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A microarray-assisted gene expression screen of chicken heterophils revealed glycogen
synthase kinase-3β (GSK-3β), a multifunctional Ser/Thr kinase, to be consistently upreg-
ulated 30–180 min following stimulation with Salmonella enterica serovar Enteritidis (S.
Enteritidis). The present study was designed to delineate the role of GSK-3β in regulating
the innate function of chicken heterophils in response to S. Enteritidis exposure. Using a
specific GSK-3β ELISA assay, 30 min after infection with S. Enteritidis, heterophils had a
significant decrease (p≤0.05) in total GSK-3β, but a significant increase (p≤0.05) in phos-
phorylated GSK-3β (Ser9). By 60 min post-infection, there was no difference in the amount
of phosphorylated GSK-3β (Ser9) in either the uninfected and infected heterophils. S. Enter-
itidis interaction with heterophils alters GSK-3β activity by stimulating phosphorylation at
Ser9 and that peaks by 30 min post-infection. Further, inhibition of GSK3β with lithium
chloride resulted in a significant decrease (p≤0.05) in NF-κB activation and expression of
IL-6, but induces a significant increase (p≤0.05) in the expression of the anti-inflammatory
cytokine, IL-10. Using a phospho-specific antibody array confirmed the phosphorylation of
GSK-3β (Ser9) as well as the phosphorylation of the downstream cytokine-activated intra-
cellular signaling pathway involved in stimulating immune responses, IκB, the IκB subunit
IKK-β, and the NF-κB subunits p105, p65, and c-Rel. Our data revealed that the phosphory-
lation of GSK-3β (Ser9) is responsible for inducing and controlling an innate response to the
bacteria. Our findings suggest that the repression of GSK-3 activity is beneficial to the host
cell and may act as a target for treatment in controlling intestinal colonization in chickens.
Further experiments will define the in vivo modulation of GSK-3 as a potential alternative
to antibiotics in salmonella and other intestinal bacterial infections.

Keywords: glycogen synthase kinase-3ß, chickens, heterophils, Salmonella, innate immunity

INTRODUCTION
Polymorphonuclear leukocytes (PMNs) are vital cellular com-
ponents of innate immunity and function by killing pathogenic
microbes following phagocytosis. The primary PMN in poultry
is the heterophil, the avian equivalent to the mammalian neu-
trophil. Like the neutrophil, heterophils provide a rapid deploy-
ment of the effector arm of the bird’s innate immune system.
Heterophils are rapidly recruited following infection to the site of
acute infection. In addition to their well-established role as micro-
bial killers, accumulating evidence shows that heterophils can play
an immunoregulatory role (1).

Non-typhoid Salmonella infections in poultry induce a rapid
acute inflammatory response characterized by an influx of het-
erophils within hours that, for the most part, restricts infec-
tion to the intestine, while activating the innate immune
response (2–4). Reducing the number of circulating het-
erophils significantly increases the susceptibility of young chick-
ens to extra-intestinal infection by Salmonella enterica serovar

Enteritidis (S. Enteritidis) indicating a key effector role for
peripheral blood heterophils in controlling acute S. Enteri-
tidis infections in poultry (1). Unlike macrophages where Sal-
monella are able to infect and persist, Salmonella have not
been shown to survive the within heterophils. However, the
mechanisms that regulate this antibacterial activity are not
understood, although degranulation is considered especially
important.

The serine/threonine kinase, glycogen synthase kinase 3β

(GSK3β), plays a pivotal role in regulating the inflammatory
response of macrophages and neutrophils in mammals (5, 6).
GSK3β is unique among kinases in that it is constitutively active
in resting cells and its activity can be inhibited by serine phos-
phorylation by a variety of cellular functions including apoptosis,
glycogen metabolism, microtubule function, and cell motility (7,
8). However, it is the enzyme’s ability to regulate elements of both
the innate and acquired immune system that has generated the
most recent interest (5, 9).
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In a recent study involving the whole chicken genome microar-
ray analysis of S. Enteritidis-stimulated heterophils, we observed
a consistent upregulation of GSK-3β isoform mRNA expression
(10, 11). The present study was designed to delineate the role of
GSK-3β in regulating the innate function of chicken heterophils
in response to S. Enteritidis exposure.

MATERIALS AND METHODS
EXPERIMENTAL ANIMALS
One-day-old Cobb×Ross straight-run broiler chicks were
obtained from a local commercial hatchery and were placed on
new pine shavings. Birds were provided water and a balanced,
unmedicated ration ad libitum. The feed ration contained or
exceeded the levels of critical nutrients recommended by the
National Research Council (12). All animal experiments were
conducted according to the rules and regulations established by
the United States Department of Agriculture Animal Care Use
Committee and overseen by an attending staff veterinarian.

BACTERIA
A poultry isolate of Salmonella enterica serovar Enteritidis (S.
Enteritidis) (#97-11771) was obtained from the National Vet-
erinary Services Laboratory (Ames, IA, USA). S. Enteritidis was
cultured in tryptic soy broth (Difco Laboratories, Becton Dick-
inson Co., Sparks, MD, USA) overnight at 41°C. Stock S. Enter-
itidis [1× 109 colony forming units (cfu)/ml] was prepared as
previously described (13).

