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Effects of pharmacological
neurotrophin receptor inhibition
on bladder function in female
mice with cyclophosphamide-
induced cystitis

Harrison W. Hsiang, Beatrice M. Girard, Lexi Ratkovits,
Susan E. Campbell and Margaret A. Vizzard*

The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont,
Burlington, VT, United States
Interstitial cystitis/bladder pain syndrome is a chronic inflammatory pelvic pain

syndrome of unknown etiology characterized by a number of lower urinary

tract symptoms, including increased urinary urgency and frequency, bladder

discomfort, decreased bladder capacity, and pelvic pain. While its etiology

remains unknown, a large body of evidence suggests a role for changes in

neurotrophin signaling, particularly that of nerve growth factor (NGF) and

brain-derived neurotrophic factor (BDNF). Here, we evaluated the effects of

pharmacological inhibition of the NGF receptor TrkA, BDNF receptor TrkB, and

pan-neurotrophin receptor p75NTR on bladder function in acute (4-hour) and

chronic (8-day) mouse models of cyclophosphamide (CYP)-induced cystitis.

TrkA inhibition via ARRY-954 significantly increased intermicturition interval

and bladder capacity in control and acute and chronic CYP-treatment

conditions. TrkB inhibition via ANA-12 significantly increased intermicturition

interval and bladder capacity in acute, but not chronic, CYP-treatment

conditions. Interestingly, intermicturition interval and bladder capacity

significantly increased following p75NTR inhibition via LM11A-31 in the acute

CYP-treatment condition, but decreased in the chronic condition, potentially

due to compensatory changes in neurotrophin signaling or increased urothelial

barrier dysfunction in the chronic condition. Our findings demonstrate that

these receptors represent additional potent therapeutic targets in mice with

cystitis and may be useful in the treatment of interstitial cystitis and other

inflammatory disorders of the bladder.

KEYWORDS

interstitial cystitis (IC)/bladder pain syndrome (BPS), nerve growth factor, brain-
derived neurotrophic factor (BDNF), urinary bladder, cyclophosphamide, p75,
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Introduction

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a

chronic inflammatory pelvic pain syndrome of unknown

etiology characterized by a number of lower urinary tract

(LUT) symptoms, including increased urinary urgency and

frequency, bladder discomfort, decreased bladder capacity, and

pelvic pain. It is currently thought that a positive feedback loop

of urinary bladder inflammation and afferent hypersensitization

underlies IC/BPS. Inflammation increases excitability of bladder

afferents, which in turn release inflammatory neuropeptides,

growth factors, cytokines, and chemokines throughout the

micturition pathway, leading to altered bladder function (1, 2).

There currently exists no effective therapy for IC/BPS and the

disease exacts a tremendous financial burden on both

individuals and the economy as a whole (3).

While the etiology of IC/BPS remains unknown (4), a large

body of evidence suggests a role for changes in neurotrophin

signaling, particularly that of nerve growth factor (NGF) and

brain-derived neurotrophic factor (BDNF) (5–8). Both NGF and

BDNF are well-implicated in the LUT symptoms in overactive

bladder and IC/BPS. Previous studies have shown upregulation

of NGF at sites of tissue inflammation (9, 10), changes in its

expression in the urine and bladders of both rodents and

humans with cystitis (11–14), and changes in bladder function

consistent with cystitis as a consequence of its urothelial

overexpression (15, 16) or administration to the bladder (17,

18). BDNF is upregulated throughout the micturition pathway

in both humans and rodents with cystitis (19–21) as a

consequence of increased NGF synthesis (22, 23) and its

reduction is associated with subjective improvement in IC/BPS

patients undergoing treatment (20). Pharmacological

disruptions of both NGF and BDNF in models of bladder

inflammation have given complementary results, improving

bladder function (15, 24, 25). However, anti-NGF treatments

for a variety of pain conditions have been halted due to severe

side effects (26, 27). Thus, there is a clear need for additional

therapeutic targets.

