladders. The arrays may

help identifying cellular mechanisms that could then be targets

for drugs meant for treatment of persistent DO and LUTS after

de-obstruction. Based on available array information it seems

worthwhile to re-assess the development potential for e.g.,

endothelin antagonists, purinergic receptor antagonists and

Rho-kinase inhibitors.
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