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The derivation of canine embryonic stem cells and generation of canine-induced pluripo-
tent stem cells are significant achievements that have unlocked the potential for devel-
oping novel cell-based disease models, drug discovery platforms, and transplantation
therapies in the dog. A progression from concept to cure in this clinically relevant compan-
ion animal will not only help our canine patients but also help advance human regenerative
medicine. Nevertheless, many issues remain to be resolved before pluripotent cells can
be used clinically in a safe and reproducible manner.
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Canine Embryonic Stem Cells

We were among a number of research groups between 2007 and 2009 who derived numerous canine
embryonic stem cell (cESC) lines from blastocyst stage embryos (1–6) (Table 1). These cESC lines
expressed the core pluripotencymarkers (Oct4, Sox2, andNanog) andwere capable of differentiating
into representative lineages of all three germ layers in vitro. Limited proliferative potential was
observed for several cESC lines tested by a few research groups (1, 2), while only the cESC lines
established by the Hough and Betts labs were capable of forming modest teratomas in vivo (4, 5).

Canine ESC colonies seem to exhibit two phenotypically discrete morphologies, with some
colonies having distinct borders and a flattened appearance similar to humanESCs (hESCs), whereas
others were three-dimensional, round, tightly packed colonies that resemble mouse ESCs (mESCs).
Interestingly, our mESC-like cESCs could not be successfully propagated long-term in KnockOut
serum (KSR)-containing medium supplemented with leukemia inhibitory factor (LIF) and basic
fibroblast growth factor (bFGF) (5), while the cESCs derived by Hayes et al. could not be cultured
long-term in medium containing LIF only, but formed loosely adhered colonies interspersed
with feeder cells (3). The hESC-like cESCs generated differed in growth factor dependency, as
prolonged maintenance required supplementation with either soley LIF or LIF and bFGF (4, 5).
Morphologically distinct cESC may represent multiple and perhaps metastable pluripotent states
(e.g., naïve and primed) that have been recently characterized for bothmouse andhumanpluripotent
stem cells (PSCs) (7–9). It appears as though naïve and primed pluripotency may be at least partly
conserved within other Eutherian mammals because PSC lines with naïve-like characteristics have
been derived from rabbits (10), pigs (11), cows (12), and perhaps the dog (13). Many of these lines
must be established and/or maintained in the presence of LIF and inhibitors of glycogen synthase
kinase 3β and the MAP kinase pathway (2i), which suppress pro-differentiation stimuli (14). In
depth “omics” examination of the molecular signatures underlying cESCs and preimplantation dog
embryos will allow a greater understanding of themost relevant embryonic counterparts of differing
metastable pluripotent states and will help define and optimize specific culture conditions for their
unlimited self-renewal and directed differentiation into therapeutically desirable cell types.
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TABLE 1 | Summary of canine embryonic stem cells (cESCs) derived from dog embryos.

Reference Derivation
method

Basal media Growth
factors

Feeder
layers

In vitro
differentiation

In vivo
differentiation

Long-term
culture

(1) Mechanical DMEM/F12, 20% FBS mLIF MEFs
(mitomycin C)

By morphology ND Two cell lines,
eight passages

(2) Explant DMEM/F12, 15% FBS hLIF MEFs Flow cytometry/RT-PCR ND One cell line, ND

(3) Explant DMEM/F12, 15% FBS hLIF MEFs
(γ-irradiation)

EB formation,
differentiation markers

Unsuccessful
NOD/SCID

One cell line,
>20 passages

(4) Explant DMEM/F12, 15% ESC-
qualified FBS or KSR

hLIF,
hbFGF

MEFs
(γ-irradiation)

EB formation, directed
differentiation

Teratomas
NOD/SCID

Four ESC lines,
>25 passages

(5, 6) Explant and
immuno-dissection

KO-DMEM, 15% KSR hLIF,
hbFGF

MEFs
(γ-irradiation)

EB formation, directed
diff. functional test

Limited teratomas
NOD/SCID

10+ cESC lines,
>37 passages

ND, not determined; KO, knockout; KSR, knockout serum replacement.