Neurotrophin signaling can alternatively be targeted at the

receptor level. NGF activates two distinct receptors, the pro-

survival high-affinity tyrosine receptor kinase A (TrkA) receptor

and the pro-apoptotic low-affinity pan-neurotrophin receptor

p75NTR (28–31). Under certain ratios of coexpression, p75NTR

increases TrkA affinity for NGF, thus modulating NGF signaling

(32). Most BDNF interactions are mediated through the high-

affinity TrkB receptor, although it can also activate p75NTR (28–

30). Here, we show the effects of pharmacological inhibition of

p75NTR, TrkA, and TrkB on bladder function in a mouse model

of cyclophosphamide (CYP)-induced cystitis. Our findings

demonstrate that these receptors represent additional potent

therapeutic targets in mice with cystitis and may be useful in the

treatment of IC/BPS and LUT symptoms in other inflammatory

disorders of the bladder.
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Methods

Animals

Female C57BL/6 wildtype (WT) mice used in this study were

bred locally at the Larner College of Medicine at the University

of Vermont. The litters were of normal size, weight, and activity

(feeding, drinking, behaviors). The average litter size was 6-8

mice. Mouse litters were undisturbed and not manipulated. Mice

from different litters were assigned with simple randomization

by distributing experimental groups across multiple cages and

litters. The UVM Institutional Animal Care and Use Committee

approved all experimental protocols involving animal usage

(IACUC #X9-020). Animal Care was under the supervision of

the UVM Office of Animal Care Management in accordance

with the Association for Assessment and Accreditation of

Laboratory Animal Care (AAALAC) and National Institutes of

Health (NIH) guidelines. Estrous cycle status was not

determined in female mice before use. All efforts were made to

minimize the potential for animal pain, stress, or distress.

Separate groups of littermate WT were used in the

following experiments.
Bladder catheter implantation

Female adult WT mice (3-4 months) were anesthetized with

2-3% isoflurane in oxygen. A mid-abdominal incision was made,

allowing access to the urinary bladder, into the dome of which a

small hole was made and flared-tip PE-50 tubing inserted. The

tubing was run subcutaneously to the nape of the neck and

coiled. A small incision was made and a wax-sealed port

anchored via stitching to the nape of the neck, allowing access

to the tubing. All incisions were stitched up and the mice given a

three-day recovery period. During this time, the mice also

received a postoperative analgesic, carprofen, administered

subcutaneously (s.c.; 0.1 mL/10g) for 48 hours following

surgery. Induction of cystitis via CYP began following this

period. Cystometry was conducted following appropriate

incubation periods for both acute and chronic CYP treatments.
CYP-induced cystitis

Mice (N = 5-8, per treatment group) received

cyclophosphamide (CYP) intraperitoneally (i.p.) to create

acute (4-hour incubation, 200 mg/kg) or chronic (75 mg/kg

every third day for a total of three injections) treatment groups

(14, 33, 34). CYP is metabolized to acrolein, an irritant then

expelled in the urine. (35) Injections were performed under 3%

isoflurane anesthesia. The control group received no

CYP treatment.
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Conscious, open-outlet cystometry

Following the recovery period, tubing was exteriorized and the

mice were placed, unrestrained, in a wire-bottomed recording cage

and the catheter connected, via a T-tube, to a pressure transducer

(Crass Model PT300, West Warwick RI, USA) and microinjection

pump (Harvard Apparatus 22, South Natick MA, USA). Room

temperature saline (0.9%) was infused into the bladder (25 mL/
minute). The following urodynamic parameters were recorded using

a Small Animal Cystometry Lab Station (MED Associates, St Albans

VT, USA): bladder pressure (threshold, maximum, minimum, and

average), infused volume (IV; the volume of saline infused into the

bladder since the last void), and intermicturition interval (IMI).

Bladder capacity is defined as the IV necessary to elicit a micturition

event. At least six reproducible micturition cycles were recorded per

mouse following a 15-minute acclimation period (33, 35). Mice in

these studies had residual volume of less than 5 mL, meaning infused

volume and void volume were similar. Testing was conducted at

similar times of day to mitigate any impact of circadian rhythm.

