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The advent of sensitive enhanced culture (metaculturomic) and culture-

independent DNA-based (metagenomic) methods has revealed a rich

collection of microbial species that inhabit the human urinary tract. Known as

the urinary microbiome, this community of microbes consists of hundreds of

distinct species that range across the entire phylogenetic spectrum. This new

knowledge clashes with standard clinical microbiology laboratory methods,

established more than 60 years ago, that focus attention on a relatively small

subset of universally acknowledged uropathogens. Increasing reports support

the hypothesis that this focus is too narrow. Single uropathogen reports are

common in women with recurrent urinary tract infection (UTI), although wider

disruption of their urinary microbiome is likely. Typical “UTI” symptoms occur in

patients with “no growth” reported from standard culture and sometimes

antibiotics improve these symptoms. Metaculturomic and metagenomic

methods have repeatedly detected fastidious, slow growing, and/or anaerobic

microbes that are not detected by the standard test in urine samples of patients

with lower urinary tract symptoms. Many of these microbes are also detected in

serious non-urinary tract infections, providing evidence that they can be

opportunistic pathogens. In this review, we present a set of poorly understood,

emerging, and suspected uropathogens. The goal is to stimulate research into

the biology of these microbes with a focus on their life as commensals and their

transition into pathogens
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Introduction

More than a decade ago, reports began surfacing that challenged

the prevailing dogma that urine was typically sterile in the absence of

infection (1–10). These studies used high-throughput DNA

sequencing (metagenomics) and/or enhanced culture methods

(metaculturomics) coupled with matrix-assisted laser desorption/

ionization-time of flight (MALDI-TOF) mass spectroscopy (MS) to

detect and identify bacteria in urine samples obtained from diverse

sets of study participants. These modern sensitive detection methods

documented the presence of microbes in urines deemed “no growth”

by the traditional or standard urine culture methodologies used by

most clinical microbiological laboratories and highlighted the

presence of microbes not typically acknowledged as uropathogens

(11, 12). These studies and others have resulted in a list of hundreds

of taxa. A few taxa are prevalent in individuals without lower urinary

tract symptoms. Many more taxa are present in asymptomatic

individuals but are more prevalent in those with symptoms

(Table 1, Appendix 1), including those typically associated with

urinary tract infection (UTI) and urgency urinary incontinence

(UUI), among others (9, 10, 13–21). For a recent review, see (22).
Statement of purpose

The purpose of this review is to highlight a set of poorly

understood, emerging, and suspected uropathogens. The intent is

to generate momentum for prospective and retrospective studies to

identify risk factors and improve antibiotic surveillance, especially

for those species that have no Clinical and Laboratory Standards

Institute (CLSI) standards. We also wish to encourage

investigations into the pathophysiology of these microbes. Thus,

with a few exceptions, this review will focus on these lesser-known

microbes, including members of the families Aerococcaceae,

Actinomycetaceae, and Bifidobacteriaceae. Also discussed will be

members of the Streptococcus anginosus group (SAG) and

Enterococcus faecalis. While SAG members have long been

considered to be commensals, increasing evidence supports the

conclusion that they are more likely opportunistic pathogens (23).

Although long accepted as a pathogen, the comparatively well-

studied E. faecalis has become increasingly implicated in urinary

tract disorders and its pathophysiology within the urinary tract

remains understudied (24).

Other species we will review are anaerobes, specifically members

of the orders Eubacteriales and Bacteroidales. Traditionally,

anaerobes have not been considered to be uropathogenic (25, 26).

However, in this age of metagenomics, metaculturomics, and

MALDI-TOF identification, this dogma is being reexamined (27).

The concept that oxygen is toxic to obligate anaerobes (28) does not

account for the strategies these microbes use to survive and flourish in

human organ niches (29, 30), including the urinary tract.

Of organisms reviewed here, some are aerobes, some are

facultative anaerobes, and some are strict anaerobes. Many are

fastidious. As such, classical clinical laboratory diagnosis using

standard urine culture (SUC) methods would not detect most of

these potential uropathogens in the time frame or atmospheric
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conditions of the assay (12, 31). In contrast, all taxa reviewed herein

have been detected by metagenomic approaches, including 16S

rRNA gene sequencing and shotgun metagenomic sequencing (9,

10, 14, 15, 18, 19, 32–34), and/or metaculturomic methods, such as

Expanded Quantitative Urine Culture (8, 12, 21) (Table 1). Despite

the discovery of some of these microbes as much as a century ago,

little is known about their biology.

Since much has been written about the most commonly accepted

and best studied uropathogens, including members of the family

Enterobacteriaceae (e.g., the genera Escherichia, Klebsiella,

Enterobacter, and Proteus), and Gram-negative saprophytes

(Pseudomonas aeruginosa and Acinetobacter baumannii), we will

discuss them only briefly (35). The same is true for the better-known

member(s) of the streptococci (S. agalactiae), the coagulase-positive

staphylococi (S. aureus), and the coagulase-negative staphyococci (S.

saprophyticus, S. epidermidis, and S. haemolyticus), as well as the yeast

genus Candida (C. albicans). We will not review the best-known

anaerobes, including but not limited to the genera Porphyromonas,

Sneathia, and Peptoniphilus. Finally, some urinary microbes have no

cell wall, most notably Mycoplasma and Ureaplasma (36). While

specialized techniques exist for the culture of these microbes (27, 37,

38) and rapidmolecular diagnoses have been reported for both (39), we

will not review these organisms here. For recent reviews on the taxa

mentioned above, see (24, 40–46).
Commensals versus pathogens

The standard approach to treating UTI is based on Koch’s

postulates, which assumes a single organism is responsible for

pathogenicity, that this organism can be isolated from the diseased

tissue/fluid, be able to reproduce the disease state in a healthy

experimental system and be recovered afterward in pure culture

(47). This highly successful approach was responsible for the

elucidation of the bacterial pathogens of nineteen different diseases

from 1877 to 1906 including anthrax, bubonic plague, cholera,

diphtheria, pediatric diarrhea, bacterial pneumonia, gonorrhea,

syphilis, tuberculosis, typhoid fever, and whooping cough (47).

However, the discovery of the human microbiome and existence of

eubiotic states within human tissues such as the dermis, and the

respiratory, gastrointestinal, and urogenital tracts caused a rethinking

of the roles played by bacteria in health and disease (48, 49).

An initial cataloging of human urinary bladder isolates revealed

149 distinct species ranging from aerobes and microaerobes to

facultative anaerobes and anaerobes (50). While all these microbes

can be identified by DNA-dependent methods, most are not

culturable or grow poorly under standard urine culture

conditions, while others overgrow because they possess adaptive

advantages (12). This is particularly true for facultative anaerobes

and is consistent with the genera Escherichia, Pseudomonas,

Klebsiella, Proteus, Staphylococcus, and Enterococcus being among

“The Usual Suspects” and common to standard urine culture

diagnoses (29, 51). Microbes within the microbiome can be

grouped into six different classes: non-pathogen (not causing

disease), a pathogen (causing disease), a commensal (tissue

resident, benefiting the host) a symbiont (tissue resident,
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benefiting the host and is benefited from the host), a colonizer

(tissue resident and may or may not be disease causing) and a

pathobiont (tissue resident, generally beneficial but can cause

disease under special conditions) (52).

To understand microbial communities, one must first isolate

and characterize each of the individual species. Establishing the

commensal status of a species is much more difficult than reporting

pathogen case reports in tissues. Consequently, many of the reports

in the literature regarding the species reviewed here are pathological

reports from abscesses, blood cultures, or other disease states. The

science of understanding the interactions in a microbial community

between the six types of microbes mentioned above is in its infancy

(52, 53). While reports of infections in tissues other than the urinary

tract provide only a worst-case capability of the capacity of these

species to cause or contribute to disease, it emphasizes the major

thrust of this review - to study these species in context and to begin

to understand their interaction within communities.
Commonly accepted uropathogens

Approximately 150 million people worldwide are diagnosed each

year with UTIs (54). These infections are thought to be caused by

uropathogenic bacteria, including but not limited to members of the

genera Escherichia, Pseudomonas, Klebsiella, Proteus, Staphylococcus,

and Enterococcus (51). Note that many of these species are in the

World Health Organization’s ESKAPE list of critical pathogens (55).

