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Posterior urethral valve in
children: Using novel
biomarkers as an early
predictive tool for the onset
and progression of chronic
kidney disease

Samuel N. Uwaezuoke1,2*, Chioma L. Odimegwu1,2,
Ngozi R. Mbanefo1,2 and Ikenna C. Eze3,4

1Department of Pediatrics, University of Nigeria Teaching Hospital, Enugu, Nigeria, 2College of
Medicine, University of Nigeria, Enugu, Nigeria, 3Department of Epidemiology and Public Health,
Swiss Tropical and Public Health Institute, Allschwil, Switzerland, 4Department of Public Health,
University of Basel, Basel, Switzerland
This narrative review aims to appraise the current evidence on using biomarkers

of obstructive nephropathy to predict the onset and progression of chronic

kidney disease (CKD) in infants with posterior urethral valves (PUV). PUV is the

most frequently reported congenital anomaly of the kidney and urinary tract

(CAKUT) associated with bladder outlet obstruction in male children. It

contributes significantly to the CKD burden in childhood. Despite different

approaches for its postnatal repair, evidence-based data still suggest a high

risk of CKD and end-stage kidney disease (ESKD) later in childhood. In obstructive

nephropathy, glomerular and tubulointerstitial lesions contribute to renal

impairment. Although it may be difficult to predict these adverse renal

outcomes in repaired PUV, detecting and monitoring future CKD appears

enhanced using the combination of serum creatinine- or cystatin C-based

estimated glomerular filtration rate (eGFR) and albuminuria. Given the

drawbacks of these conventional biomarkers, there is a paradigm shift to novel

biomarkers as tools for the early identification of glomerular and tubulointerstitial

lesions seen in obstructive nephropathy. Most novel biomarkers are yet to be

fully applied to routine clinical practice globally. Nevertheless, there is substantial

evidence showing that they form part of the emerging diagnostics for obstructive

nephropathy. From the reviewed studies, urine transforming growth factor-beta

1 (TGF-b1) is the most prominent biomarker among the novel biomarkers of

obstructive nephropathy. However, other novel approaches like the machine

learning (ML) model (a form of health-related artificial intelligence) and

urodynamic parameters like bladder contractility index hold promise for PUV

outcomes prediction (PUVOP). Because of the association of urine TGF-b1 with

urine angiotensin level (a biomarker of the renin-angiotensin-aldosterone

system [RAAS]), early angiotensin-converting enzyme inhibitor (ACEI) therapy
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in patients with PUV may potentially retard the progression of CKD and improve

renal outcomes. Thus, future research directions will be to explore the role of

ACEI as a pre-emptive treatment for poor renal outcomes in post valve-ablation

patients and to conduct longitudinal studies that would properly demonstrate

these biomarkers as predictors of these outcomes.
KEYWORDS

biomarkers of renal function, biomarkers of renal injury, chronic kidney disease,
endstage kidney disease, obstructive nephropathy, posterior urethral valve
Introduction

Posterior urethral valves (PUV) are the most frequently

reported congenital anomaly associated with bladder outlet

obstruction in male children (1, 2). The anomaly contributes

significantly to childhood chronic kidney disease (CKD) burden

(3). Reported clinical factors that predict poor renal outcomes in

patients with PUV consist of late age of presentation (after two

years of age), delayed fulguration (intervention after one month)

with high initial serum creatinine, failure of serum creatinine to

return to physiologic level after one-month post-fulguration (4),

and comorbidities like vesicoureteric reflux (VUR), urosepsis

and renal dysplasia (5). Other authors also reported late primary

valve ablation (intervention after the first year of life) as a risk

factor for CKD (6).

Previous systematic reviews indicate high CKD or end-stage

kidney disease (ESKD) risk even in postnatally-repaired cases of

PUV (7, 8). Nevertheless, early diagnosis and surgical

intervention remain the standard approach to its management.

In some developed settings, prenatal ultrasound diagnosis and

surgical intervention currently appear to be the norm (2, 9–11).