Canine-Induced Pluripotent Stem Cells

In 2006, Takahashi and Yamanaka (15) demonstrated that mouse
embryonic fibroblasts could be reprogramed to a pluripotent state
by the over-expression of exogenous pluripotency transcription
factors (Oct-4, Klf4, Sox2) and c-Myc (OKSM). These so-called
induced pluripotent cells (iPSCs) exhibit indefinite proliferative
capacity and were deemed pluripotent by the expression of ESC-
specific genes and the formation of embryoid bodies and ter-
atomas. It was also shown that they could contribute to chimeric
embryos with germline competency, demonstrating that iPSCs
and ESCs exhibit similar in vivo differentiation capabilities (16).
This initial publication has spurred a whole new research field
and subsequently iPSCs have now been generated in a number of
different mammals including the dog (17–19). However, random
infection and integration of viral transgenes introduces both pop-
ulation heterogeneity and asynchrony to iPSC generation. Pre-
sumptive iPSC clones should be extensively screened with surface
markers that best correlate with active endogenous pluripotency
circuitry (20, 21). Unfortunately, there are discrepancies with
regards to the antigen profile of ciPSCs and not all laboratories
have access to canine embryos to properly control for antibody
specificity (22–24). To date, there have been seven reports on the
production of canine (c)iPSCs (Table 2). Two studies reprogramed
canine embryonic fibroblasts (23, 25), while three used adult skin
fibroblasts of various ages as the source of parental cells (22,
26, 27) by either retro- or lentiviral transduction of dog (25),
human (23, 26, 27), or mouse (22) pluripotency transcription
factor homologs. Two studies reported the generation of ciPSCs
from adipose multipotent stromal cells (24, 26), whereas the
Cibelli laboratory reprogramed from testicular fibroblasts (28).
The ability to reprogram cells from multiple tissues accessible
during routine procedures minimizes unnecessary harm to the
patient, but it is currently unknown why different somatic cell
types achieve dissimilar reprograming efficiencies (26).

Like their cESC counterparts, the majority of generated ciPSCs
favor dual-factor culture of both bFGF and LIF for proliferation
in the undifferentiated state (22–26, 28), but with only a few
reports of in vivo teratoma formation (22, 26). A LIF-dependent
ciPSC line was established using the standard “Yamanaka” factors
(OCT4, KLF4, SOX2, and c-MYC) plus LIN28 and NANOG, how-
ever germ cell-like tumors were formed upon engraftment into
NOD/SCID mice (27). It is presently unclear if species-specificity

of reprograming factors is important for proper pluripotency
induction in the dog because most of the ciPSCs were generated
by retroviral transduction with human and murine homologous
sequences that remain expressed in late passage ciPSCs (22, 23,
27, 28). However, these retroviral methodologies are not favor-
able for prospective clinical transplantation therapies because of
their biased, non-random integration of transgenic sequences in
promoter and coding regions, which result in dysregulation of
endogenous gene expression leading to possible tumorigenesis
and/or immunogenicity problems (29, 30). Alternatively, non-
integrating reprograming systems have been developed and uti-
lized in other species including episomal vectors, mini circle
DNAs, plasmid vectors, small molecules, mRNAs, recombinant
proteins, and transposons (31). Utilization of either the non-
integrating Sendai viral-based or Cre-excisable lentiviral-based
reprograming systems along with small molecular facilitators of
DNA demethylation on canine fibroblasts should facilitate the
generation of transgene integration-free iPS cells in the dog.

Considerations for Clinical Translation of
Canine Pluripotent Stem Cell Technologies

The generation of canine pluripotent stem cells (cPSC) with
disease-specific alleles and the derivation of cell types afflicted
by the disease promises the development of novel cellular dis-
ease models, drug screening platforms, and potential regenerative
therapies. It seems that cPSC technologies may be on the verge
of clinical translation in the dog (6, 23, 26, 32), however to
facilitate these cPSC-based treatments a number of hurdles need
to be overcome. Canine iPSC generation efficiencies have not
been routinely included in publications, but have been reported
as low as 7.0× 10−4% (27). This poses a fundamental question
regarding the optimal trophic and physicochemical requirements
of cPSCs. To date, we are unsure of how or when key signaling
pathways are critical for the growth and epigenetic resetting of
transduced canine cells. Despite of this fact, two canine somatic
cell reprograming protocols have applied the transforming growth
factor β (TGFβ) receptor inhibitor A-83-01 (25, 27), presumably
to facilitate epithelialization of transduced cells.

Current differentiation strategies for PSCs produce cell types
that correspond to immature, but lineage-committed cells from
embryonic or fetal sources. Subsequently, PSC derivatives are
matured with sequential growth factor exposure within a
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TABLE 2 | Summary of canine induced pluripotent stem cells (ciPSCs) generated from dog cells.