HETEROPHIL ISOLATION
Heterophils were isolated from the peripheral blood of 100 chick-
ens per line 6 days post-hatch. Following blood collection, het-
erophils were isolated as previously described (14). Briefly, blood
from chickens was collected in vacutainer tubes containing dis-
odium ethylenediaminetetraacetic acid (EDTA) (BD vacutainer,
Franklin Lakes, NJ, USA) and mixed thoroughly. The blood and
EDTA for each line was pooled and diluted 1:1 with RPMI 1640
media containing 1% methylcellulose and centrifuged at 40 g for
15 min at 4°C. The supernatant was transferred to a new conical
tube and diluted with Ca2+- and Mg2+-free Hanks balanced salt
solution (1:1), layered onto discontinuous Histopaque® gradients
(specific gravity 1.077 over 1.119) and centrifuged at 190 g for
1 h at 4°C. The Histopaque® layers were collected, washed with
RPMI 1640 (1:1), and pelleted at 485 g for 15 min at 4°C. The cells
were then re-suspended in fresh RPMI 1640, counted on a hema-
cytometer, and diluted to 1× 107/ml in RPMI. All tissue culture
reagents and chemicals obtained from Sigma Chemical Company,
St. Louis, MO, USA, unless noted otherwise.

TOTAL RNA ISOLATION
Heterophils (1× 107) were treated with 300 µl RPMI or SE, for 30
and 60 min at 39°C on a rotary shaker at the ratio of multiplic-
ity of infection =20. Treated heterophils were pelleted, washed
with RPMI (485× g for 15 min at 4°C), the supernatant dis-
carded, the cells re-suspended in lysis buffer (Qiagen RNeasy
mini RNA extraction kit, Qiagen Inc., Valencia, CA, USA), and
frozen. The lysed cells were transferred to QIAshredder homoge-
nizer columns and centrifuged for 2 min at≥8000× g. Total RNA

was extracted from the homogenized lysate according to the man-
ufacturer’s instructions, eluted with 50 µl RNase-free water and
stored at −80°C. RNA was quantified using a spectrophotometer
(NanoDrop Products, Wilmington, DE, USA).

MICROARRAY EXPERIMENT DESIGN
A dual color, balanced design was used to provide comparisons
between uninfected and infected heterophils. Four biological repli-
cates were conducted in each comparison, and the dye balance was
used throughout in order to prevent the dye bias during the sample
labeling.

Labeling and hybridization
The integrity of total RNA samples was confirmed using Agilent
Bioanalyzer 2100 Lab-on-chip system (Agilent Technologies, Palo
Alto, CA, USA). Five hundred nanograms (ng) of total RNA were
reverse-transcribed to cDNA during which a T7 sequence was
introduced into cDNA. T7 RNA polymerase-driven RNA synthe-
sis was used for the preparation and labeling of RNA with Cy3
(or Cy5) dye. The fluorescent cRNA probes were purified using
Qiagen RNeasy Mini Kit (Qiagen Inc., Valencia, CA, USA), and an
equal amount (825 ng) of Cy3 and Cy5 labeled cRNA probes were
hybridized on a 44 K chicken Agilent array. The hybridized slides
were washed using a commercial kit package (Agilent Technolo-
gies, Palo Alto, CA, USA) and then scanned using Genepix 4100A
scanner (Molecular Devices Corporation, Sunnyvale, CA, USA)
with the tolerance of saturation setting of 0.005%.

Microarray data collection and analysis
For each channel, the median of the signal intensity and local
background values were used. A locally weighted linear regression
(LOWESS) normalization was applied to remove signal intensity-
dependent dye bias for each array using R program. The normal-
ized data were analyzed using commercial SAS 9.1.3 program (SAS
Institute Inc., Cary, NC, USA) with mixed model analysis. The
mixed model used to identify significantly differentially expressed
genes was:

Yijklm = µ + Ti + Lj + Dk + Sl + T × Lij + eijklm

where Y ijklm represents each normalized signal intensity, µ is an
overall mean value, T i is the main effect of treatment (SE infec-
tion), Lj is the main effect of heterophil, Dk is the main effect
of dye, Sl is the random effect of slide l, TLij is the interaction
between treatment and heterophils, and e ijklm is a stochastic error
(assumed to be normally distributed with mean 0 and variance σ2).
An approximate F test on least-square means was used to estimate
the significance of difference for each gene in each comparison
where p< 0.001 was considered to be statistically different. The
false discovery rate (Q value) was calculated for each p-value using
R program according to the Storey and Tibshirani method (15).

GSK-3β ELISA ASSAY
Total and phosphorylated GSK-3β were measured by a solid phase
sandwich ELISA kits (Invitrogen, Camarillo, CA, USA). The GSK-
3β (total) ELISA kit quantifies GSK-3β independently of phos-
phorylation status and allows normalization of phosphorylated
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GSK-3β to total GSK-3β. Preparation of cell extracts was done
according to the manufacturer’s instructions. Total amount of
GSK-3β (Ser9) was determined using a standard curve.