In developing countries, the principal treatment challenges

consist of late identification by caregivers and health

professionals and delayed access to healthcare facilities (12,

13). Early diagnosis of PUV is crucial in mitigating the adverse

renal outcomes associated with late identification. More

importantly, diagnostic methods should be non-invasive,

simple, and reliable enough to drive the early identification of

renal dysfunction. PUV-associated obstructive nephropathy

contributes to progressive deterioration of renal function,

which may end up with ESKD.

Because of the tedious steps involved in obtaining measured

glomerular filtration rate (mGFR), estimated glomerular

filtration rate (eGFR) based on serum creatinine or cystatin C

is widely utilized in assessing renal function. Several studies have

shown the diagnostic accuracy of serum creatinine in predicting

future renal outcomes in PUV patients after ablation. For
02
instance, a recent study suggests that the severity of CKD can

be predicted with precision using the nadir creatinine within six

weeks of ablation (14). Another study reported that patients with

post-ablation nadir creatinine above 0.85 mg/dl were at high risk

for subsequent CKD (15). Elevated nadir creatinine in the first

year of life is generally regarded as the best predictor of adverse

renal outcomes in these patients (7). Furthermore, creatinine-

based eGFR has been used with nadir creatinine to assess renal

outcomes in postnatally-repaired PUV after two years of age; the

authors noted an ESKD prevalence rate of 15% in these patients

(16). Other investigators used eGFR after ≥ 5 years and > 6 years

of follow-up and documented ESKD prevalence rates of 44% and

11.1%, respectively (17, 18). On the other hand, serum cystatin C

is a reliable marker of GFR in patients with mildly-to-

moderately deranged renal function; it has higher diagnostic

accuracy than serum creatinine (19). Using both serum

creatinine and cystatin C, however, has some disadvantages.

The accuracy of creatinine-based eGFR is limited by

demographic factors that influence the endogenous production

of creatinine, such as age, sex, race and body weight, and dietary

intake (20). Secondly, serum creatinine is only elevated when

renal function declines by about 50% (21). Besides, there is a

48-hour time lag between a sudden reduction in renal function

and the increase in serum creatinine. Finally, an elevated serum

creatinine level gives minimal information about the etiology

and nature of the renal injury. Conversely, eGFR based on

serum cystatin C appears more dependable because the

biomarker is unaffected by age, sex, muscle mass, and body

weight (22–24) and better reflects GFR than serum creatinine

(25). Also, elevated serum cystatin C levels can indicate renal

dysfunction early enough because of the biomarker’s

metabolism, filtration, and reabsorption kinetics. However,

body weight and lean mass are not correlated with serum

cystatin C levels (26). Obesity affects serum levels; thus,

formulas based on this biomarker overestimate GFR in

higher body mass index (27). The cost of its clinical

application is also a limiting factor to its conventional use.
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In obstructive nephropathy, glomerular and tubulointerstitial

lesions contribute to renal impairment. Although it may be

difficult to predict these renal outcomes in repaired PUV,

detecting and monitoring future CKD appears enhanced using

the combination of eGFR based on serum creatinine or cystatin C

and urine albumin (28). Albuminuria is the traditional biomarker

of renal injury and precedes any reduction in GFR. But

albuminuria can only occur following significant renal injury

and not in tubulointerstitial disease. Given that cystatin C is

physiologically undetectable in urine because of its complete

tubular reabsorption, raised urine cystatin C level occurs in the

tubulointerstitial lesion (29). Thus, urine cystatin C and other

novel biomarkers have become a focus of scientific searchlight

aimed at discovering alternative reliable tools for either predicting

or diagnosing obstructive nephropathy related to PUV. Novel

biomarkers are now well documented as useful tools in the early

identification of glomerular and tubulointerstitial lesions seen in

CKD (30). Although these biomarkers are more sensitive and

specific than the traditional biomarkers (serum creatinine, serum

cystatin C, and albuminuria), their diagnostic value for CKD

appears augmented when used in combination or in panel form.