Escherichia coli is considered to be the most common cause of UTIs.

Other bacterial species that are commonly associated with UTI-like

symptoms include Pseudomonas aeruginosa, Klebsiella pneumoniae,

K. oxytoca, Enterococcus faecalis, E. faecium, Proteus mirabilis,

Proteus vulgaris, Staphylococcus aureus, and S. saprophyticus. The

yeast species Candida albicans also can cause UTI-like symptoms (56,

57). For example, a study of 727 hospitalized urological patients

diagnosed with nosocomial acquired UTI reported the most

commonly pathogens detected by SUC to be E. coli (31%), followed

by species of the genera Pseudomonas (13%), Enterococcus (10%),

Klebsiella (10%), Enterobacter (6%) and Proteus (6%) (58). These taxa

are all fast growing, non-fastidious, and able to thrive in the presence

of ambient oxygen (PO2 150mmHg, 20kPa) (29, 59), characteristics

that facilitate detection by SUC (60). Other microbes that are easily

detected by SUC include additional members of the Gram-negative

family Enterobacteriaceae, such as the genera Serratia, Citrobacter,

Morganella, Providencia, and Pantoea. All have the capacity to be

pathogenic, but these genera are detected quite rarely. For example, in

a re-examination of several of our previous studies (21), they were

each detected in the catheterized (bladder) urine of less than 0.1% of

adult females (n=1007) and were rare even in those with UTI-like

symptoms (Table 1).
Saprophytes and other
environmental pathogens

Saprophytes are organisms that obtain their nutrients from

decaying organic material. As such, they tend not to be obligate
Frontiers in Urology 03
infectious agents of humans. However, they can be opportunistic

pathogens, causing wound and nosocomial infections, primarily in

immunocompromised individuals. A recent systematic review

found saprophytic bacteria to be implicated in hundreds of

infections in dozens of countries (42); 5% were UTIs. Most

affected individuals had comorbidities and the most common

species detected were Pantoea aglomerans, Klebsiella (formerly

Enterobacter) aerogenes, and Pseudomonas putida. The authors

warn that saprophytes such as these may become more common

in healthcare settings like other opportunistic environmental Gram-

negative bacteria, especially Acinetobacter baumannii and P.

aeruginosa (42).

A. baumannii and P. aeruginosa may cause nosocomial

infections, including nosocomial-acquired UTIs, especially in frail

or immunocompromised individuals (61). The World Health

Organization considers both priority-1 (critical) pathogens

because of their tendency to be resistant to carbapenems and

third generation cephalosporins, which are considered to be last

resort antibiotics (55, 62). Multi-drug resistance and their biofilm-

forming capacity makes these infections difficult to treat with

antibiotic therapy (63). Whereas efforts to understand P.

aeruginosa and A. baumannii pathophysiology have been

extensive, uropathogenic strains remain understudied (42, 63–67).
Fungi

Fungal UTIs are generally caused by members of the genus

Candida (68). Of these, the best known and most common UTI-

associated species is C. albicans. Other species include C. glabrata,

C. parapsilosis, and C. auris. The latter is an emerging pathogen

associated with UTIs that the CDC has added to its surveillance list

because it tends to be multidrug resistant, is difficult to detect using

standard clinical laboratory methodology, and has caused multiple

outbreaks in healthcare settings (69–71). Diabetes, catheterization,

hospitalization, and broad-spectrum antibiotics are risk factors for

Candida infections (72). Azole antifungals are the most common

treatment for symptomatic infections; however, increasing

resistance has been observed in clinical isolates. Wider

surveillance studies are severely needed (73).

The diagnostic criteria for detecting Candida in urine samples

are not standardized with continuing debate about reporting

thresholds (74, 75). More problematically, typical clinical

laboratory methods of detection have poor sensitivity for Candida

species, even C. albicans. Several prospective studies that cultured

urine on the standard fungal medium, Sabouraud dextrose agar,

have reported greater numbers of non-C. albicans species than

standard urine culture methods (75–77). Thus, Candida species are

often not detected by standard clinical laboratory testing and

consequently are underreported.
The genus Staphylococcus

The genus Staphylococcus is comprised of more than 40 species

of Gram-positive, facultative anaerobic cocci (78–80). From a
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clinical microbiological diagnostic point, the genus can be divided

by coagulase activity (conversion of fibrinogen to fibrin). The most

common coagulase-positive Staphylococcus is S. aureus, a

commensal skin and upper respiratory tract coccus known to be a

potent, antibiotic-resistant opportunistic pathogen that can cause

diverse infections, especially skin and soft tissue infections and toxic

shock syndrome (80, 81). As such, surveillance for this uropathogen

is high. In our re-examination of isolates obtained from catheterized

bladder urine samples of ~1000 adult females (21), S. aureus, the

most common coagulase-positive Staphylococcus, was detected in

urine but it was not prevalent (Table 1).

In contrast, coagulase-negative staphylococci (CoNS) are often

dismissed as contaminants (80, 82–84). As opportunistic pathogens

in the urinary tract, CoNS are associated with UTIs, uncomplicated,

catheter-associated, and nosocomial (82, 85–88). The ability for this

genus to acquire antibiotic resistance makes this group of microbes

an increasing threat to infectious disease control (81). We found

them to be quite prevalent, especially in adult females diagnosed

with UUI (Table 1). Of the 11 CoNS species detected, here we

review the 2 most prevalent species and 1 species commonly

associated with UTI (S. epidermidis, S. haemolyticus and S.

saprophyticus, respectively).

S. saprophyticus was first recognized as a causative microbe for

UTI in young females (82, 86), and does appear to be associated

with young females of reproductive age. In contrast, it appears to be

very rare in older females; we have never detected it in this

population. However, the susceptibility of the host by age and

reproductive status remains unclear. Virulence factors, including

urease activity, have been described (82, 83, 89).

The most common CoNS in the urinary tract is S. epidermidis

(41, 87). Whereas S. epidermidis infections are rarely life-

threatening, increasing antibiotic resistance and biofilm-forming

ability make them difficult to treat with antibiotics. Investigations

into the underlying molecular mechanisms have been performed

(87). Numerous case reports implicate S. epidermidis in UTIs,

especially in children (90–92), but the pathophysiology of urinary

isolates has yet to be explored.

S. haemolyticus is the second-most isolated CoNS from urine. It is

also common in blood cultures, especially from immunocompromised

patients. As such, it is considered an emerging multidrug-resistant

nosocomial pathogen (83, 84). Of particular concern is the ability of S.

haemolyticus to acquire multiple antibiotic resistance genes, making

antibiotic stewardship in the global treatment of UTIs an urgent public

health issue (84, 93). The incidence of S. haemolyticus UTIs are

increasingly reported (84, 88).
Emerging uropathogens

In contrast to several of the universally acknowledged

uropathogens, including but not limited to Serratia, Morganella,

Citrobacter, and E. faecium, many emerging or suspected

uropathogens are considerably more prevalent (Table 1). They

have been underappreciated for 2 major reasons. First, as

mentioned above, many simply do not grow or grow poorly

under SUC conditions (60); however, they can be grown
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(Appendix 2). Even E. faecalis tends to be underreported, in part

due to overgrowth of faster growing species (31). Second, before the

advent of MALDI-TOF MS, accurate identification of many species

was difficult (94) and many would have been dismissed as

contaminants (95–97). This dismissal has its consequences as was

suggested by investigators studying polymicrobial infections in

urinary sepsis where contamination could be ruled out (98, 99).

The growth of microbes at less than 105 colony forming units per

milliliter (cfu/mL) has been noted and its significance debated since

the initial report of this standard for “infection” (100, 101). On the

opposite end of the spectrum and demonstrating that some

microbes that do not grow on SUC, negative standard urine

cultures was reported in women with lower urinary tract

symptoms; with treatment, negative cultures and the symptoms

persisted (102), implying that some other causal factor and/or

uncultivated microbe was present.