Bladder pressure measurements between mice displayed high

variability and no statistical differences were observed between

groups in the present study.
Intravesical administration of
pharmacological inhibitors

Following initial cystometry, each treatment group received

intravesical delivery of: 30 mg/kg ARRY-952 selective TrkA

inhibitor in 20% Captisol vehicle (AR; Pfizer, New York NY, USA),

100 mg/kg selective p75NTR inhibitor LM11A-31 (LM; Ricerca

Biosciences, Painesville OH, USA) in sterile, injectable water,

100mg/kg selective TrkB inhibitor ANA-12 (ANA; MedChem

Express, Monmouth Junction NJ, USA) in 10% dimethyl sulfoxide

(DMSO)over thirtyminutes. 0.5mLof inhibitorwas delivered to the

bladder over a 30-minute period for each treatment group. Vehicle

controls found no effects of the Captisol vehicle alone (Figure 3).

Subsequently, the mice then underwent another session of

cystometry, allowing each mouse to serve as its own baseline pre-

andpost-administrationof inhibitors. Following thefinal cystometry

session, mice were deeply anesthetized with 5% isoflurane in oxygen

and euthanized via thoracotomy.
Exclusion criteria

Mice were withdrawn from the study due to postoperative

complications or pain, lethargy, or distress that could not be

addressed with postoperative analgesics. Some cystometry

recordings could not be used due to artifacts from excessive

behavioral movements (such as grooming and chewed tubing); in
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CYP-treatment conditions, mice exhibiting neither bladder

functional impairment nor signs of bladder inflammation

(blistering of the urothelium, edema, and sloughing of urothelial

cells) on visual inspection after euthanasia were excluded as well.

Approximately 10% of mice were removed from the study.
Cystometry analysis

Cystometry traces were analyzed offline using MED-CMG

software (Med Associates, St Albans VT, USA) and R. Values of

functional bladder parameters were averaged before and after

treatment for each mouse and averaged for each treatment

group. Results were statistically analyzed using Welch’s paired

t-tests and one-way analysis of variance (ANOVA) with Tukey’s

honestly significant difference (HSD) post-hoc analysis where

appropriate. P-values less than or equal to 0.05 were considered

statistically significant. Asterisks (*, **, ***) indicate statistical

differences at the p ≥ 0.05, 0.01, and 0.001 levels. Data is

presented as boxplots with range and individual slope graphs.

Boxplots display the median, interquartile range, maximum,

minimum, and outliers (indicated with dots). The range is

indicated by the corresponding bolded portions of the y-axis.

Slope graphs indicate the change of individual mice before and

after treatment. Red dotted lines indicate the change in mean

values for each condition before and after treatment.
Results

Both acute (4-hour) and chronic (8-day)
CYP-treatment reduced intermicturition
interval and bladder capacity

Bladder function was assessed through conscious, open-outlet

cystometry (Figure 1). As previously demonstrated (14, 33, 34),

intermicturition interval (IMI) and infused volume (IV) were

statistically significantly reduced in both the acute (4-hour, 200

mg/kg i.p.) and chronic (8-day, 75 mg/kg i.p.) cyclophosphamide

(CYP)-treatment conditions when compared to the control

conditions (Figure 2 and Table 1). One-way ANOVA revealed a

statistical difference in IMI by condition (F(2,15) = 40.95, p =

8.38x10-7) and Tukey’s HSD Test for multiple comparisons

revealed that the mean IMI value was significantly different

between control and acute CYP (p = 0.0000014) and control and

chronic CYP conditions (p = 0.0000098). One-way ANOVA also

revealeda statisticaldifference in IVbycondition (F(2,15)=40.83,p=

8.54x10-7) and Tukey’s HSDTest formultiple comparisons revealed

that the mean IV value was significantly different between control

and acute CYP (p = 0.0000014) and control and chronic CYP

conditions (p = 0.00001; Table 1).
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A B

FIGURE 1

Bladder function was assessed via conscious, open-outlet cystometry. (A) Tubing is surgically implanted in the bladder and run subcutaneously
to a port at the nape of the neck, allowing direct infusion into the bladder. (B) During cystometry, the mouse is placed in a wire-bottomed
recording chamber. Saline is infused into the bladder at a constant rate of 25 mL/minute, allowing the measurement of various urodynamic
parameters: bladder pressure (threshold, maximum, minimum, and average), infused volume (IV; the volume of saline infused into the bladder
since the last void), and intermicturition interval (IMI; time between voids). Original illustrations by Harrison Hsiang.
A