In this narrative review, we aim to appraise the current evidence

on using biomarkers of obstructive nephropathy to predict the

onset and progression of CKD in patients with PUV.
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Pathophysiology of obstructive
nephropathy

As bladder outlet obstruction from PUV persists, this

structural hindrance to normal urine flow (obstructive

uropathy) will lead to sequential involvement of the upper

urinary tract and renal parenchyma, leading to renal

dysfunction (obstructive nephropathy). The intra-vesical

pressure that builds up and the effect of the thickened bladder

wall on the intramural portion of the ureter disrupts the

functional integrity of the vesicoureteric valves, causing

retrograde urine flow into the ureters. Besides ureteric

hypertrophy, intra-ureteric pressures are elevated, resulting in

hydro-ureters and hydronephrosis (Figure 1).

Subsequently, dilatation of the collecting ducts and distal

tubules is accompanied by urinary stasis, predisposing to

recurrent urosepsis. Urinary stasis, recurrent urosepsis, and

high intraluminal pressure synergistically damage the renal

parenchyma leading to kidney scars. Hypertension and

proteinuria resulting from obstructive nephropathy contribute

to the onset of CKD. Renal scarring is also a cause of

hypertension. Glomerular hyperfiltration is mechanistically

associated with proteinuria. On the other hand, obstructive

uropathy results in significant tubular injury (tubulopathy).
FIGURE 1

Pathophysiologic mechanisms involved in PUV-related obstructive uropathy and nephropathy with sites of expression of some candidate
biomarkers. CKD, chronic kidney disease ESKD, end-stage kidney disease PUV, posterior urethral valve UTI, urinary tract infection TGFb,
transforming growth factor-beta a-SMA, a-smooth muscle actin L1CAM, L1 cell adhesion molecule AQP2, aquaporin-2.
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Poor urinary concentration (hyposthenuria) and inadequate

urinary acidification are the significant sequelae that may

manifest as polyuria, nocturia, and metabolic acidosis.

The sequence of events related to uncorrected PUV shows

that tubulopathy precedes glomerulopathy (the hallmark of

CKD). Thus, novel biomarkers associated with tubular and

glomerular injuries may play a role in predicting obstructive

nephropathy in patients with congenital lower urinary tract

obstruction (LUTO). More importantly, novel urine

b iomarkers can serve as too l s for d iagnos i s and

prognostication. Their utility in various forms of CKD has

been extensively documented (31–34). For instance, some

investigators had previously reported differential expression of

candidate proteins in the tissues of obstructed and non-

obstructed fetal kidneys using fetal non-human primate model

of unilateral ureteric obstruction that focused on the role of

medullary collecting duct changes (35); the epithelial-

mesenchymal transition (EMT) of obstructed fetal collecting

duct epithelium, associated with expression of these biomarkers,

was subsequently demonstrated in human subjects (36). They

noted increased expression of N-cadherin, L1 cell adhesion

molecule (L1CAM), and aquaporin-2 (AQP2) from the

collecting duct, as well as mesenchymal proteins like vimentin

and a-smooth muscle actin (a-SMA) from the renal

interstitium, and fibrosis-linked cytokines like TGFb from the

tubular epithelium and adjacent renal interstitium (Figure 1).

Increased expression of vimentin and a-SMA mirrors EMT and

recruitment of myofibroblasts, respectively. These processes

mainly occur in renal fibrosis that follows obstructive

nephropathy. Notably, elevated urine TGF-b1 has been

demonstrated by other investigators as a biomarker of

obstructive uropathy in children (37).
Novel biomarkers of obstructive
nephropathy

As previously mentioned, comorbid prognostic factors may

determine the future renal function in patients with PUV. Firstly,

some studies indicate that subsequent renal outcomes are related to

bladder dysfunction (17, 38–40). Patients with PUV develop

fibrosis of the detrusor muscle leading to reduced bladder

compliance and instability; poor bladder emptying, urinary stasis,

and recurrent urinary tract infection (UTI) are the consequences

(41). Because bladder dysfunction is associated with long-term

morbidity despite valve ablation or fulguration, some authors

recommend early commencement of anticholinergic therapy and

time-determined voiding to manage the bladder dysfunction in

these patients (42). Also, other authors had previously reported a

bladder-dysfunction prevalence rate of as high as 75% despite a

successful primary valve ablation (43). It is not surprising that a

recent study has recommended that the bladder contractility index

from a well-conducted urodynamic study could serve as a reliable
Frontiers in Urology 04
tool for prognostication in PUV (44). Secondly, VUR is recognized