ANTIBODY ARRAY
The antibody array assay kit was procured from Full Moon BioSys-
tems (Sunnyvale, CA, USA). This technique was used as an alter-
native to procuring phospho-specific antibodies individually and
performing several western blot assays. The protocol was carried
out as per manufacturer’s instructions with the following alter-
ation to the homogenization step: instead of using the bead and
vortex homogenization indicated in the kit, the hand-held Qiagen
TissueRuptor was used.

Data analysis for antibody array
Data normalization and PCA analysis was performed for both the
peptide and antibody microarrays as per Li et al. (16). This custom
analysis method was designed specifically for analysis of phos-
phorylation microarray data and allowed for a statistically robust
analysis of the phosphorylation events being measured. Geneon-
tology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was performed by uploading the statis-
tically significant peptide lists to the Search Tool for the Retrieval
of Interacting Genes (STRING) (17).

INHIBITOR TREATMENTS
Heterophils isolated as described above were aliquoted into sterile
2-ml Eppendorf tubes (1× 107 cells/ml) where they were pre-
incubated with the appropriate concentrations of the various
inhibitors for 30 min at room temperature. Following these pre-
incubations, the heterophils were then stimulated with S. Enter-
itidis (109 cfu/ml) for 1 h at 41°C. The following inhibitors and
optimal concentrations were used in these studies: BAY 11-7086

(IκB phosphorylation inhibitor; 50 µM), SN50 (NF-κB inhibitor,
100 µg/ml), and lithium chloride (LiCl, GSK3 inhibitor, 10 mM) as
previously determined (18). Based on our previous experiments,
the optimal concentrations used in the present experiments had
no toxic effects on the avian heterophils.

QUANTITATIVE REAL-TIME PCR
Primer and probe sets for the cytokines and 28S rRNA were
designed using the Primer Express software program (Applied
Biosystems, Foster City, CA, USA). Cytokine and chemokine
mRNA expression was quantitated using a well-described method.
Primers and probes for cytokines, chemokines, and 28S rRNA-
specific amplification have been described (19, 20) and are pro-
vided in Table 1. All primers and probes were purchased from
Integrated DNA technologies (San Diego, CA, USA). The qRT-
PCR was performed using the TaqMan fast universal PCR master
mix and one-step RT-PCR master mix reagents [(19, 20); Applied
Biosystems]. Amplification and detection of specific products were
performed using the Applied Biosystems 7500 Fast real-time PCR
system with the following cycle profile: one cycle of 48°C for 30 min
and 95°C for 20 s and 40 cycles of 95°C for 3 s and 60°C for 30 s.
Quantification was based on the increased fluorescence detected
by the 7500 Fast sequence detection system due to hydrolysis of the
target-specific probes by the 5= nuclease activity of the rTth DNA
polymerase during PCR amplification. Normalization was carried
out against 28S rRNA, which was used as a housekeeping gene. To
correct for differences in RNA levels between samples within the
experiment, the correction factor for each sample was calculated
by dividing the mean threshold cycle (CT ) value for 28S rRNA-
specific product for each sample by the overall mean CT value
for the 28S rRNA-specific product from all samples. The corrected
cytokine mean was calculated as follow: (average of each repli-
cate× cytokine slope)/(28S slope× 28S correction factor). Fold

Table 1 | GSK-3β pathway genes from DNA microarray.

Gene Description 30′-fold

change

p value 60′-fold

change

p value

PI-3K Phosphatidylinositide 3-kinase NS – NS –

Akt Protein kinase B; Serine/threonine protein kinase NS – NS –

S6 ribosomal protein NS – NS –

Casein kinase 1.65 0.00012 3.48 1.95×10−10

Axin-1 3.60 3.9×10−6 7.29 2.74×10−9

GSK-3β Glycogen synthase kinase-3β 3.01 1.72×10−8 2.69 5.87×10−8

CREB cAMP response element-binding protein NS – NS –

IκB Inhibitor of NF-κB 3.79 9.11×10−11 4.46 2.13×10−11

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 3.34 5.8×10−8 4.59 3.74×10−9

IL-10 Interleukin-10 NS – NS –

IL-12 p40 Interleukin-12 2.92×10 2×10−5 28.46 7.89×10−11

IL-Iβ Interleukin-1β 16.22 2.59×10−12 21.04 5.62×10−13

IL-6 Interleukin-6 9.87 2.39×10−7 22.73 9.84×10−9

B-catenin 2.77 2.03×10−5 2.23 2.55×10−5

NS, no statistical differences between uninfected and infected heterophils at the time point assayed.

Positive values in fold change mean that genes have a higher expression in infected heterophils.

Negative values in fold change mean genes have a higher expression in uninfected heterophils.
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changes in mRNA levels were calculated from mean 40 CT values
by the formula 2(40 CT infected group− 40 CT in non-infected control).