Because its role in lower urinary tract health has been

underappreciated, we will review E. faecalis first and then a set of

emerging and suspected uropathogens.
The species Enterococcus faecalis

Less than 30 years after being recognized as a distinct taxon, the

clinical outlook on Enterococcus transitioned from harmless gut

commensal to a major public health concern. E. faecalis, the most

common clinical enterococcal species, is ubiquitously present in the

human gut microbiome where it plays a crucial role in nutrient

metabolism and maintenance of a heathy gut environment (103,

104). However, these microbes are also adept at adapting to novel

environments and transferring DNA to members of its own genus,

as well as other taxa. This latter characteristic has greatly

contributed to the worldwide spread of antibiotic resistance, the

most notable being the cassette of genes responsible for vancomycin

resistance, which is attributed to significantly increased mortality

rates (105).

With or without antibiotic resistance genes, enterococcal

infections at many body sites exhibit increased risk of

persistence and recurrence in comparison to other common

pathogens (106). Mechanisms underlying these chronic infection

phenotypes are largely unknown, as previous comparative

phylogenomic studies have been unable to differentiate between

clinical isolates from diverse infection types (107), most likely due

to insufficient isolate numbers and metadata. Despite this, E.

faecalis epidemiology and pathogenesis are most often studied

in the context of nosocomial infections. These investigations have

elucidated the presence and putative function of various virulence

factors, including proteins that facilitate colonization, aggregation,

and toxin production (107). The most severe enterococcal

nosocomial infection is bacteremia, which can lead to sepsis and

endocarditis. Even with appropriate treatment, this infection is

fatal in nearly 30% of cases (108). Enterococcal bacteremia has

previously been thought to originate via fecal contamination of

venous catheters or other medical devices; however, recent studies

have identified ascending bladder infections as a frequent prelude

to bacteremia (103, 109).
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Patients with long-term indwelling urinary catheters have

increased risk for enterococcal bacteremia and sepsis. Therefore,

catheter-associated UTI (CAUTI), the most common enterococcal

nosocomial infection, is a main model system used to assess E.

faecalis behavior in the bladder. Studies have shown that E. faecalis

acts as a “founder species” in catheter colonization and that E.

faecalis presence in polymicrobial infections increases virulence of

other uropathogenic microbes, including P. mirabilis and E. coli

(110, 111). CAUTI is thought to result from fecal contamination of

indwelling urinary catheters (103); however, the discovery of the

bladder microbiome raises the possibility that the bladder and

urethra could serve as endogenous reservoirs for E. faecalis,

making it possible that community-acquired UTI and subsequent

persistent bladder colonization could precede these chronic/

recurrent infection phenotypes.

Although E. faecalis is a recognized uropathogen underlying

community-acquired UTI, SUC has a detection rate of only 50%

relative to EQUC (31). This is because E. faecalis is often cultured

alongside other uropathogens or commensals, meaning it is either

(1) outcompeted during culture by hardier organisms, such as E.

coli, or (2) dismissed as “mixed morphologies” and reported as

contamination. Missed detection and empiric treatment of E.

faecalis-UTI imparts considerable risk, as the efficacy of many

antibiotics commonly used to treat UTI is currently being

debated for this species. The adaptability of this species and its

ability to acquire antibiotic resistance even to the newest antibiotics

has correlated with an increased number of cases reported

and represents a substantial health risk (24, 35, 111). These

include resistance to aminoglycosides (including gentamycin and

kanamycin), b-lactams, chloramphenicol, clindamycin,

daptomycin, erythromycin, flouroquinolones, oxazolidinones,

rifampin, streptomycin, tetracyclines, and tigecycline (24).

This is extremely problematic, as this species is known to have a

tropism for kidneys and once ascended is difficult to eradicate (103,

112). Recently, E. faecalis has also been associated with populations

experiencing recurrent UTI (31, 113, 114), defined as 3+ UTI in a

year or 2 within 6 months (115). These data suggest that E. faecalis

behavior in the bladder mimics that of common nosocomial

infections, strengthening the concern that this species could be

responsible for more severe infection phenotypes.

Thus far, no studies have reported how E. faecalis alters the host

bladder environment to promote its own persistent colonization.

Additionally, no studies have identified the virulence genes

necessary for persistent bladder colonization or urothelial cell

invasion. Understanding enterococcal behavior, especially in

connection to recurrent UTI, is crucial for developing more

efficacious treatment and prevention of severe infections, such as

bacteremia and sepsis.
The family Aerococcaceae

Understudied and under-detected, members of the family

Aerococcaceae are easily mistaken for other Gram-positive cocci

with similar morphologies and strict growth requirements. Their

taxonomy and identification have been fraught with inconsistency
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and their relationship with human disease is frustratingly

mysterious (116). The increasing isolation of these organisms

from the urine of sick humans has earned them the title of

emerging uropathogens (116). Indeed, their ability to cause

serious disease, such as infectious endocarditis, makes them a

clear threat, and yet their ability to cause disease is still

uncharacterized. Below, we consider the genera Aerococcus,

Facklamia, and Globicatella.

Aerococcus.
The genus Aerococcus consists of several species, the majority of

which are associated with the urogenital tracts of livestock and

humans. The most prevalent and threatening species, however, is

Aerococcus urinae. Table 1 shows enrichment in adult females

diagnosed with UTI or UUI relative to asymptomatic controls

(detected in 11%, 34%, and 4%, respectively). Thus, A. urinae is

implicated with urine, especially in adult females with LUTS.

However, the circumstances and implications of how it ends up

there remains a mystery. The natural reservoir of the bacterium

is poorly described and the circumstances in which it

becomes pathogenic are uncharacterized. Currently, there is a

demonstrative need for greater investigation into the involvement

of A. urinae in urinary tract disorders such as UTI and UUI, as well

as invasive tissue infections. With increasing antibiotic resistance

observed in clinical isolates, A. urinae poses a growing threat to the

undiagnosed (and misdiagnosed) patient.

The first isolates of A. urinae came from the urine of patients

diagnosed with UTI (117). Originally thought of as a rare cause of

human infection, the bacterium has since seen a clear rise in

diagnoses and case reports alongside improvements in culture

techniques and identification technologies (118–121). While lethal

cases are rare, A. urinae has been identified in a variety of severe

disease complications, such as soft tissue infections and bacteremia,

all traced to a urological origin (120, 122–124). Non-invasive

infections are associated with UTI and UUI in women (Table 1)

(9, 21). However, enhanced culturing of urine from asymptomatic

participants also detects this species, complicating characterization

of A. urinae’s status, and suggesting that it is an opportunistic

pathogen (125).

Monoculture of A. urinae from urine is uncommon; instead, it

is often identified alongside several other species, contributing to its

dismissal as a contaminant. In cases of bacteremia, however, the

majority of infections are monomicrobial with significant risk for

endocarditis and septic embolization (126, 127). Thus, it remains

unclear whether this bacterium works in concert with others or on

its own.

Risk factors for invasive infections include older age and

comorbid genitourinary diseases (121, 124, 128). In pediatric

settings, A. urinae has been reported as a cause for extraordinary

malodorous urine in boys with comorbid urogenital disorders as a

risk factor (129, 130). Malodorous urine has been documented in

adult patients as well, having been described as ammoniacal and

“socially disabling” (120, 131).

In all severe cases of infection, misidentification and lack of

resistance testing can lead to fatality (132, 133). Currently, the

criterion standard for rapid identification in the clinical setting is
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via MALDI-TOF MS (125). However, A. urinae is easily missed on

routine urine culture and other bacteriological tests and, when

isolated, is often misidentified as streptococci, staphylococci, or

enterococci because they share many characteristics.