B

FIGURE 2

Increased voiding frequency following acute (4-hour) and chronic (8-day) CYP-treatment. (A) Representative traces of bladder pressure (mm
Hg) over time (seconds) for control, acute and chronic CYP-treatment during constant intravesical infusion of saline. Bladder pressure increases
with filling, spiking when the bladder contracts during micturition. Intermicturition interval is visibly decreased (increased frequency) in acute and
chronic CYP-treatment conditions. (B) Both acute and chronic CYP-treatment increased voiding frequency. Intermicturition interval and infused
volume were significantly reduced in acute (p = 0.0000014) and chronic (p = 0.0000098) CYP-treatment conditions. Circles mark the individual
data points for each condition. N = 6 for all.
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TrkA inhibition via AR reduced void
frequency and increased bladder
capacity in both the acute and chronic
CYP-induced cystitis models

Intravesical administration of ARRY-954 (AR) statistically

increased IMI and IV in control (p = 0.01622; p = 0.01633) and

acute (p = 0.001935; p = 0.01954) and chronic (p = 0.02549; p =

0.02548) CYP-induced cystitis conditions. IMI interval increased

1.18-fold in control mice, 1.56-fold in acute CYP-treated mice, and

1.68-fold inchronicCYP-treatedmice (Figure3andTable2).ARwas

delivered intravesically in 20% Captisol. Vehicle controls found no

effect of vehicle alone (p > 0.05; Figure 4).
p75NTR inhibition via LM reduced void
frequency and increased bladder capacity
in acute CYP-treated mice, but reduced
function in chronic CYP-treated mice

Intravesical administration of LM11A-31 (LM) statistically

increased IMI (p = 0.001702) and IV (p = 0.001676) in acute (4-

hour) CYP-treated mice, a 1.83-fold increase. However, LM
Frontiers in Urology 05
administration statistically decreased IMI (p = 0.007845) and IV

(p = 0.007725) in chronic (8-day) CYP-treated mice 0.63-fold.

No change was observed following treatment in the control

condition (p > 0.05; Figure 5 and Table 3).
TrkB inhibition via ANA reduced void
frequency and increased bladder
capacity in acute but not chronic CYP-
treated mice

Intravesical administration of ANA statistically increased IMI (p

= 0.001114) and IV (p = 0.001113) in the acute CYP-treatment

condition. No change was found in the control and chronic CYP-

treatment conditions (p > 0.05; Figure 6 and Table 4).
Discussion

This study demonstrates the different effects of p75NTR,

TrkA, and TrkB inhibition on bladder function in control and

acute or chronic CYP-treated mice.
TABLE 1 Mean ± SEM values for intermicturition interval and infused volume for control and acute (4-hour) and chronic (8-day) CYP-treatment
conditions.

Condition Intermicturition interval (ms) Infused volume (mL)

Control 262.48 ± 12.97 109.51 ± 5.42

4-hour CYP 112.38 ± 11.08*** 46.99 ± 4.61***

8-day CYP 135.00 ± 55.12*** 56.46 ± 23.05***
Intermicturition interval and infused volume were significantly reduced in acute (p = 0.0000014) and chronic (p = 0.0000098) CYP-treatment conditions. N = 6 for all.
FIGURE 3

Decreased voiding frequency following intravesical treatment with AR. Intermicturition interval was statistically increased following intravesical
administration of AR in control (1.18-fold, p = 0.01622, N = 6) and acute (4-hour; 1.56-fold, p = 0.001935, N = 5) and chronic (8-day; 1.68-fold,
p = 0.02549, N = 6) CYP-treated mice. Slope graphs indicate the change of individual mice before and after treatment. Red dotted lines
indicate the change in mean values for each condition before and after treatment.
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TrkA inhibition via intravesical administration of AR was

associated with improved bladder function, with statistical

increases in both the intermicturition interval (IMI) and

infused volume (IV), in control and both acute (4-hour) and

chronic (8-day) CYP-treatment conditions. Unsurprisingly,

accumulating evidence suggests that NGF actions in cystitis

are primarily TrkA-mediated. Its sequestration has prevented

the development of hyperalgesia and reduced cystitis-associated

changes in voiding frequency in CYP-treated animals (16, 24,

36). A previous study has also shown functional improvement

following treatment with pan-Trk inhibitor K252A in rats with

CYP-induced cystitis (15). TrkA and TrkB immunoreactivity

and phosphorylation are increased in the urinary bladder and its

afferents following bladder inflammation (21, 37). TrkA is also

implicated in the expression of the nociceptive TRPV1 receptor

(38), known to be upregulated in cystitis (39, 40), as well as in the

development of mechanical and thermal hyperalgesia (41–46),

all of which are associated with cystitis. TrkA inhibition

increased IMI and IV in the control condition, suggesting that
Frontiers in Urology 06
NGF-TrkA signaling may modulate bladder function even under

noninflammatory conditions.