DEGRANULATION ASSAY
Degranulation was detected by quantifying the amount of β-d-
glucuronidase activity in the culture medium following stimula-
tion of the heterophils with S. Enteritidis. Heterophils (8× 106)
were incubated with either RPMI 1640 medium alone or the GSK
inhibitor, LiCl at room temperature for 30 or 60 min. The het-
erophils were then stimulated with various MOI of S. Enteritidis
(1, 10, or 100) for 1 h at 41°C. The reaction was stopped by transfer-
ring the tubes containing the cells to an ice bath for 5–10 min. The
cells were then centrifuged at 250 g for 10 min at 4°C. The super-
natants were then removed and used for the assay. A 25 µl aliquot
of each supernatant was added to quadruplicate wells in a non-
treated, black CoStar flat-bottom ELISA plate and incubated with
50 µl of freshly prepared substrate (10 mM 4-methylumbelliferyl-
β-d-glucuronidase, 0.1% Triton X-100 in 0.1M sodium acetate
buffer) for 4 h at 41°C. The reaction was stopped by adding 200 µl
of stop solution (0.05M glycine and 5 mM EDTA; pH 10.4) to each
well. Liberated 4-methylumbelliferone was measured fluorimet-
rically (excitation wavelength of 355 nm and an emission wave-
length of 460 nm) with a GENios Plus Fluorescence Microplate
Reader (TECAN US Inc., Research Triangle Park, NC, USA). These
values were converted to micromoles of 4-methylumbelliferone
generated using a standard curve of known concentrations.

NF-κB ANALYSIS
The ELISA-based Trans-Am transcription factor kit (Active Motif,
Carlsbad, CA, USA) was used to detect and quantify NF-κB
activation. This kit uses a patented technology to attach oligonu-
cleotides containing an NF-κB binding consensus sequence (5′-
GGGACTTTCC-3′) to a 96-well plate according to the transcrip-
tion factors analyzed (18–20). The active forms of the subunits
for NF-κB (p65, p52, p50, c-Rel, RelB) in whole cell extracts can
be detected using specific antibodies for epitopes that are acces-
sible only when the nuclear factors are activated and bound to
their target DNA. Preparation of cell extract was done according
to the manufacturer’s instructions. The specificity of the assays
was checked by measuring the ability of soluble wild type or
mutated NF-κB oligonucleotides to inhibit binding. The results
are expressed as specific binding (absorbance measured in the
presence of the mutated oligonucleotides minus that measured
in the presence of the wild type oligonucleotides) according to the
manufacturer’s instructions.

STATISTICAL ANALYSIS
The anti-coagulated blood from 100 chickens was pooled and
the peripheral blood heterophils and monocytes were isolated
from each treatment group as described above. Each assay was
conducted four times over a 2-month period with pooled cells
(heterophils pooled from 100 chickens for each preparation, i.e.,
400 chickens in total were used as cell donors). At least three repli-
cates were conducted for each assay with the cells from each pool
of chickens. The data from these four repeated experiments were
pooled for presentation and statistical analysis.

The mean and standard error of the mean were calculated
for each of the treatment groups. Differences between the non-
infected and S. Enteritidis-infected heterophils were determined
by analysis of variance. Significant differences were further sep-
arated using Duncan’s multiple range test. The data obtained
from the S. Enteritidis-infected heterophils were compared to
non-stimulated control cells (ANOVA). All statistical analysis was
conducted with SigmaStat 3.10 software (Systal Software, Point
Richmond, CA, USA).

RESULTS
DNA MICROARRAY
Concentrating on the canonical GSK-3 pathway from the chicken
whole genome array, we found a significant upregulation in the
expression of Axin-1, GSK-3β, and β-catenin in the heterophils
30–60 min after infection with S. Enteritidis (Table 1). Axin-1,
GSK-3β, and β-catenin form an intracellular complex that can
regulate multiple signaling pathways involving inflammation (21–
23). Further, S. Enteritidis infection of the heterophils induced a
significant upregulation of IκB, NF-κB, and mRNA of the pro-
inflammatory cytokines IL-1β, IL-6, and IL-12 p40 (Table 1).
We found no effects on the mRNA expression of the upstream
regulators of GSK-3, PI-3K and Akt, or in the expression of the
anti-inflammatory cytokine, IL-10.

S. ENTERITIDIS MODIFICATION OF GSK-3β PHOSPHORYLATION
Within 30 min after infection with S. Enteritidis, heterophils had
a significant (p≤ 0.05) decrease in total GSK-3β (Figure 1A). By
60 min after infection, the amount of total GSK-3β was reversed
where significantly (p≤ 0.05) more total GSK-3β was found in
the infected heterophils compared to the uninfected control cells.
However, infection of the heterophils with S. Enteritidis signifi-
cantly (p≤ 0.05) increased phosphorylated GSK-3β (Ser9) within
30 min (Figure 1B). By 60 min post-infection, there was no dif-
ference in the amount of phosphorylated GSK-3β (Ser9) in either
the uninfected and infected heterophils. These data suggest that S.
Enteritidis interaction with heterophils alters GSK-3β activity by
stimulating phosphorylation at Ser9 within 30 min post-infection.