Whole genome sequencing and phenotypic characterization of

the organism has revealed substantial diversity within the A. urinae

species designation such that subdivision has been suggested (134–

136), although the clinical relevance of such divisions remains

unknown. Like other invasive uropathogens, A. urinae

demonstrates the ability to form biofilms on catheters and heart

tissue, as well as the ability to aggregate platelets (137–139). The

first UTI mouse model for A. urinae demonstrated a tropism for the

kidney, indicating a route for ascending infection despite

the bacterium being non-motile (140). Analysis for virulence

factors revealed genes predicted to be associated with adhesion

and anti-phagocytosis (135). Proteomic studies have supported this

finding, revealing an abundance of adhesive surface proteins

expressed on the bacterium’s surface (138, 141). Unfortunately,

no genetic model currently exists to allow mechanistic studies into

these virulence factors.

With proper identification and susceptibility testing, antibiotic

therapy is generally effective for A. urinae infection. Isolates from

several studies have demonstrated susceptibilities to most antibiotics

used against Gram-positive organisms; however, resistances have

been indicated to fluoroquinolones, cephalosporins, trimethoprim-

sulfamethoxazole, and tetracycline (142–146). There is concern that

antibiotic resistance may be increasing; rising resistance has been

detected in wastewater samples (147). As with the related

streptococci, staphylococci, and enterococci, the possibility of

horizontal gene transfer of resistance genes may pose a significant

future risk. Another member of this genus, A. urinaeequi, has been

found to harbor a plasmid with tetracycline resistance and a

transposable element with vancomycin resistance (148, 149).

As such, prudent stewardship based on careful microbial

identification is foundational for the diagnosis and treatment of A.

urinae infections.

Facklamia.
Facklamia species are challenging to accurately identify with

current microbiologic systems; they are often confused

with hemolytic streptococci (150). Thus, F. hominis is an

underrecognized pathogen that has been isolated from a variety

of clinical specimens, including bacteremia associated with brain

and soft tissue abscesses, endocarditis, necrotizing gangrene, and

ischemic stroke symptoms (151). It also has been associated with

pediatric pyelonephritis (152), acute cystitis and urosepsis (152), as

well as bacteremia associated with transurethral resection of the

prostate (153). Despite isolation from vaginal specimens and

urine, especially in adult females with UUI (Table 1), the role of

F. hominis as a commensal and the transition to opportunistic

pathogen has yet to be explored (151). Antibiotic resistances have

been demonstrated towards cephalosporins, erythromycin,

clindamycin, and trimethoprim-sulfamethoxazole (150, 151).

More studies are needed to investigate mechanisms of virulence,

predisposing risk factors, and rates of infection.
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Globicatella.
G. sanguinis was first isolated from human blood in 1978; more

recently it was proposed to be its own novel genus (154).

Globicatella infections have been associated with bacteremia,

septicemia, meningitis, infective endocarditis, wound infections,

and UTIs in humans on a sporadic basis (154–156). Isolates have

been detected in catheter-associated biofilms along with A. urinae

(138). As such, G. sanguinis is now considered to be an emerging

pathogen with an expanding disease spectrum, recently identified

from patients with endophthalmitis and osteomyelitis (157, 158).

Since this species also has been considered to be a commensal

bacterium (159), it likely should be considered an opportunistic

uropathogen. Because of its close resemblance to streptococci and

aerococci under microscopic examination and morphologically on

blood agar, G. sanguinis is often misidentified. As a result, it can be

easily underestimated in clinical settings (160).
The Streptococcus anginosus
(Streptococcus milleri) group

The Gram-positive coccus Streptococcus anginosus was originally

described in 1906 (161). Early on, S. anginosus was thought to cause

strep throat, as it was observed to induce inflammation of the fauces,

the arched opening at the back of the mouth that leads to the pharynx

(161–163). The high degree of heterogeneity in phenotypic

characteristics between strains of S. anginosus (161, 164, 165) led to

conflicting taxonomic characterizations during early studies before

Whiley and Beighton disambiguated S. anginosus into three separate

species: S. intermedius, S. constellatus, and S. anginosus. Together, these

species comprise the Streptococcus anginosusGroup (SAG), also known

as the Streptococcus milleri group, which is one group within the larger

set of viridans streptococci (162). Today, it is well known that all three

members of SAG are part of the normal human flora, having been

isolated from the oropharynx, gastrointestinal tract, and vagina of

healthy individuals (23, 162–164, 166). As such, they are generally not

considered pathogens. However, in immunocompromised individuals,

opportunistic infections leading to bacteremia, pharyngitis, and

purulent infections have been reported (23). SAG also may

contribute to pulmonary exacerbations in cystic fibrosis patients

(167, 168). They also contribute to cases of infective endocarditis

(169, 170), and have been reported as complications of otitis media and

sinusitis and intracranial infections in children (171, 172).

While SAG is primarily isolated from the upper respiratory

tract, an increasing number of studies have detected S. anginosus in

the urinary tract (21, 173–176). Isolates of S. anginosus have been

identified in urine samples from individuals experiencing various

lower urinary tract symptoms; SAG members, particularly S.

anginosus are especially enriched in the bladder urine of adult

females diagnosed with UUI relative to asymptomatic controls

(49% versus 7%) (Table 1) (21).

Genetic sequencing of urinary isolates suggests that they belong

to a niche-specific clade that may have implications in disease (176).

An extensive list of virulence factors has been annotated in these

species; however, their role in establishing opportunistic infections
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is still unclear (177). Antibiotic resistance towards macrolides,

aminoglycosides, sulfonamides, and tetracyclines has been

observed (178–181) but the resistance profile of urinary isolates

has yet to be reported.
The family Actinomycetaceae

Members of the family Actinomycetaceae are a phylogenetically

diverse group of Gram-positive, facultatively anaerobic or micro-

aerophilic, branching rod-shaped bacteria. They are part of the flora

of the oropharyngeal, gastrointestinal, and genitourinary tracts of

humans and many animals (182). First identified in 1896 with A.

israelii, these rod-shaped bacilli form colonies with fungus-like

branched networks of hyphae, a characteristic that led to the

initially incorrect assumption that they were fungi. In most

healthy individuals, these organisms are commensal in the

mucosal epithelia of hollow organs. However, upon trauma or

disruption of the epithelial barrier, access to underlying tissues

can lead to actinomycoses characterized by a chronic,

granulomatous infectious disease (183–185).
Actinomyces

Members of the genus Actinomyces are Gram-positive,

pleomorphic, facultative anaerobic rods that exhibit some

branching (182, 186). Actinomyces species have been identified in

catheterized bladder urine of asymptomatic adult females) but are

considerably more prevalent in those with UUI (5% and 23%,

respectively) (Table 1). Thus, under certain conditions, these

organisms could be opportunistic pathogens (187). For example,

initially isolated from urine and vaginal secretions, A. urogenitalis

has been reported in infections associated with long-term use of an

intrauterine device (183, 185, 188), in a case of bacteremia following

in vitro fertilization (189), and in an instance of bacteremia

associated with prolonged urinary retention (190). With case

reports making up the majority of recorded instances of these

organisms, it is clear that studies are needed to determine disease

risk factors and antibiotic resistances of infections.
Actinomyces-like organisms

The phylogenetic diversity of this family in combination with

new modern diagnostic techniques such as 16S rRNA gene

sequencing and MALDI-TOF have led to multiple taxonomic

revisions and the introduction of many novel species termed

Actinomyces-like organisms (ALOs). These include Actinotignum,

Gleimia, Schaallia, Trueperella, Varibaculum, and Winkia

(182, 191).

Actinotignum.
This genus of facultatively anaerobic Gram-positive rods

consists of 4 species: Actinotignum schaalii, Actinotignum urinale,

Actinotignum sanguinis, and Actinotignum timonense (192–195).
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A. schaalii and A. urinale were first described under the basonyms

Actinobaculum schaalii and Actinobaculum urinale, respectively

(192, 193). However, based on the 16S rRNA gene sequence, a

remote relationship with the Actinobaculum suis type strain

was found (Soltys 50052), resulting in reclassification to the

Actinotignum genus (194, 196).

Although first isolated from blood, both A. schaalii, A.

sanguinis, and A. urinale have since been isolated from urine. A.

schaalii has most often been reported in the context of UTI (197).