p75NTR inhibition via intravesical administration of LM also

improved bladder function in the acute CYP-treatment

condition. Given that NGF actions during cystitis may be

primarily TrkA-mediated, this finding is consistent with the

understanding that p75NTR modulates NGF-TrkA actions when

the two receptors are coexpressed, potentially even when

activated by immature proneurotrophins (30, 32). In rats with

thermal hyperalgesia, the magnitude of the acute response is

TrkA-mediated while the duration of the response is p75NTR-

mediated. (47) However, p75NTR can also enact pro-apoptotic

and growth-limiting actions independently of TrkA (28, 29, 47).

p75NTR and its downstream effectors are essential for the

development of NGF-mediated mechanical hyperalgesia in the

rat hindpaw (43). NGF-p75NTR signaling–mediated changes in

ceramide (via the sphingomyelin cycle) have been demonstrated

to occur independently of TrkA in cell culture (48). NGF binding

to p75NTR-sortilin complexes reduces growth (47). Additionally,
TABLE 2 Mean ± SEM values for intermicturition interval and infused volume before and after AR treatment.

Intermicturition Interval (ms) Infused Volume (mL)

Condition Before After Before After

Control 192.56 ± 29.13 227.45 ± 30.17* 80.41 ± 12.14 94.93 ± 12.57*

4-hour CYP 78.76 ± 14.69 124.03 ± 19.65** 32.96 ± 6.12 51.80 ± 8.18**

8-day CYP 77.94 ± 7.76 131.17 ± 22.61* 32.65 ± 3.24 54.80 ± 9.42*
f

Intermicturition interval and infused volume were statistically increased following intravesical administration of AR in control (p = 0.01622, p = 0.01633, N = 6) and acute (4-hour; p =
0.01954, p = 0.001935, N = 5) and chronic (8-day; p = 0.02549, p = 0.02548, N = 6) CYP-treated mice.
FIGURE 4

No effect on bladder function following intravesical treatment with 20% Captisol (p > 0.05, N = 6). Slope graphs indicate the change of
individual mice before and after treatment. Red dotted lines indicate the change in mean values for each condition before and after treatment.
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p75NTR activates Jun kinase (JNK) (28), which influences a

number of cystitis-relevant cellular functions including

apoptosis, inflammation, cytokine production, and cellular

differentiation and proliferation. In thermal hyperalgesia, it

seems the magnitude of the acute response is TrkA-mediated

while the duration of the response is p75NTR-mediated (46).

These studies, alongside our demonstration that p75NTR

inhibition improved bladder function in CYP-treated mice,

suggests that p75NTR may be a potent modulator of NGF-

TrkA signaling–mediated bladder dysfunction and peripheral

sensitization in cystitis.

Interestingly, while p75NTR inhibition improved bladder

function in the acute CYP-treatment condition, it was

associated with reduced bladder function in the chronic

condition, with both IMI and IV decreasing after treatment.

This may result from compensatory changes in protein

expression under chronic inflammation conditions. Girard

et al. (16) observed reduced expression of TrkA and TrkB and
Frontiers in Urology 07
increased expression of p75NTR in urothelium-specific NGF-

overexpressing mice, which the authors postulated may

represent compensatory, concomitant changes to reduce

urinary frequency. These compensatory changes in protein

expression likely disrupt p75NTR-mediated facilitation of NGF-

TrkA actions, which depend on high TrkA:p75NTR coexpression

(30, 32), instead allowing p75NTR actions to oppose NGF-TrkA

actions. p75NTR inhibition under these conditions may

undermine natural compensatory changes and consequently

reduce bladder function. An alternative explanation may be

that the effects of p75NTR inhibition differ between the

urothelium and regions of the bladder deep to the urothelium;