Reference Cell
sources

Basal media Media
supplements

Feeder
layers

In vitro
differentiation

In vivo
differentiation

Reprogram
method

(25) Embryonic fibroblasts Primate ES medium bFGF,
hLIF+ 3i VPA

MEFs In vitro differentiation ND Retrovirus
(canine OKSM)

(28) Testicular fibroblasts DMEM/F12, 15%
KSR

bFGF, hLIF MEFs Embryoid bodies No teratoma
formation

Lentivirus
(human OKSM)

(26) Adipose stromal
cells, skin fibroblasts

KO-DMEM, 20%
ES qualified FBS

bFGF, hLIF MEFs Embryoid bodies Teratomas Lentivirus
(human OKSM)

(27) Dermal fibroblasts KO-DMEM/F12,
20% KSR

mLIF MEFs ND Germ cell-like
tumor

Lentivirus
(human OKSMLN)

(22) Skin fibroblasts DMEM/F12, 20%
KSR

bFGF,
hLIF+ 2i

MEFs Embryoid bodies Teratomas Retrovirus
(mouse OKSM)

(23) Embryonic fibroblasts DMEM/F12, 20%
KSR

bFGF, hLIF MEFs Embryoid bodies, platelets ND Lentivirus
(human OKSM)

(24) Ad-MSCs DMEM/F12, 15%
FCS

bFGF, LIF MEFs Spontaneous differentiation,
embryoid bodies

ND Retroviral
(human OKSM)

ND, not determined; OKSM, OCT4, KLF4, SOX2, and c-MYC transgenes; LN, LIN28, NANOG transgenes.

microenvironmental niche that favors the desired cell type (33).
We have established synaptically competent neurons from cESCs,
but were only functional when co-cultured with primary neu-
rons derived from canine fetuses (6). Nishimura and colleagues
differentiated ciPSCs into mature megakaryocytes that released
functional platelets in vitro (23), while Deanne Whitworth has
recently derived highly proliferative mesenchymal stromal cells
(MSCs) from ciPSCs that undergo robust differentiation into the
osteo-, chondro- and adipogenic cell lineages (32). Excitingly,
Joseph Wu’s group at Stanford has demonstrated the preclinical
potential of ciPSCs by treating immunodeficient mouse models
ofmyocardial infarction and hindlimb ischemia with transplanted
endothelial cells derived from ciPSCs (26).

All cPSC lines have been established and differentiated in cul-
ture systems that expose the canine cells to proteins or feeder
cells from another species. Xeno-contamination is an important
biosafety concern for graft recipients and can be limited if chemi-
cally defined culturemedia (i.e., serum free with recombinant fac-
tors) can be adapted for the derivation and maintenance of cPSCs
(34). Moreover, technologies that enable the characterization of
desired cell fates in individual cells (e.g., flow-based quantification
of marker expression, RNA-sequencing, chromatin state, etc.) and
the production of highly purified cell types with adult-like func-
tional properties in vivo (e.g., small molecule inhibitors/activators
of signaling pathways, three-dimensional scaffolds, etc.) need to
be further developed (33).

Combining patient-specific ciPSC generation with targeted
genome editing technologies (35) will enable correction of genetic
defects, thereby offering potential treatment of some inherited
canine diseases (36). Initially, genome editing will allow for the
genetic alteration of existing cESC lines or gene correction of
ciPSC lines that have been reprogramed fromdiseased canine cells
to produce isogenic comparisons that can be utilized for disease
modeling. In the long term, diseased and allele-corrected ciPSCs
will serve as provocative tools within pharmacological screening
platforms for efficient and predictive drug discovery and toxicity
studies for the treatment of various diseases in the dog (36, 37).
It is anticipated over the next few years that the CRISPR/Cas9
genome editing system will be rapidly implemented as a means to

conduct loss-of-function gene mutation studies in cESCs and/or
to correct genetic mutations in ciPSCs generated from fibroblasts
with a disease-causing allele, as a proof of principle study.