ROLE OF GSK-3β IN CYTOKINE mRNA EXPRESSION IN HETEROPHILS
INFECTED WITH S. ENTERITIDIS
Stimulation of heterophils with S. Enteritidis resulted in increased
transcription of the pro-inflammatory cytokine IL-6 (Figure 2A).
The expression of IL-6 was significantly (p≤ 0.01) decreased in
S. Enteritidis-stimulated heterophils pretreated with the specific
GSK-3β inhibitor LiCl. Conversely, stimulation of the heterophils
with S. Enteritidis induced a very limited expression of the anti-
inflammatory cytokine, IL-10 (Figure 2B). However, inhibition
of GSK-3β by LiCl resulted in a significant (p≤ 0.01) increase
in IL-10 mRNA transcription of heterophils stimulated with S.
Enteritidis. These data point to the regulation of cytokine mRNA
expression in heterophils stimulated with S. Enteritidis. It should
be noted that heterophil viability was not affected by treatment
with LiCl (data not shown). Likewise, treatment of the bacteria
with LiCl for 1 h had no effect on growth or viability (data not
shown).
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FIGURE 1 | Effect of S. Enteritidis infection on GSK-3β activity in avian
heterophils. (A) Total GSK-3β activity in avian heterophils stimulated with
S. Enteritidis or non-infected for 30 and 60 min. (B) Phosphorylated-GSK-3β

(Sr9) activity in avian heterophils after 30 and 60 min stimulation with
S. Enteritidis. Data presented as mean ± SEM from three separate
experiments. *p≤0.01.

FIGURE 2 | Inhibition of GSK-3β differentially regulates pro- and
anti-inflammatory cytokine mRNA expression by avian heterophils.
Heterophils were pre-incubated with LiCl for 1 h and then stimulated with
S. Enteritidis (MOI=100) for 30 and 60 min. The expression of cytokine
mRNA was determined by quantitative RT-PCR. Data represent the fold

change in mRNA expression in heterophils from infected and/or
LiCl-treated groups when compared to the mRNA expression from the
non-infected, untreated control heterophils. Data represent the
mean ±SEM from three separate experiments. **p≤0.01. (A) Expression
of IL-6. (B) Expression of IL-10.

ROLE OF GSK-3β IN S. ENTERITIDIS ACTIVATION OF NF-κB
To better understand the mechanisms responsible for the effects of
GSK-3β on S. Enteritidis-induced cytokine mRNA expression, we
assessed the activation of NF-κB through the use of the Trans-AM
assay of the c-Rel, RelB, and p50 subunits (Figures 3A–C, respec-
tively). We confirmed that stimulation of the avian heterophils
with S. Enteritidis significantly (p≤ 0.01) activated the nuclear
c-Rel, RelB, and p50 subunits of NF-κB that we previously reported
(18). To validate the NF-κB subunit activation, we treated the het-
erophils with either the specific NF-κB inhibitor BAY 11-7086 or
the cell-permeable NF-κB inhibitor SN50 and found a total inhibi-
tion of activation of each NF-κB subunit (p≤ 0.01; Figures 3A–C).

To assess the functional role of GSK-3β on S. Enteritidis-
mediated activation of NF-κB, heterophils were treated with the
GSK-3β inhibitor LiCl for 30 or 60 min before infection. Inhibition

of GSK-3β significantly (p≤ 0.01) decreased activation of each of
the NF-κB subunits (Figures 3A–C). These data imply that GSK-
3β regulated S. Enteritidis-induced cytokine mRNA expression by
activating NF-κB.

ANTIBODY ARRAY
Standard methodology for validating the phosphorylation of pro-
tein is the use of phospho-specific antibodies. Normally, western
blots using antibodies for specific phosphorylation events are per-
formed to confirm the individual phosphorylation events. We
chose a variation of this standard validation process by employ-
ing an antibody microarray containing both pan-specific and
phospho-specific antibodies. Despite the scarcity of chicken-
specific antibodies, the key proteins of interest were relatively
well conserved between human beings and chickens, giving us

www.frontiersin.org November 2014 | Volume 1 | Article 10 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Infectious_Diseases/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kogut et al. GSK-3B in heterophil response to Salmonella

FIGURE 3 | Effect of NF-κB or GSK-3β inhibitors on binding of either c-Rel,
RelB, or p50 subunits to a NF-κB consensus sequence. Heterophils were
aliquoted into sterile 2-ml Eppendorf tubes (1×107 cells/ml), where they were
pre-incubated with the appropriate concentrations of the various inhibitors for
30 min at room temperature. Following these pre-incubations, the heterophils
were then stimulated with S. Enteritidis (109 cfu/ml) for 1 h at 41°C. The
following inhibitors and optimal concentrations were used in these studies:

BAY 11-7086 (IκB phosphorylation inhibitor; 50 µM), SN50 (NF-κB inhibitor,
100 µg/ml), and lithium chloride (LiCl, GSK3 inhibitor, 10 mM). Cell lysates
(10 µg/ml) were used for binding of the activated c-Rel (A), RelB (B), and
p50 (C) subunits to an NF-κB consensus sequence using the Trans-AM NF-κB
ELISA kit. The experiment was performed in the presence of soluble wild type
or mutated consensus oligonucleotides. The results are expressed as specific
binding and are shown as mean ± SE of triplicate experiments. *p≤0.01

confidence that we would observe significant cross-reactivity from
the antibodies.