Klinger et al. (49) found that PD90780, known to disrupt NGF-

p75NTR signaling, produces bladder overactivity in control and

CYP-treated rats only when infused with protamine sulfate,

which disrupts urothelial barrier function. Here, reduced

bladder function following LM infusion may result from

potentially increased urothelial barrier dysfunction at the
FIGURE 5

Decreased voiding frequency following intravesical treatment with LM in acute CYP-treatment conditions. Intermicturition interval was statistically
increased following intravesical administration of LM in acute (4-hour) CYP-treated mice (1.83-fold, p = 0.001702, N = 7). Intermicturition interval was
statistically decreased following intravesical administration of LM in chronic (8-day) CYP-treated mice (0.63-fold, p = 0.007845, N = 5). There was no
statistical difference before and after LM treatment in the control condition (p > 0.05; N = 6). Slope graphs indicate the change of individual mice before
and after treatment. Red dotted lines indicate the change in mean values for each condition before and after treatment.
TABLE 3 Mean ± SEM values for intermicturition interval and infused volume before and after LM treatment.

Intermicturition Interval (ms) Infused Volume (mL)

Condition Before After Before After

Control 248.18 ± 14.58 240.73 ± 15.61 103.53 ± 6.08 100.45 ± 6.51

4-hour CYP 104.45 ± 12.27 191.62 ± 19.19** 43.69 ± 5.11 80.03 ± 7.99**

8-day CYP 144.74 ± 11.88 91.22 ± 13.33*** 60.52 ± 4.96 38.16 ± 5.55***
Intermicturition interval and infused volume were statistically increased following intravesical administration of LM in acute (4-hour) CYP-treated mice (p = 0.001702, p = 0.001676, N = 7).
Intermicturition interval was statistically decreased following intravesical administration of LM in chronic (8-day) CYP-treated mice (p = 0.007845, p = 0.007725, N = 5). There was no
statistical difference before and after LM treatment in the control condition (p > 0.05; N = 6).
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chronic timepoint, allowing LM to penetrate deeper into the

bladder wall. Chronic CYP-treated mice display urothelial

hyperplasia without commensurate increases in mRNA

expression for urothelial tight junction proteins, suggesting

urothelial barrier function is indeed compromised in the

chronic condition (50), which may influence the penetration

rate of the inhibitors tested here.

TrkB inhibition via intravesical administration of ANA

improved bladder function in the acute but not chronic CYP-

treatment condition. This is consistent with previous studies.

BDNF is well-implicated in acute inflammatory responses in the

bladder. Expression of BDNF and TrkB increase throughout the

micturition pathway – particularly the urothelium – in response

to bladder inflammation, spinal cord injury, and bladder outlet

obstruction (19–21, 37, 51, 52); furthermore, overexpression of

BDNF in the bladder wall induces bladder overactivity and

increases expression of nociceptive TRPV1 and TRPA1

channels and cholinergic and purinergic signaling proteins

(53) and its sequestration improves bladder function and
Frontiers in Urology 08
reduces expression of cFOS and phosphorylated ERK, known

markers of noxious input (54–56), in rats with acute CYP-

induced cystitis (19). However, there is some indication that

BDNF actions in the bladder are short-lived. Oddiah et al. (12)

found that BDNF expression was increased when measured two

hours after turpentine-induced inflammation but not at six

hours after. This is consistent with our finding that TrkB

inhibition improved bladder function in the acute (4-hour) but

not chronic (8-day) CYP-treatment conditions. A possible

explanation is increased retrograde transport of BDNF to the

dorsal root ganglia and spinal dorsal horn at later time points in

cystitis, contributing to central windup. BDNF is upregulated in

the spinal dorsal horn following CYP treatment, promoting

astrocyte and microglia activation and, in turn, increased

inflammation and mechanical allodynia (57); delivery of

exogenous BDNF intrathecally reproduces symptoms of

bladder hyperactivity and pain, and its blockade or

sequestration reduces them. NGF is known increase peripheral

and spinal levels of BDNF, which is then transported
FIGURE 6

Decreased voiding frequency following intravesical treatment with ANA. Intermicturition interval was statistically increased following intravesical
administration of ANA in acute (4-hour) CYP-treated mice (1.6-fold, p = 0.001114, N = 8). There was no statistical difference following treatment
in the control and chronic (8-day) CYP-treatment conditions (p > 0.05, N = 8, 7). Slope graphs indicate the change of individual mice before
and after treatment. Red dotted lines indicate the change in mean values for each condition before and after treatment.
TABLE 4 Mean ± SEM values for intermicturition interval and infused volume before and after ANA treatment.