as a significant prognostic factor in children with PUV as its

persistence is associated with a poor renal outcome (45). However,

there is no unanimity yet on its prognostic role based on the

discordant findings from most studies (17, 39, 46, 47). Finally,

postnatal comorbidity such as renal dysplasia/hypoplasia has been

reported to predict future renal outcomes in PUV (5, 48, 49).

Activating the renin-angiotensin-aldosterone-system (RAAS) is

most likely to play a fundamental role as the pathogenic

pathway. This hypothesis is supported by the fact that initial and

subsequent plasma renin activity (PRA) levels constitute a

significant predictor of final renal outcome in PUV (46).

Despite the direct correlation between renal-structural

injury and renal dysfunction in patients with obstructive

nephropathy, there are few investigations that can predict

those who will progress to CKD and ESKD. Besides imaging

studies for prenatal and postnatal diagnosis of PUV, evaluating

the extent of renal injury in these patients appears more

cumbersome. Thus, several researchers have assessed the

utilization of urine-based surrogate markers of renal damage

as indicators of obstructive nephropathy (37, 50–53).

In a cohort study involving twenty-seven prevalent case

patients with PUV (aged 1-18 years) and twenty age-matched

controls, the investigators estimated the urinary excretion of

candidate biomarkers (using whole-urine and urine exosome

samples). They tried to correlate their urinary levels with GFR

(37). They also evaluated the performance of these biomarkers as

tests for reduced GFR using receiver-operating characteristic

(ROC) curve and regression analyses. Interestingly, the median

urine protein-to-creatinine ratio was higher in PUV patients

than in controls and indirectly correlated with renal function.

Furthermore, a significant reduction in AQP2 excretion and an

increase in TGFb and L1CAM excretion in whole urine

occurred. Whole-urine TGFb, L1CAM, and urine protein-to-

creatinine ratio exhibited the best performance as tests for

reduced eGFR, with areas under ROC curves of 0.788, 0.795,

and 0.814, respectively. Specifically, higher TGF-b1 levels were

associated with reduced GFR in the PUV patients based on

linear regression analysis. This observation is in tandem with the

findings of other authors who evaluated the usefulness of TGFb
as a surrogate marker for differentiating obstructive uropathy

from non-obstructive uropathy in children (50, 52), although

another study showed no correlation between urinary TGF-b1
excretion and eGFR (51). Additionally, it was noted that urine

TGF-b1 levels directly correlated with proteinuria and urine a1-
microglobulin in children with obstructive uropathy (50). TGF-

b1 belongs to the TGFb superfamily of cytokines and modulates

cell growth, proliferation, differentiation, and apoptosis. The

biomarker is the major fibrogenic growth factor or profibrotic

inflammatory mediator encoded by the TGFB1 gene in man

(54). On the other hand, urine a1-microglobulin is a radical

scavenger as it protects cells and tissues against free hemoglobin-

or oxidative stress-induced injury (55). This biomarker has also
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been used to indicate proteinuria (56). Therefore, the positive

correlation of urine TGF-b1 with urine a1-microglobulin (as a

surrogate marker of proteinuria) further underscores the ability

of the former to indicate glomerular lesions arising from PUV-

related obstructive nephropathy.

To further demonstrate increased renal expression of TGF-b1
in obstructive uropathy, another group of investigators examined

fourteen children with PUV and sixteen healthy children without

PUV who served as controls (57). They measured the total urine

TGF-b1 level, expressed as a ratio to urine creatinine level.

Although their results showed significantly greater excretion of

the candidate biomarker in PUV patients’ urine than in their

healthy controls, there was no correlation between urine TGF-b1
excretion and eGFR. However, the observation that TGF-b1 did

not correlate with eGFR is at variance with the previous report that

showed a direct relationship between urine TGFb and reduced

GFR (37). Despite this disparity in findings, the authors concluded

that TGF-b1 might contribute to progressive CKD in patients with

PUV: given its pathogenetic role in renal fibrosis (57).