For example, it is reported to be an emerging uropathogen of elderly

people suffering from UTI with comorbidities (198, 199). It also has

been detected in children with urinary tract disorders (200, 201).

The genus as a whole has been reported to be significantly more

common in adult women with UUI than in unaffected controls (9,

21) (Table 1), but the species A. schaalii specifically has been found

at significantly higher mean abundances in adult women with UUI

compared to unaffected controls (202).

Other species have been associated with infections. A. urinale

was first isolated from human urine of patients with UTI (194);

however, it also has been isolated from human blood cultures (203).

A. sanguinis was first isolated from a human blood culture of a

patient with septicemia and has been co-isolated with Trueperella

bernardiae from breast abscesses in women (204). The first report of

A. timonense concerned an isolate from the urine of a 59-year-old

man with end-stage renal disease (195).

Like many of the species reviewed here, Actinotignum species

grow slowly under ambient atmospheric conditions typically used

by clinical microbiology laboratories; thus, they are often

overgrown by faster-growing bacteria. Furthermore, because these

species resemble commensal skin and mucosal species, they are

often mistakenly identified as contaminants (205). Also, until

recently, Actinotignum species were difficult to identify after

cultivation. However, the advent of molecular techniques has

resulted in increasing reports of A. schaalii in the context of

human infection (198, 199). Further research is essential to

determine whether these Actinotignum species are uropathogens.

Gleimia.
Formerly belonging to the Actinomyces genus, the new Gleimia

genus consists of three members: G. europea, G. hominis, and G.

coleocanis. The first two have been isolated in humans and the latter

in dogs. Human isolates have been implicated in UTIs (182, 206)

and have been suggested as a bladder cancer marker (207). They can

present clinically with persistent ear infections and recurrent soft

tissue infections (208–211), as well as abscesses of the neck, back,

feet, brain, and genital area in both men and women of various ages

(182, 185, 187, 206, 208, 212–214). Recent cases have linked G.

europaea with necrotizing fasciitis (210, 211) with a recent case

report of rapid infection progression and Fournier’s Gangrene

(215). Due to ineffective identification techniques, taxon

reclassification, and inadequate research, Gleimia species remain

misunderstood with few reports concerning their pathophysiology.

Schaalia.
Like Gleimia, a former member of the Actinomyces genus, S.

turicensis and S. radingae are Gram-positive, catalase- and urease-
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negative, anaerobic, filamentous bacilli (182, 216) that have both

been isolated from catheterized urine. Originally isolated from a

perianal abscess, they were originally classed as CDC Coryneform

Group E, from which A. radingae and A. turicensis were purified

and characterized (216). After reassessment of phylogenetic

positioning and chemotaxonomic characteristics, these species

were reassigned to Schaalia along with eleven other species (191),

including S. meyeri and S. odontolytica, all part of the human

commensal urinary bladder microbiome.

S. turicensis is a commensal of the skin, gut, oral cavity, and

female urogenital tract (182) but is also an opportunistic pathogen.

Clinical isolates have been reported in bacteremia (217), purent

mastoiditis and meningitis (218), infection following rotator cuff

repair (219), gonococcal urethritis (220), and a perianal abscess

(216). The circumstances and conditions that transform S.

turicensis from commensal to pathogen remain to be elucidated.

Trueperella.
T. bernardiae is an emerging opportunistic pathogen in both

humans (204, 221–229) and animals (230, 231). In the 1980s,

isolates recovered from blood cultures, wounds, abscesses, and skin

infections were found to be similar by biochemical testing and

described using the provisional name CDC fermentative Coryneform

group 2 (CDC group 2) (230). CDC group 2 was formally assigned to

the species Actinomyces bernardiae based on 16S rRNA gene

sequencing and other features for strains recovered from infections

in the United States, Canada, and Switzerland (226). In 1997, following

reanalysis of the 16S rRNA gene sequences and after comparison with

species in the genus Actinomyces, A. bernardiae was assigned to the

genus Arcanobacterium (232). After reassessment of phylogenetic

positioning and chemotaxonomic characteristics, this species was

reassigned to Trueperella, along with A. abortisuis, A. bialowiezensis,

A. bonasi and A. pyogenes (233). Of these five organisms, only T.

bernardiae and T. pyrogenes have been reported in humans, all

associated with mild to severe infections and abscesses. As all 5

species have been reported as pathogens in animals, it has yet to be

established if T. bernardiae and T. pyrogenes are commensals in skin,

oropharynx, and urinary tract or are opportunistic zoonotic pathogens

of humans (225, 231, 233). The occurrence of T. bernardiae in

polymicrobial infections may reflect dependence of this organism on

nutrients provided by other species. Immunosuppressed patients

appear to be more at risk for infection by T. bernardiae (94).

Varibaculum.
The first member of this anaerobic, diphtheroid, Gram-positive

genus was initially characterized as a distinct species with

resemblance to the genus Actinomyces in 2003 (234). Case reports

have associated V. cambriensis in polymicrobial, anaerobic human

abscess infections (235). The source of these infections remains

unknown, and it is unclear if this microbe depends on one or more

partner species for survival or infection. Before the advent of

MALDI-TOF MS, accurate identification of V. cambriense in

routine clinical microbiology laboratories was difficult (233).

Thus, in the past, this species may have been dismissed as

contamination (97). Indeed, the use of more modern detection
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methods have identified members of the genus Varibaculum in

human urine, as well as prostate and bladder cancer (236–238).

Whereas metaculturomic methods rarely detect this anaerobe, it is

frequently detected by metagenomic approaches. How

Varibaculum species cause disease remains poorly understood.

Winkia.
Actinomyces neuii was discovered in 1994 (239). Recently, it was

given its own genus Winkia (191). This catalase-positive

coccobacillus has been found in asymptomatic women (240) but

may be an opportunistic emerging pathogen in humans. Infections

include abscesses and infected atheromas (241), cellulitis (242),

endophthalmitis, and UTIs (185), as well as bacteremia, including

endocarditis (243). Isolates have also been implicated in neonatal

sepsis (244–246) and bacterial vaginosis (247). In all cases, how W.

neuii is mechanistically involved in these diseases is poorly

described. Antibiotic resistance to fluoroquinolones has been

observed (248), but wider studies into urinary isolate resistances

are needed. Like other Gram-positive rods, it is often dismissed as a

contaminant (249). We have found it to be highly enriched in adult

females with UUI relative to asymptomatic controls (28% and 3%,

respectively) (21) (Table 1).
The genus Corynebacterium

The Gram-positive genus Corynebacterium includes

approximately 80 recognized species. These are catalase-positive

rods with occasional swelling or club-like ends. The envelopes of

most but not all contain mycolic acid. Nine species are lipophilic

(able to metabolize lipids), asaccharolytic (unable to metabolize

carbohydrates), and strictly aerobic. The rest are non-lipophilic and

saccharolytic; some of these are fermentative facultative anaerobes,

while others are non-fermentative aerobes (250).