We have previously shown that stimulation of heterophils with
S. Enteritidis resulted in increased cellular signaling of PI-3K and
Akt (24–26). Using a phospho-specific antibody array, we verified a
significant phosphorylation of the up-steam regulators of GSK 3β,
PI-3K (Tyr607), and Akt (Thr72) (Table 2). Further, the antibody
array confirmed the significant phosphorylation of GSK-3β (Ser9)
and the phosphorylation of the downstream cytokine-activated
intracellular signaling pathway involved in stimulating immune
responses, inhibitor of NF-κB, IκB (Ser23), the IκB subunit IKK-β
(Tyr188), and the NF-κB subunits p105 (Ser927), p65 (Ser529),
and c-Rel (Tyr 1054) (Table 2). Activated IKK-β phosphorylates
IκB, which binds NF-κB to inhibit its function. Phosphorylated
IκB is degraded via ubiquitination, thus releasing NF-κB, for entry
into the nucleus of the cell where it activates various inflammatory
and immune response genes (27).

EFFECT OF GSK-3β ON HETEROPHIL DEGRANULATION
We verified that stimulation of heterophils with S. Enter-
itidis resulted in increased degranulation in a bacterial

concentration-dependent manner (Figure 4). Interestingly, treat-
ing the heterophils with the GSK-3β inhibitor, LiCl, significantly
(p≤ 0.01) reduced degranulation to baseline levels.

DISCUSSION
We and others have shown that the heterophil, as the predominant
polymorphonuclear cell in poultry, is the primary innate immune
effector cell in the initial response to Salmonella infection (28–32).
Heterophils can be found in the lamina propria of the ceca within
hours after Salmonella infection (28, 33–36) and are reliant more
on degranulation to kill bacteria (37, 38) than an oxidative burst
due to the lack of myeloperoxidase (39). Heterophils have been
shown to possess all 10 toll-like receptors identified in the chicken,
and they can be functionally activated in vitro with either TLR
agonists or intact bacterial cells (24, 25, 40–44).

We have been investigating the kinase-mediated signaling path-
ways initiated in heterophils during its interactions with Salmo-
nella (24–26, 44), but have not identified the method of regulation
of the effector mechanisms within these phagocytic cells. GSK-3
is a multifunctional serine/threonine kinase that has been recently
shown to regulate elements of both the innate and acquired
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FIGURE 4 | Inhibition of GSK-3β regulates primary degranulation by
avian heterophils stimulated with S. Enteritidis. Heterophils were
pre-incubated with LiCl for 1 h and then stimulated with various MOI of
S. Enteritidis for 1 h at 41°C. Heterophils (8×106) were incubated with either
RPMI 1640 medium alone or the GSK inhibitor, LiCl at room temperature for
1 h. The heterophils were then stimulated with various MOI of S. Enteritidis
(1, 10, or 100) for 1 h at 41°C. The reaction was stopped by transferring the
tubes containing the cells to an ice bath for 5–10 min. The cells were then
centrifuged at 250 g for 10 min at 4°C. The supernatants were then removed
and used for the assay. A 25 µl aliquot of each supernatant was added to

quadruplicate wells in a non-treated, black CoStar flat-bottom ELISA plate and
incubated with 50 µl of freshly prepared substrate (10 mM
4-methylumbelliferyl-β-d-glucuronide, 0.1% Triton X-100 in 0.1M sodium
acetate buffer) for 4 h at 41°C. The reaction was stopped by adding 200 µl of
stop solution (0.05M glycine and 5 mM EDTA; pH 10.4) to each well. Liberated
4-methylumbelliferone was measured fluorimetrically (excitation wavelength
of 355 nm and an emission wavelength of 460 nm) with a GENios Plus
Fluorescence Microplate Reader (TECAN US Inc., Research Triangle Park, NC,
USA). These values were converted to micromoles of 4-methylumbelliferone
generated using a standard curve of known concentrations. *p≤0.01.

immune responses (9, 45). GSK-3 has two major isoforms (α
and β) encoded by two separate genes (gsk3α and gsk3β) (46)
that are structurally very similar, but functionally distinct (47, 48).
Here, we have characterized the role of GSK-3β in mediating the
pro-inflammatory response of heterophils following S. Enteritidis
infection.