Intermicturition Interval (ms) Infused Volume (mL)

Condition Before After Before After

Control 195.45 ± 23.16 216.12 ± 23.00 81.16 ± 9.64 90.22 ± 9.58

4-hour CYP 66.71 ± 12.48 107.03 ± 15.60** 27.94 ± 5.20 44.76 ± 6.50**

8-day CYP 147.71 ± 25.06 164.69 ± 32.78 61.67 ± 10.45 68.76 ± 13.65
fr
Intermicturition interval and infused volume were significantly increased in the acute (4-hour, p = 0.001114, p = 0.001113, N = 8) but not control or chronic CYP-treatment conditions (p >
0.05, N = 8,7).
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retrogradely to central and peripheral nerve terminals (58).

BDNF notably increases sensory neuron excitability through

p75NTR (59), and its role in central sensitization is thought to

underlie many pain conditions (60). Notably, BDNF actions in

the spinal cord only persist 10-20 minutes after administration

(61), likely due to receptor internalization and diffusion or

degradation of BDNF (22, 62). Here, due to the intravesical

delivery of inhibitors, it is likely treatment primarily affected

receptors expressed in the bladder, however, a number of studies

have demonstrated effects of inhibition of various neurotrophin

signaling–related proteins at the DRG level as well (41, 63, 64).

These studies implicate neurotrophin signaling at the DRG level

in the modulation of pain sensation in addition to its functional

effects at the level of the bladder, demonstrated here. Future

studies addressing intrathecal or systemic administration of

agents will help to evaluate contributions from receptors

expressed in the DRG and more widely throughout the body.

There are several limitations to the present study. First, the

effects of these inhibitors were only evaluated in a mouse model of

cystitis. CYP-induced cystitis is a reliable, well-validated, and

extensively characterized model that reproduces the

neurochemical and functional changes and localized bladder

inflammation symptoms of IC/BPS (50, 65–67); of particular

relevance, mice appear to be more robust to systemic CYP

treatment than rats, exhibiting detrusor overactivity, increased

urinary frequency, and lower abdominal hyperalgesia without

dramatic alterations in physiological state, body temperature, or

weight (68), more closely modeling the chronic nature of IC/BPS.

However, we acknowledge that the 8-day model is more akin to

repeat acute inductions rather than a true chronic condition; there is

currently a paucity of chronic models for cystitis. Nonetheless, all

animal models have limitations that may limit therapeutic

translation of these results. Cross-validation in a number of

available alternative animal models such as other irritant-induced

cystitis models, stress models, and naturally occurring cystitis in cats

(67, 69), will provide additional evidence as to the role of

neurotrophin signaling in cystitis and other inflammatory

disorders of the bladder. Additionally, these studies were

conducted solely in female mice, which may leave sex differences

unaccounted for. IC/BPS disproportionately affects women over

men at a rate of 10:1 (70, 71); however, chronic prostatitis/pelvic

pain syndrome in men has considerable clinical overlap with IC/

BPS with recent suggestion that male IC/BPS may be under- and

misdiagnosed (72). Future studies will benefit from incorporating

male subjects. Finally, we did not investigate the effects of the

various inhibitors in combination, which may reveal synergistic

effects and allow for lower doses of each individual inhibitor to

achieve the same effect.

The present study demonstrates that p75NTR, TrkA, and

TrkB are potent therapeutic targets in the treatment of cystitis.

Pharmacological inhibition of all three receptors was associated

with strong improvement in LUT symptoms in the acute cystitis
Frontiers in Urology 09
condition. TrkA inhibition improved bladder function in the

chronic cystitis condition as well, while findings resulting from

p75NTR and TrkB inhibition provide further insight into the

roles of NGF and BDNF signaling in sustained conditions of

bladder inflammation.
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