Again, other researchers conducted a study of thirty patients

with PUV in whom they estimated the pre-operative (pre-

ablation) and post-operative (post-ablation) urinary cytokines

such as TGF-b1 and tumor necrosis factor-a (TNF-a),
interleukin-6 (IL-6) levels and microalbuminuria (52). They also

sought to investigate the therapeutic role of angiotensin-

converting enzyme inhibitors (ACEI) on adverse renal

outcomes. Whereas urinary TGF-b1, TNF-a, and microalbumin

levels were elevated in these patients, their post-operative levels

declined significantly and continued for one year. Notably, the

introduction of ACEI resulted in a substantial decline in urine

TGF-b1 and microalbuminuria and improvement in GFR. Their

findings also indicate the potential benefits of ACEI in retarding

renal insufficiency in patients with PUV.

In a more recent prospective cohort study, the authors

compared the changes in pre-ablation and post-ablation levels

of urine TGF-b1 and monocyte chemoattractant protein-1

(MCP-1) in twenty children with PUV with the same

parameters in their age-matched controls without the renal

disease (53). Regarding the patients with PUV, the levels of

these biomarkers declined after valve ablation. The differences in

the pre-ablation and post-ablation median urine MCP-1 levels

were significant on the follow-up timelines of the first, third, and

sixth months after surgery. On the other hand, the authors found

that the post-ablation median urine TGF-b1 level significantly

reduced only six months after surgery. MCP-1 has multiple

extra-renal production sites (monocytes, macrophages, and

dendritic cells) and is grouped as a biomarker of inflammation

and a glomerular biomarker. It is not surprising that any relief in

the obstructive lesion of the urinary tract will easily affect its

urinary level.

The sources and potential uses of the biomarkers have been

highlighted in Table 1. The novel biomarkers proven as

predictors of obstructive nephropathy comprise TGF-b1,
Frontiers in Urology 05
L1CAM, AQP2, N-cadherin, TNF-a, IL-6, MCP-1, vimentin,

and a-SMA. Among these listed biomarkers, TGF-b1 stands out
as the most consistent predictor of renal injury and renal

insufficiency as it is the commonest isoform of the TGFb
family in the immune system. It is a major pleiotropic

cytokine with strong immuno-regulatory characteristics (33).

This pro-inflammatory and fibrogenic cytokine has also been

used in predicting disease progression in HIV infection and

diabetic nephropathy (58).
Improving prediction of obstructive
nephropathy: A look at some tubular
biomarkers

Novel biomarkers are important in tracing the trajectory of

CKD in patients with obstructive uropathy. Fortunately, the

measurement of urine biomarkers is non-invasive and

straightforward. Given that tubulopathy and glomerulopathy

are the significant structural lesions in obstructive nephropathy,

urine tubular biomarkers should form part of the biomarker

panel for predicting this adverse renal outcome.

Firstly, urine cystatin C is a typical example of such tubular

biomarkers. Cystatin C is produced by all nucleated cells in the

body. It is freely filtered by the glomerulus and reabsorbed by the

tubules, where it is almost wholly catabolized. The un-catabolized

fraction is subsequently excreted in the urine. Thus, cystatin C

breakdown is decreased in renal tubular diseases with an

accompanying increase in urinary excretion. In an assay of

freshly obtained urine samples of fifty-two patients with renal

tubular disease, forty-seven patients with glomerular disease, and

sixty normal controls, the investigators found that the mean urine

cystatin C levels of the patients with tubulopathy were significantly

higher than the levels in the controls and the patients with

glomerulopathy (29). Additionally, serum and urine cystatin C

have been reported as early predictors of diabetic nephropathy in

type 2 diabetes mellitus (59), whereas urine cystatin C predicted the

progression of diabetic kidney disease (60). Because of its precision

in predicting tubular dysfunction in nephropathies, the urine

cystatin C assay is an adjunct to the standard biomarker panel

for screening renal diseases.