Although Corynebacterium species are typically commensals of

the mucous membranes of hollow organs and skin, some are

opportunistic pathogens. Many species have been isolated from

the bladder urine of asymptomatic adult females (50) but the genus

is particularly enriched in those diagnosed with UUI (8% and 52%,

respectively (21), (Table 1). Seven species that occur often and

either are or could be urinary tract opportunists are summarized in

Table 2 (250). Here, we review 2 of them: C. amycolatum and

C. urealyticum.

C. amycolatum
is a facultative anaerobic fermenter that is non-lipophilic (250,

251). It is unusual, as it lacks mycolic acid, which is common in

other coryneforms. Although a commensal of skin and mucous

membranes, C. amycolatum can be an opportunistic pathogen,

especially in immunosuppressed patents and nosocomial

environments. It has been isolated from blood cultures, cellulitis,

wounds, endocarditis, and peritonitis (250, 253). A recent pan-

genomic study of drug resistant and commensal isolates of C.

amycolatum gave insight into the core genome and the transition

from commensal to pathogenic phenotype (262).
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C. urealyticum
is an asaccharolytic, lipophilic coryneform that expresses lipase

and strong urease activity (250, 261, 263). C. urealyticum is an

opportunistic nosocomial pathogen that can cause acute cystitis,

pyelonephritis, alkaline-encrusted cystitis, and encrusted pyelitis

(250). It has been associated with bacteremia, mainly in patients

with chronic urological diseases and its strong urease activity is a

major factor in urinary stone formation (260). Painful and

persistent pathologies occur associated with encrustations in the

kidney, ureters, and urethra due to alkalinization of urine from

metabolism of urea (261). It tends to be multi-drug resistant. In a

study of C. urealyticum infections in kidney transplant recipients,

between 40 to 85% of the isolates tested were resistant to

azithromycin, cefotaxime, chloramphenicol, ciprofloxacin,

clindamycin, erythromycin, gentamycin, norfloxacin, penicillin G,

or tetracycline (261) One non-antibiotic treatment relies on oral L-

methionine, which when metabolized acidifies urine (264, 265). It is

unclear if this treatment is bactericidal or bacteriostatic, as in the

original report removing methionine resulted in return of the

uropathogens (264). C. urealyticum is also a zoonotic pathogen

associated with UTIs in dogs, cats and other animals (250).
The order Micrococcales

The order Micrococcales is comprised of eighteen families

including Dermabacteraceae and Micrococcaceae (191), comprised

of 3 and 19 genera, respectively. Several of these genera are detected

in human bladder urine including Dermabacter, Kokura,

Pseudoglutamicibacter, and Rothia (Table 1). Here, we review D.

hominis and both Pseudoglutamicibacter albus and P. cumminsii.

Dermabacter.
The Dermabacter genus contains three species: D. hominis, D.

jinjuensis, and D. vaginalis, of which only D. hominis has been found

in human catheterized urine (Table 1). First described in 1988 (266),

this Gram-positive, non-spore forming, non-acid fast, facultative

anaerobic short rod is considered to be a commensal of human

skin (267). However, D. hominis has been reported in diverse

clinically relevant scenarios, almost always as part of polymicrobial

communities in patients that are immunocompromised or suffering

with significant comorbidities, most often cardiovascular disease,

diabetes mellitus, and chronic kidney disease (267). Other reports

exist of its isolation from biopsies of bone and joint infections and

swabs of soft tissue infection (267), a case of trichobacteriosis axillaris

(268), a neck sebaceous cyst (269), blood cultures of patients with

bacteremia (270), peritoneal fluid from a patient with end stage renal

disease (271), recurrent abscesses (272), bone deposits from a patient

with chronic osteomyelitis (273), breast implant infections (274), and

cerebral abscess of a renal transplant patient (275). In one report, D.

hominis isolated from human semen was found to be capable of

forming a strong biofilm, which could potentially be a cause of

prostatitis (276). Thus, in immunocompromised patients or those

with comorbidities,D. hominismay be pathogenic. Although we have

detected it in the bladder urine of adult females with UTI and UUI
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(Table 1), the relationship between this microbe and the urinary tract

remains unclear.

Pseudoglutamicibacter.
Originally assigned to Centers for Disease Control and

Prevention coryneform group B-1 and B-3 (277) and later the

genus Arthrobacter (278), the recently established genus

Pseudoglutamicibacter contains two species: P. cumminsii and P.

albus (279). It is unknown whether these species are commensal

microbes or opportunistic pathogens, and we have detected both

species in the bladder urine of both asymptomatic and affected adult

females (1% and 11%, respectively) (Table 1). However, most

samples collected from humans have been associated with severe

infections and abscesses, including infected amniotic fluid, chronic

cervicitis, chronic otorrhea, external otitis, calcaneus osteomyelitis,

sepsis, and UTI (277, 280). Isolation sites have included blood,

bone, amniotic fluid, leg wounds, and urine (277, 280).

Both P. cumminsii and P. albus are Gram-positive, mesophilic,

catalase-positive, obligate aerobe coccobacilli (278, 279). P.

cumminisii is the most frequently encountered member of the

genus in human clinical specimens (280). A recent case study

identified P. cumminsii in the urine culture of a woman with UTI

(281). The first clinical specimen of P. albus was isolated from a

blood culture of a surgical patient with severe phlebitis (278). The

16S rRNA genes of P. cumminsii and P. albus share a high degree of

homology. This makes distinguishing these two organisms difficult

(279). Better differentiation will require whole genome sequencing

of isolates and better defined MALDI-TOF profiles.
The family Bifidobacteriaceae

The fami ly Bifidobacter ia les consis t of 5 genera :

Bifidobacterium, Gardnerella, Alloscardovia, Scardovia and

Parascardovia (191). Of these, Bifidobacterium, Gardnerella and

Alloscardovia have been detected in human bladder urine (Table 1).

While the role of Bifidobacterium in colonizing the gastrointestinal

tract is well known (282), its role in the urinary tract remains

undefined. Gardnerella species are prevalent and abundant in the

urinary tracts of asymptomatic adult females but are somewhat

more prevalent in women with UUI (13% and 21%, respectively (9,

10) (Table 1). The role of G. vaginalis in bacterial vaginosis and a

link to UTI have been observed, but the mechanisms remain elusive

(82). Below, we review a lesser-known member of this family

Alloscardovia omnicolens.

Alloscardovia.
Several species belong to the genus Alloscardovia, but only A.

omnicolens has been described in human urine, especially from UUI

patients (Table 1). It is a Gram-positive, oxidase and catalase-

negative, non-spore-forming, anaerobic rod (283, 284). While

originally considered to be a commensal of the gastrointestinal

tract and oral cavity, there is evidence that this microbe is clinically

significant and should not be ignored if found in clinical specimens,

especially if isolated from the urinary tract (285). The Alloscardovia
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TABLE 1 Frequency of Microbe Identification via Metaculturomics in Patients with and without LUTS1.