As part of our microarray analysis of S. Enteritidis-infected
heterophils (10, 11), we observed a significant increase in GSK-
3β transcription within 30 min that was maintained at 60 min
(Table 1). The differences were also observed at 120 min (3.01-fold
change from uninfected controls, p< 1.72× 10−8) and 180 min
(2.69-fold change from uninfected controls, p< 5.37× 10−8). In
resting cells, GSK-3 is constitutively active and functions in sup-
pressing multiple cell signaling cascades (49). In the resting cells,
GSK-3 forms a complex with the proteins, β-catenin, and adeno-
matosis polyposis coli (APC) that inhibits the phosphorylation
of β-catenin, IκB, and NF-κB and preventing activation of the
pro-inflammatory process (8, 45). The increased transcription of
GSK-3β in heterophils during their interaction with S. Enteritidis
implicates its physiological role in the activation of the pro-
inflammatory response to infection. Further data found here con-
firmed this conclusion (increased expression of pro-inflammatory

cytokines, decreased expression of anti-inflammatory cytokines,
increased heterophils degranulation).

In response to extracellular stimuli, GSK-3 activity can be reg-
ulated by phosphorylation (7). GSK-3β can either be activated by
phosphorylation of Tyr216 or inactivated by phosphorylation of
Ser9. The results found here determined that increased expression
of GSK-3β in response to S. Enteritidis resulted in an increase
in protein level of total GSK-3β (Figure 1A) and that GSK-3β

is phosphorylated at Ser9 (Figure 1B). This site-specific phos-
phorylation of GSK-3β results in the inactivation of its kinase
activity (50). Thus, our data imply that heterophil phagocytosis
(28) of Salmonella specifically alters GSK-3β activity by inducing
its phosphorylation.

Transcription factors of the NF-κB family remain in a quies-
cent state, complexed with inhibitory IκB proteins, in the cytosol
of virtually all vertebrate cells. Upon activation, IκB proteins are
phosphorylated and released from NF-κB, which then undergoes
nuclear translocation and initiates gene transcription (27). NF-κB
is composed of homo- and heterodimer complexes made from
the five subunits of the NF-κB family (p50, p65, p52, c-Rel, and
RelB) (27, 51). The phosphorylation of IκBα following cell acti-
vation induces the release of NF-κB dimers, which translocate to

www.frontiersin.org November 2014 | Volume 1 | Article 10 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Infectious_Diseases/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kogut et al. GSK-3B in heterophil response to Salmonella

Table 2 | Antibody array.

Protein names Fold change in

antibody array

p value

PI-3K p85 (Phospho-Tyr607) 1.19439 0.007701275

Akt1 (Phospho Thr72) 1.257975108 0.023662291

Akt1 (Phospho-Thr450) 1.400143780 0.008226435

Akt1 (Phospho-Thr246) 1.83942 0.01851747

Akt1 (Phospho-Thr 474) 1.069000 0.046647641

p70S6 Ribosomal protein

(Phospho-Ser411)

−1.058166076 0.024709023

p70S6 Ribosomal protein

(Phospho-Thr 229)

−1.198203352 0.00514916

Casein kinase 1 (Phospho-Thr321) 1.021481145 0.003365457

GSK-3β (Phospho-Ser9) 1.753216 0.014375

CREB (Phospho 133) −1.06934158 0.015833103

CREB (Phospho-129) −1.144177379 0.01822392

STAT3 (Phospho-Ser727) −1.046664685 0.01141102

STAT5A (Phospho-Tyr694) −1.354049745 0.04702416

STAT6 (Phospho-Tyr641) −1.378348682 0.024248987

IκκB (Phospho-Tyr188) 1.120064897 0.004702625

IκB (Phospho-Ser23) 1.078084635 0.008557762

NF-κB p105 (Phospho-Ser927) 1.16871 0.000567265

NF-κB p65 (Phosphor-Ser 529) 1.065544284 0.012505685

c-Rel (Phospho-Tyr 1054) 1.250518061 0.029025748

β-catenin (Phospho-Thr41/Ser45) 1.302534522 0.035787183

the nucleus. In our assays as we described previously (18), we
found that S. Enteritidis stimulation of heterophils activated NF-
κB, composed of the p50, c-Rel, and/or RelB subunits. However, we
cannot rule out the activation of either the p65 or p52 subunit dur-
ing chicken heterophils activation due to unavailability of proper
reagents to analyze the role of p65 and p52. Furthermore, treating
the heterophils with either the IκB phosphorylation inhibitor, BAY
11-7086, or the cell-permeable, inhibitory peptide of the nuclear
translocation of NF-κB, SN50, prevented the activation of NF-κB
(Figures 3A–C).

GSK-3β- and NF-κB-mediated signaling pathways are directly
linked (52). Inactivation of GSK-3β by phosphorylation at Ser9
induced by bacterial infections results in the degradation of β-
catenin, the phosphorylation of IκB by the IKK complex, freeing
NF-κB to translocate to the nucleus (53), which, in turn, leads to
an increase expression of pro-inflammatory cytokine genes and
release of antimicrobial factors. The results of the present experi-
ments confirm that phosphorylation of GSK-3β (Ser9) results in
the activation of NF-κB (Figures 3A–C). The role of GSK-3β as a
mediator of NF-κB activation was shown by the total inhibition of
NF-κB subunit activation by the specific GSK-3β inhibitor, lithium
(Figures 3A–C).