Secondly, urine a1-microglobulin (previously mentioned as a

surrogate marker of proteinuria) shares similar kinetic properties

with cystatin C. Both pass through the physiologic processes of

glomerular filtration and tubular reabsorption. More importantly,

urine a1-microglobulin level was increased in type 2 diabetes-

mellitus patients with normoalbuminuria before the onset of

microalbuminuria, making the tubular biomarker an earlier

predictor of CKD in diabetic nephropathy (61, 62). This

diagnostic property may equally apply to obstructive nephropathy.

Thirdly, urine neutrophil gelatinase-associated lipocalin

(NGAL) is an established tubular biomarker expressed by
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tubular epithelial cells following tubulointerstitial injury (63).

The biomarker levels showed a significant negative correlation

with serum creatinine levels and eGFR (64, 65) and predicted the

worsening of CKD (66–69). Besides, several studies have

reported that urine NGAL levels were elevated in different

forms of CKD (65–70).

Finally, urine levels of N-acetyl-b-D glucosaminidase (NAG)

have been noted as predictors of early and late stages of CKD

related to diabetes mellitus (71–73). The urine level of this tubular

biomarker has also been adjudged reliable in detecting tubular

injury related to proteinuria seen in the early stage of specific

subtypes of idiopathic glomerulonephritis (71). These findings

suggest that urine NAG is a predictor of the onset and

progression of CKD. Interestingly, the baseline urine levels of

this biomarker either predicted microalbuminuria and

macroalbuminuria (72) or preceded microalbuminuria in

diabetes mellitus patients (73). Thus, NAG also appears to be an

early predictor of glomerulopathy. These published data about

tubular biomarkers emphasize their ability to predict tubulopathy

and glomerulopathy in other types of CKD. When these

biomarkers are used in synergy with the established biomarkers

of obstructive nephropathy, the detection of renal injury and

dysfunction associated with PUV may be improved.
Frontiers in Urology 06
Enhanced prediction of obstructive
nephropathy: Novel approaches and
proposed panels of biomarkers

Obstructive nephropathy is an evolving disease where renal

injury continues even after valve ablation or fulguration

interventions. It is trite to mention that chronic obstruction due

to PUV triggers tubulointerstitial injury arising from the activation

of distinct pathophysiologic pathways. As the tubulointerstitial

injury progresses, chronic renal injury comprising tubular atrophy,

inflammatory cell infiltration, and interstitial fibrosis occurs. The

timing of surgical intervention appears crucial in predicting long-

term adverse renal outcomes. Thus, three novel biomarkers - urine

epidermal growth factor (EGF)/MCP-1 ratio, urine NGAL, and

urine kidney injury molecule-1 (KIM-1) - have been proposed as

useful early biomarkers of progressive renal injury and could have

a potential role in predicting long-term renal outcome in PUV

(74). Reports show that ureteral obstruction leads to a significantly

increased MCP-1 expression and a decreased EGF expression by

renal tubular cells (75, 76). Whereas renal expression and urine

excretion of MCP-1 are linked to tubular injury and the degree of

monocyte infiltration, expression of EGF modulates tubular cell

growth and tissue response to renal injury with a tubulointerstitial
Table 1 Novel biomarkers for predicting obstructive nephropathy: Summary of current potential uses.

Novel biomarkers Sources/expression sites Current potential uses as disease markers

TGF-b1 -Most immune cells†

-Endothelial cells
-Fibroblasts
-Platelets

-Marker of renal dysfunction and injury in obstructive uropathy*
-Marker of diabetic nephropathy*
-Prediction of disease progression in HIV-infected patients‡

L1CAM -Neurons
-Cancer cells
-Non-neuronal cells

-Marker of tumor progression and metastasis‡

-Marker of obstructive nephropathy*

TNF-a (cachectin) -Macrophages
-Mast cells
-Lymphoid cells
-Endothelial cells

-Marker of obstructive uropathy*

AQP2 -Renal collecting duct epithelial cells -Marker of obstructive uropathy§ *

N-cadherin -Several tissues in the body (helps to maintain cell-cell
adhesion)