Microbe Total
N=1007

UTI
N=304

UUI
N=253

SUI
N=50

IC/PBS
N=49

Control
N=351

Acinetobacter 0.50% 0.00% 1.98% 0.00% 0.00% 0.00%

Actinobaculum 1.39% 0.99% 4.35% 0.00% 0.00% 0.00%

Actinomyces2 10.13% 7.57% 22.53% 4.00% 6.12% 4.84%

Actinotignum 5.26% 3.95% 13.04% 6.00% 0.00% 1.42%

Aerococcus 16.29% 13.49% 36.36% 16.00% 10.20% 5.13%

Aerococcus urinae 14.20% 11.18% 33.60% 14.00% 8.16% 3.70%

Alloscardovia omnicolens 6.65% 4.93% 13.83% 8.00% 4.08% 3.13%

Bacillus 0.40% 0.33% 0.40% 0.00% 0.00% 0.57%

Bifidobacterium 5.06% 4.28% 9.88% 0.00% 8.16% 2.56%

Brevibacterium 3.28% 2.30% 8.70% 2.00% 2.04% 0.57%

Candida 3.18% 1.97% 7.11% 4.00% 2.04% 1.42%

Citrobacter 0.60% 1.64% 0.40% 0.00% 0.00% 0.00%

Corynebacterium 22.34% 15.13% 51.78% 26.00% 16.33% 7.69%

Cutibacterium 1.19% 0.99% 2.77% 0.00% 4.08% 0.00%

Dermabacter hominis 0.79% 0.33% 2.37% 2.00% 0.00% 0.00%

Enterobacter 1.79% 0.33% 5.53% 0.00% 0.00% 0.85%

Enterococcus 11.42% 8.88% 23.72% 8.00% 8.16% 5.70%

Enterococcus faecalis 11.12% 8.88% 22.92% 8.00% 8.16% 5.41%

Escherichia coli 24.83% 50.99% 25.69% 12.00% 8.16% 5.70%

Facklamia hominis 4.07% 1.32% 12.25% 2.00% 0.00% 1.42%

Gardnerella 14.10% 11.84% 20.95% 12.00% 2.04% 13.11%

Gemella 0.40% 0.00% 1.58% 0.00% 0.00% 0.00%

Globicatella 0.50% 0.00% 1.98% 0.00% 0.00% 0.00%

Haematomicrobium 0.30% 0.99% 0.00% 0.00% 0.00% 0.00%

Haemophilus 0.89% 0.33% 1.58% 4.00% 2.04% 0.28%

Klebsiella 5.76% 11.51% 6.72% 0.00% 2.04% 1.42%

Klebsiella pneumoniae 4.57% 8.22% 5.93% 0.00% 2.04% 1.42%

Kocuria 0.30% 0.00% 0.79% 0.00% 2.04% 0.00%

Lactobacillus 37.24% 35.53% 56.13% 42.00% 30.61% 26.21%

Micrococcus 3.38% 0.99% 7.11% 0.00% 2.04% 3.42%

Moraxella 0.30% 0.00% 0.79% 0.00% 0.00% 0.28%

Morganella 0.50% 0.33% 1.19% 0.00% 2.04% 0.00%

Neisseria 0.89% 0.66% 1.19% 6.00% 0.00% 0.28%

Oligella 1.19% 0.66% 3.56% 2.00% 0.00% 0.00%

Peptoniphilus 0.50% 0.00% 1.98% 0.00% 0.00% 0.00%

Prevotella 0.30% 0.00% 0.79% 2.00% 0.00% 0.00%

Proteus 2.38% 4.28% 3.95% 0.00% 0.00% 0.28%

Pseudoglutamicibacter 3.67% 1.64% 10.67% 0.00% 4.08% 0.85%

(Continued)
F
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TABLE 1 Continued

Microbe Total
N=1007

UTI
N=304

UUI
N=253

SUI
N=50

IC/PBS
N=49

Control
N=351

Pseudomonas aeruginosa 1.29% 1.97% 2.77% 0.00% 0.00% 0.00%

Rothia 1.79% 0.66% 2.77% 10.00% 0.00% 1.14%

Staphylococcus 22.44% 16.45% 45.85% 30.00% 20.41% 9.97%

Coagulase Negative Staphylococcus 21.05% 14.47% 45.06% 24.00% 20.41% 5.41%

Coagulase Positive Staphylococcus3 2.38% 2.30% 3.56% 8.00% 0.00% 0.28%

Streptococcus 36.35% 28.29% 63.64% 40.00% 28.57% 24.22%

Streptococcus viridans grp. 13.90% 7.89% 22.92% 14.00% 14.29% 4.56%

Streptococcus anginosus grp. 23.24% 16.45% 48.62% 26.00% 12.24% 6.84%

Streptococcus agalactae 8.04% 7.89% 11.86% 10.00% 10.20% 4.84%

Trueperella bernardiae 2.09% 0.99% 5.53% 4.00% 0.00% 0.57%

Winkia neuii 9.43% 7.24% 21.74% 10.00% 4.08% 3.13%

Unknown 24.03% 17.76% 57.71% 18.00% 2.04% 9.12%

Arthrobacter 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Aureimonas 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Bacteroides 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Blastocystis 0.10% 0.33% 0.00% 0.00% 0.00% 0.00%

Brevundimonas 0.10% 0.00% 0.00% 0.00% 0.00% 0.28%

Campylobacter 0.20% 0.00% 0.40% 0.00% 0.00% 0.28%

Comamonas 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Dialister 0.20% 0.00% 0.40% 0.00% 0.00% 0.28%

Dolosigranulum 0.10% 0.33% 0.00% 0.00% 0.00% 0.00%

Eikenella 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Finegoldia 0.20% 0.00% 0.40% 0.00% 2.04% 0.00%

Fusobacterium 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Kytococcus 0.10% 0.33% 0.00% 0.00% 0.00% 0.00%

Propionimicrobium 0.20% 0.00% 0.79% 0.00% 0.00% 0.00%

Rhizobium 0.20% 0.00% 0.79% 0.00% 0.00% 0.00%

Saccharomyces 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Serratia 0.10% 0.33% 0.00% 0.00% 0.00% 0.00%

Slackia 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Stenotrophomonas 0.10% 0.00% 0.40% 0.00% 0.00% 0.00%

Veillonella 0.20% 0.00% 0.79% 0.00% 0.00% 0.00%

Weeksella 0.20% 0.00% 0.79% 0.00% 0.00% 0.00%
F
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1Isolates were isolated by EQUC and Identified via MALDI-TOF mass spectrometry. Frequency was calculated by dividing the total count of isolations of each genus/species/group by the total
number of samples in each group (N). Patients can be colonized by more than one species/genus at a time. When calculating frequency, redundancies in genus/group were considered. The
‘Unknown’ grouping represents isolates unidentifiable via MALDI-TOF MS.
2The values for the genus Actinomyces includes members of the newly reclassified genera Gleimia and Schaalia, as well true Actinomyces species.
3The values for Coagulase-positive Staphylococcus are almost all S. aureus.
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genus was first described in 2007 by Huys and co-authors after

sampling various clinical sites, including the urethra, urine, blood,

abscesses of the lung and aorta, and tonsils (286). A. omnicolens has

been identified in urine cultures of bladder cancer patients with

concurrent UTI (285). It also has been considered the probable

cause of infection for at least one UTI (283) and a case of bacteremia

due to a UTI in a 70-year-old woman with advanced uterine cancer

(287). Therefore, A. omnicolens appears to be an opportunistic

pathogen. Antibiotic resistance to metronidazole and moxifloxacin

has been described (288, 289).
The order Eubacteriales

The order Eubacteriales is comprised of at least 25 families, all

anaerobes. Of these families, members of Clostridiaceae (290, 291)

and Peptostreptococcacae (40, 292) are reviewed here. Anaerobes are

not detected by SUC (27). Oxygen toxicity complicates the collection

and culturing these microbes (28, 30), making it difficult to obtain

sufficient material for characterization (27, 293). However, with the

advent of molecular diagnostic techniques and enhanced culture

methods, the role of anaerobes in both the commensal flora and as

opportunistic pathogens is becoming recognized (27).

Thomasclavelia ramosum
Is a Gram-positive obligate anaerobic bacillus with the ability to

hydrolyze esculin (290, 293–297). As such, it is rarely cultured, even

by EQUC, but it is observed by metagenomic approaches.

Discovered in 1898, it was named Bacillus ramosum then

renamed Ramibacterium ramosum (295, 297). The demonstration

of sporulation led to its reclassification as Clostridium ramosum

(294, 297). Further dissections of the genus Clostridium, using a

combination of genetic markers, led to another name change, this

time to Erysipelatoclostridium ramosum and most recently to

Thomasclavelia ramosum (290, 293, 296).

While found as part of the commensal flora in the

gastrointestinal and urinary tracts, this organism has been
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documented in infections, such as appendicitis, blood, brain

abscess, bacteremia, joint infections, and pulmonary gangrene

(295, 297, 298). It also is one of the few sporulating bacteria

detected in the urinary microbiome. Further study is warranted to

understand how this commensal becomes an opportunistic and

potent pathogen.

Peptostreptococcus anaerobius.
Originally described in 1936, the genus Peptostreptococcus consists

of four species, P. anaerobius, P. canis, P. russellii, and P. stomatis (40,

292, 299). These are Gram-positive anaerobic cocci; thus, they are

rarely cultured but are frequently detected by metagenomic

approaches. They have weak fermentative and proteolytic

metabolisms. Consequently, it may be symbiotic with other

organisms from which it derives nutrients (300). Indeed, P.

anaerobius has been isolated most often from polymicrobial

infections of soft tissue, bone, brain, implant-related and respiratory

tract infections (40, 292, 299). P. anaerobius is also one of the most

commonGram-positive, anaerobic cocci isolated from infections of the

female urogenital tract and the abdominal cavity (292). Thus, while P.

anaerobius is probably a commensal of the gastrointestinal, vaginal,

and urinary tracts, it can be an opportunistic pathogen, particularly

within polymicrobial infections.
The order Bacteroidales

The order Bacteroidales is comprised of 17 families. The best

known are Bacteroidaceae and Prevotellaceae. The latter family

consists of Gram-negative anaerobes split into four genera:

Hallella, Paraprevotella, Prevotella, and Alloprevotella (301).