As expected and found in previous studies, S. Enteritidis infec-
tion induced the upregulation of pro-inflammatory cytokines,
specifically in these experiments IL-6 (Figure 2A). GSK-3β inac-
tivation using lithium augmented anti-inflammatory cytokine
production (IL-10) while concurrently suppressing the produc-
tion of pro-inflammatory cytokines (Figures 2A,B). Similar

results have been described with a number of viral and bacterial
infections including Venezuelan Equine encephalitis virus, Frani-
cisella tularensis, Burkholderia psuedomallei, and S. Typhimurium
(51, 53–56). It is evident that GSK-3β plays a crucial regulatory
role in controlling the quality and extent of the cytokine response
to a number of bacterial infections in different hosts. Tay and
colleagues (54) have described this as a “distinct survival advan-
tage” for the host during an infection since the event controls the
“cytokine storm” that can be initiated and mediated by bacteria
during an acute infection as a strategy to favor their own survival
(57, 58). Further experiments will be needed to determine whether
GSK-3β can be modulated to influence susceptibility to infection
in chickens.

By using an antibody microarray containing both pan-specific
and phospho-specific antibodies instead of western blots, we were
able to quantify the phosphorylation events induced in the GSK-
3β signaling cascade (Table 2). A number of interesting responses
were found by using the phosphor-specific antibody array. First,
we confirmed that infection of S. Enteritidis by the heterophils
induced the phosphorylation of GSK-3β at Ser9. In addition, we
showed the phosphorylation of IκB complex, and phosphorylation
of multiple subunits of NF-κB confirming activation demon-
strated with the NF-κB activation assays (Figures 3A–C). Second,
the antibody array provides data that PI3K/Akt signaling inac-
tivates (phosphorylates) GSK-3β to allow the enhanced NF-κB
activity resulting in the increased expression of pro-inflammatory
cytokines in heterophils following infection with S. Enteritidis.
Similar results have been reported in macrophages infected with
the gram-negative respiratory bacterium, Burkholderia cenocepa-
cia (55). We have previously shown that receptor-mediated phago-
cytosis of S. Enteritidis by heterophils activated PI-3K and Akt
(24–26). The antibody array data provide new information on
the downstream events by which PI3K/Akt modulates heterophils
effector function through inactivation of GSK-3β and enhances
NF-κB activity. Third, the inactivation of GSK-3β by phospho-
rylation at Ser9 positively regulated NF-κB activity, but, based
on the antibody array data, negatively regulated the transcrip-
tion factors, cAMP-response element-binding protein (CREB),
and signal-transducer and activator of transcription (STAT3, 5A,
and 6). These results imply that the phosphorylation of GSK-3β

in heterophils differentially regulate transcription factor activity.
This differential regulatory activity on transcription factor activa-
tion has previously been reported in human monocytes stimulated
with TLR agonists (59). Activation of STAT3 and STAT5 are depen-
dent on GSK-3 activation (60), so inactivation of GSK-3β by
phosphorylation inactivates STAT 3 and STAT5 as observed here.
Fourth, results from the antibody array showed the dephosphory-
lation of the target of mTORC1, p70S6 ribosomal protein. These
results have been reported in monocytes stimulated with LPS,
where mTORC1 regulates GSK-3β activity through the activation
of the p70 S6 ribosomal protein (45). Inhibition of S6 riboso-
mal protein phosphorylation blocks GSK-3β activity resulting
in increased pro-inflammatory and decreased anti-inflammatory
activities (45). The results from the antibody array are suggestive
of a similar mechanism at play in the S. Enteritidis-infected het-
erophils. Finally, we measured an increase in phosphorylation of β-
catenin, a transcription factor that regulates cell proliferation and
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inflammation (53). β-catenin is a negative regulator of inflamma-
tion acting in a manner similar to IκB in physically binding to NF-
κB, thereby preventing its activation (53, 61, 62). S. Typhimurium
intestinal infection in a murine model induces the phosphoryla-
tion of GSK-3β which, in turn, induces the phosphorylation of
β-catenin and results in the translocation of NF-κB to the nucle-
ase (53). Based on the results presented here, we speculate that
a similar series of events occurs in the S. Enteritidis-infected het-
erophils resulting in the increased expression of pro-inflammatory
cytokines and release of pro-inflammatory effector mediators
(degranulation). Although further experiments are required to
prove this mechanism of heterophils activation, it is reasonable to
believe that based on the results found here that this speculation
is accurate.

In summary, we have demonstrated a role for GSK-3β in
mediating a pro-inflammatory response in chicken heterophils
to infection with S. Enteritidis. Our data revealed that the phos-
phorylation of GSK-3β (Ser9) is responsible for inducing and
controlling an innate response to the bacteria. We have iden-
tified how GSK-3β regulates the pro-inflammatory reactions of
heterophils in response to a Salmonella infection and charac-
terized the molecular interactions central to this response. Our
findings suggest that the repression of GSK-3 activity is beneficial
to the host cell and may act as a target for treatment in con-
trolling intestinal colonization in chickens. Further experiments
will define the in vivo modulation of GSK-3 as a potential alter-
native to antibiotics in salmonella and other intestinal bacterial
infections.
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