-Marker of obstructive nephropathy*

IL-6 -Macrophages
-Osteoblasts
-Vascular smooth muscle cells

-Marker of acute pyelonephritis*‡

-Marker for severe COVID-19 infection‡

-Marker for obstructive uropathy*

MCP-1 -Monocytes
-Macrophages
-Neurons (dendritic cells)

-Marker of psoriasis, rheumatoid arthritis, and atherosclerosis‡

-Marker of neurodegenerative diseases‡

-Marker of glomerular dysfunction*

a-SMA -Smooth muscle cells
-Renal interstitial cells

-Marker of myofibroblasts formation‡

-Marker of renal fibrosis seen in obstructive nephropathy*

Vimentin -Mesenchymal cells -Marker of EMT in cells like in renal fibrosis seen in obstructive
nephropathy*
TGF-b1, transforming growth factor-beta 1 L1CAM, L1 cell adhesion molecule TNF-a, tumor necrosis factor-a, AQP2, aquaporin-2 IL-6, interleukin-6 MCP-1, monocyte chemoattractant
protein-1 a-SMA, a-smooth muscle actin HIV, human-immunodeficiency virus EMT, epithelial-to-mesenchymal transition.
†E.g. macrophages, B lymphocytes, T lymphocytes, and mast cells.
*Urine biomarker level is used.
‡Serum biomarker level is used.
§Reduced urinary level is seen.
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lesion (77, 78). Thus, a reduced urine EGF/MCP-1 ratio has been

suggested as a marker of acute and chronic renal injury in

obstructive nephropathy (79, 80). KIM-1 is expressed and

released by injured epithelial cells of the proximal tubule, making

urine KIM-1 a reliable biomarker of tubular injury (81). A study

that assessed its role in obstructive nephropathy found a

significantly higher urine KIM-1 in children with severe

hydronephrosis secondary to ureteropelvic junction obstruction

than in the control group (82).

Furthermore, new frontiers in the early prediction of renal

outcomes in PUV have been explored using artificial intelligence

(AI) in healthcare. Health-related AI applications potentially focus

on diagnostics, personalized medicine, and patient monitoring

using machine learning (ML) models. In a recent study based on

this novel approach, some authors used ML to predict clinically

relevant outcomes in PUV patients (83). They developed a ML

model for predicting clinically relevant outcomes such as

progression in CKD stage, initiation of kidney replacement

therapy (KRT), and need for clean-intermittent catheterization in

one hundred and three patients with PUV. Additionally, the

authors evaluated model performance by concordance index (c-

index) and externally validated it. Interestingly, they found that the

MLmodel predicted CKDprogression (c-index = 0.77; external C-

index = 0.78), KRT (c-index = 0.95; external C-index = 0.89) and

indicated clean-intermittent catheterization (c-index = 0.70;

external C-index = 0.64), with all performing better than Cox

proportional-hazards regression (83).

In a recent study, some urodynamic parameters (such as

bladder-contractility index, bladder-outlet obstruction index,

end-filling pressure, bladder compliance, and bladder-volume

efficiency) were correlated with progression to late stages of CKD

in PUV patients after valve fulguration (44). The authors applied

Cox regression analysis to risk factors predicting the

development of late stages of CKD. They found that bladder

contractility index, end filling pressure, and bladder compliance
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were significantly associated with the study endpoint.

Specifically, the ROC cut-off level for bladder contractility

index predicting the primary endpoint showed a modest

diagnostic performance, with a sensitivity of 78.2% and

specificity of 62.5% (44). Thus, the bladder contractility index

was adjudged a valuable tool for early detection of PUV patients

at risk of progression to stages of CKD.