Below, we will review a few species.

Prevotella.
The genus Prevotella consists of 55 distinct species of Gram-

negative coccobacilli anaerobes that are commonly found in the

oral, gastrointestinal, and urogenital tracts of humans and animals.
TABLE 2 Selected bladder urine commensal Corynebacteria reported as opportunistic pathogens.

Organism Characteristics Urease Clinical Conditions/Isolates References

C. amycolatum Non-lipophile, Aerobe + Blood culture, cellulitis, endocarditis, mastitis, peritonitis, sepsis, wounds (250–253)

C. aurimucosum Non-lipophile, Facultative
anaerobe

– Blood culture, complications of pregnancy, UTI (249, 250, 254)

C.
glucuronolyticum

Non-lipophile, Facultative
anaerobe

+ Chronic prostatitis, cystitis, infertility, persistent urethritis (250, 255, 256)

C. minutissimum Non-lipophile, Aerobe,
Facultative anaerobe

+ Bacteremia, meningitis, endocarditis, cellulitis, abscesses, peritonitis,
pyelonephritis

(250, 252)

C. riegelii Non-lipophile, Facultative
anaerobe

+ Blood cultures, urosepsis, UTI (250, 257, 258)

C.
tuberculostearicum

Lipophile, Facultative
anaerobe

– Abscesses, blood culture, mastitis, peritonitis (250, 252, 259)

C. urealyticum Lipophile, Microaerophile + Acute cystitis, alkaline encrusted cystitis, encrusted pyelitis, endocarditis, kidney
and bladder stones, pyelonephritis, UTI

(250, 260, 261)
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It was originally proposed to characterize the moderately

saccharolytic, oral Bacteroides species (302). Until recently, the

lack of characteristic phenotypic and biochemical traits had

hampered identification at the species level among this group of

obligatory anaerobes. They are rarely cultured, but the availability of

16S rRNA sequence analysis has improved detection, and thus the

number of recognized Prevotella species has increased over the last

few years (303). Recently, a genomic and functional analysis of the

55 phenotypically, ecologically and functionally diverse species

comprising Prevotella identified 7 distinct clades and thus

reassignment across 7 genera, with 4 of them being new genera:

Segatella, Hoylesella, Leyella and Palleniella (304). Below, we review

Prevotella bivia and Hoylesella timonensis.

Prevotella bivia.
Previously classified as Bacteroides bivius, P. bivia is commonly

found in the human vaginal microbiome (305). Though normally a

commensal, P. bivia has pathogenic potential to trigger severe

infection and induce tissue destruction, especially when there is

excess estrogen and with the synergistic cooperation of other species

(306). P. bivia is one of the most frequently isolated anaerobic

bacteria in cases of bacterial vaginosis. The presence of P. bivia

creates an environment that facilitates growth of Peptostreptococcus

anerobius (300) and Gardnerella vaginalis (307). P. anaerobius

growth is enhanced with production of certain amino acids by P.

bivia. Likewise, G. vaginalis growth is enhanced with production of

ammonia by P. bivia.

P. bivia is one of the most frequently isolated bacteria in women

with pelvic inflammatory disease, as noted in a retrospective, cross-

sectional study (308), It has also been implicated in cases of recurrent

UTIs, osteomyelitis (309), osteitis (310), endocarditis (311),

necrobacillosis (312), sinusitis (313), wound infections from animal

bites (314, 315), intracranial abscesses (316), periodontal and tubo-

ovarian abscesses (317), and adverse pregnancy outcomes such as

preterm labor (318). The virulence factors of P. bivia are not fully

understood, but research suggests that they may include adhesins that

allow the bacteria to attach to host cells, enzymes that degrade host

tissue, and toxins that damage host cells and stimulate inflammation.

As with other members of the genus Prevotella, antibiotic resistance is

becoming an increasing concern; the most common are amoxicillin-

clavinate, clindamycin, and moxifloxacin (319). Thus, further

research into P. bivia is warranted.

Hoylesella timonensis.
Prevotella timonensis was first isolated from a human breast

abscess (320). After reassessment of phylogenetic positioning and

chemotaxonomic characteristics, this species was reassigned to

Hoylesella (304). Like the previously described anaerobes, H.

timonensis is rarely cultured but detected often by metagenomics.

The breast abscess isolate mentioned above ferments glucose,

maltose, and lactose. It also hydrolyzes esculin but is urease and

catalase negative. Although the species has most often been isolated

from cutaneous/soft tissue abscesses and bone infections, it is also

prevalent in human genitourinary samples, including from urine

(304, 321). While H. timonensis may be a commensal organism in

the genitourinary tract, it has been associated with bacterial
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vaginosis (322). Thus, some evidence supports its role as an

emerging opportunistic pathogen (321, 322).
Concluding remarks

This review provides a robust description of lesser-known

microbes to support our recommendation that our understanding

of uropathogens should go beyond the “usual suspects.” Current

clinical diagnosis is hampered by limitations in what clinical

microbiologists detect in culture in as little incubation time as

possible, most often under atmospheric oxygen conditions (323).

This current approach underreports fastidious, slow growing, and

anaerobic bacteria, many of which are generally excluded as

uropathogens despite evidence to the contrary (12, 27, 292). The

clinical consequences include the common scenario of repeated

negative standard urine culture results despite relevant, persistent

symptoms (102). Common sense should lead one to suspect that

some undetected agent(s) play(s) a role in these persistent

symptoms and the most likely candidates are fastidious, slow

growing and/or anaerobic bacteria. The standard method

dismisses, underreports, or does not detect these microbes but

they are repeatedly detected by more sensitive metaculturomic

(enhanced culture-dependent) or metagenomic (culture-

independent, DNA-based methods) (324).

None of the reviewed species were discovered recently. For

example, Thomasaclava (formerly Clostridium) ramnosum dates

back more than a century, while others (e.g., A. urinae) were

discovered at least 10 years ago. Yet, little is known of their

pathophysiology. Even their phylogeny is poorly understood, as

highlighted by the plethora of name changes (191, 293, 304). As

microbial detection technologies have improved, especially with the

advent of MALDI-TOF MS, so too have the detection and reporting

of these microbes. However, description of these microbes in

relation to disease should not be confined to sporadic case reports

as has been the case so far.

This review is a call to action to fill this knowledge gap, to begin

studies designed to determine first their functioning as commensals

and then their transition to opportunistic pathogens. Both

retrospective and prospective studies are greatly needed to

determine risk factors for symptomatic infections, especially for

microbes that have the ability to cause severe complications that

might be entirely preventable with proper and early diagnosis. The

global rise in antibiotic resistance is well established but only for

microbes under active surveillance. Until the resistance profiles of

urinary isolates are better reported, patients will continue to

experience therapy failures. Thus, as long as we remain blind to

the activities and capabilities of these emerging uropathogens,

preventable damage will continue to afflict patients and will most

definitely worsen as these microbes continue to evolve.
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256. Ruiz-Pino M, Foronda-Garcıá-Hidalgo C, Alarcón-Blanco P, Gutiérrez-
Fernández J. Male Genitourinary infections by Corynebacterium glucuronolyticum. a
review and clinical experience. Rev Esp Quimioter. (2019) 32(5):479–48.

257. Funke G, Lawson PA, Collins MD. Corynebacterium riegelii sp. nov., an
unusual species isolated from female patients with urinary tract infections. J Clin
Microbiol (1998) 36(3):624–7. doi: 10.1128/JCM.36.3.624-627.1998

258. Aygun G, Midilli K, Cilingir H, Yilmaz M, Kutukcu A, Eker E. A fatal case of
urosepsis due to. Corynebacterium riegelii. Braz J Microbiol (2013) 44(2):475–6. doi:
10.1590/S1517-83822013000200022

259. Feurer C, Clermont D, Bimet F, Candréa A, Jackson M, Glaser P, et al.
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