Nevertheless, the sensitivity and specificity of novel biomarkers

for obstructive nephropathy may be enhanced when used as a

panel. Combining biomarkers’ complimentary performance rather

than a single biomarker’s performance in CKD diagnostics is

essential for diagnostic precision. A recent longitudinal

prospective study analyzed two serum renal biomarkers (serum

creatinine and serum cystatin C) and six urinary renal biomarkers

(NGAL, KIM-1, TGF-b1, retinol-binding protein [RBP], urine

cystatin C and microalbuminuria) to determine detection of

early renal injury in a cohort thirty seven infants with congenital

urinary tract obstruction (84). The patients were categorized into

three subgroups of those with unilateral hydro (uretero) nephrosis,

bilateral hydro (uretero) nephrosis and LUTOwho were compared

with twenty four healthy infants. The authors found that best

biomarker combination results for the three subgroups were

obtained by matching RBP with TGF-ß1 or KIM-1 and NGAL

with cystatin C, with a sensitivity and specificity of about 92.4%

and 92.8%, respectively. A panel of these biomarkers (RBP, NGAL,

KIM-1, TGF-b1, and cystatin C) were therefore recommended as

highly efficient in predicting renal injury in surgically-amenable

congenital obstructive uropathy (84). Similarly, serum NGAL and

KIM-1 have been adjudged useful in potentially guiding the

decision for surgical intervention in infants with antenatal

hydronephrosis due to congenital obstructive uropathy (85).

Based on the present review, we therefore propose a panel of

biomarkers which can potentially enhance the early diagnosis of

obstructive nephropathy (Figure 2). Given that TGF-b1 appears to
be the most consistent urinary biomarker of obstructive
FIGURE 2

Proposed panel of biomarkers to enhance early diagnosis of obstructive nephropathy. TGF-b1, transforming growth factor-beta 1 NGAL,
neutrophil gelatinase-associated lipocalin NAG, N-acetyl-b-D glucosaminidase a-1 M, a1-microglobulin.
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nephropathy, it can be augmented by serum/urine cystatin C,

urine a1-microglobulin, urine NAG and urine NGAL. Whereas

elevated urine TGF-b1 is an indicator of obstructive uropathy, it

also correlates directly with urine a1-microglobulin (a surrogate

marker of proteinuria). Increased serum cystatin C level would

suggest a deterioration in glomerular filtration, while increased

urine cystatin C level would signify a tubulopathy. These renal

outcomes constitute the significant sequelae of PUV in children.

Besides the role of NGAL as a predictor of a tubulointerstitial

lesion, the indirect correlation of its urinary level with eGFR

suggests its potential precision in detecting obstructive

nephropathy. Finally, inclusion of NAG in the panel is

predicated on the fact that it is an early predictor of

tubulopathy and glomerulopathy. We excluded urinary cytokine

(TNF-a, IL-6) levels from this proposed panel because they were

not dependable as a screening test for clinically significant

nephrouropathies (53). One study rather revealed an improved

diagnostic performance of TNF-a for the early detection of

concurrent renal injury in patients with PUV when used

together with urine TGF-b1 and microalbuminuria (51).
Conclusion

Although most novel biomarkers are yet to be fully applied to

routine clinical practice globally, there is substantial evidence

showing that they form part of the emerging diagnostics for PUV-

related CKD. Biomarkers of obstructive nephropathy are now well

documented. Published reports indicate that raised urine levels of

these biomarkers are associatedwithadverse renal outcomes inPUV.

Additionally, their increased urine levels correlate well with reduced

eGFR andmicroalbuminuria (amarker of glomerular injury). Urine

TGF-b1 is themostprominent andconsistent among thebiomarkers

of obstructive nephropathy. However, other novel approaches like

the ML model (a form of health-related AI) and urodynamic
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parameters like bladder contractility index hold promise for PUV

outcomes prediction (PUVOP). Because of the association of urine

TGF-b1 with urine angiotensin level (a biomarker of the RAAS),

early ACEI therapy in patients with PUVmay potentially retard the

progression of renal injury and improve renal outcomes. Thus, we

suggest that further research directions should include conducting

longitudinal studies that would properly demonstrate these

biomarkers as predictors of future adverse renal outcomes.

Secondly, it is important to explore the role of ACEI as a pre-

emptive treatment for theseoutcomes inpostvalve- ablationpatients.
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