Realizing the therapeutic potential of PSCs for clinical appli-
cations remain a central goal for the veterinary and scientific
communities. Since at least half of all heritable canine diseases are
known to have human equivalents (38), the dog will increasingly
become an unrivaled translational animal model for developing
stem cell-based therapies in humans as well. Thus, key compo-
nents for any successful cPSC-based treatment will be the ability
to efficiently produce ciPSCs without off-target genetic alterations
or karyotypic abnormalities (39), to produce a pure population
of cPSC derivatives in a scalable and good manufacturing prac-
tice (GMP)-cooperative manner, and the selection of appropriate
diseases to target for regenerative medicine in the dog (33, 36).
The relatively relaxed legal and ethical regulation of veterinary
stem cell research compared to human medicine has facilitated
the development and clinical application of a number of unproven
cell-based therapies in large animals including the dog (40). The
Food and Drug Administration (FDA) recently issued a draft
guidance for industry on cell-based products for animal use (Draft
Guidance #218) that clarifies how existing FDA regulations apply
to cell-based products and encourages stakeholders to communi-
cate and interact with the FDA early in the developmental process
for each stem cell product. These guidelines and future FDA
regulations of veterinary stem cell-based therapies may spearhead
the much-needed double-blinded, randomized, and controlled
clinical trials to properly evaluate the safety, utility, and efficacy
of cPSC-based therapies in the dog.

Acknowledgments

This commentary is an updated and revised review of a paper
presented at the 2015 North American Veterinary Regenerative
Medicine Association (NAVRMA) Meeting held June 28–July 1
at Asilomar Conference Hotel, Monterey, CA, USA. DB and IT
thank Dr. Thomas Koch for his careful review of the manuscript.
The financial support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) is gratefully acknowledged.

Frontiers in Veterinary Science | www.frontiersin.org October 2015 | Volume 2 | Article 413

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


Betts and Tobias Canine pluripotent stem cells

References
1. Hatoya S, Torii R, Kondo Y, Okuno T, Kobayashi K, Wijewardana V, et al. Isola-

tion and characterization of embryonic stem-like cells from canine blastocysts.
Mol Reprod Dev (2006) 73:298–305. doi:10.1002/mrd.20392

2. Schneider MR, Adler H, Braun J, Kienzle B, Wolf E, Kolb HJ. Canine embryo-
derived stem cells – toward clinically relevant animal models for evaluating
efficacy and safety of cell therapies. Stem Cells (2007) 25:1850–1. doi:10.1634/
stemcells.2006-0357

3. Hayes B, Fagerlie SR, Ramakrishnan A, Baran S, Harkey M, Graf L, et al.
Derivation, characterization, and in vitro differentiation of canine embryonic
stem cells. Stem Cells (2008) 26:465–73. doi:10.1634/stemcells.2007-0640

4. Vaags AK, Rosic-Kablar S, Gartley CJ, Zheng YZ, Chesney A, Villagomez DA,
et al. Derivation and characterization of canine embryonic stem cell lines with
in vitro and in vivo differentiation potential. Stem Cells (2009) 27:329–40.
doi:10.1634/stemcells.2008-0433

5. Wilcox JT, Semple E, Gartley C, Brisson BA, Perrault SD, Villagomez DA, et al.
Characterization of canine embryonic stem cell lines derived from different
niche microenvironments. Stem Cells Dev (2009) 18:1167–78. doi:10.1089/scd.
2008.0336

6. Wilcox JT, Lai JK, Semple E, Brisson BA, Gartley C, Armstrong JN, et al.
Synaptically-competent neurons derived from canine embryonic stem cells by
lineage selectionwith EGF andNoggin.PLoSOne (2011) 6:e19768. doi:10.1371/
journal.pone.0019768

7. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell (2009)
4:487–92. doi:10.1016/j.stem.2009.05.015

8. Chen Y, Lai D. Pluripotent states of human embryonic stem cells. Cell Repro-
gram (2015) 17:1–6. doi:10.1089/cell.2014.0061

9. Wu J, Okamura D, LiM, Suzuki K, Luo C,Ma L, et al. An alternative pluripotent
state confers interspecies chimaeric competency. Nature (2015) 521:316–21.
doi:10.1038/nature14413

10. Osteil P, Tapponnier Y, Markossian S, Godet M, Schmaltz-Panneau B, Jouneau
L, et al. Induced pluripotent stem cells derived from rabbits exhibit some
characteristics of naive pluripotency. Biol Open (2013) 2:613–28. doi:10.1242/
bio.20134242

11. Fujishiro SH, Nakano K, Mizukami Y, Azami T, Arai Y, Matsunari H, et al.
Generation of naive-like porcine-induced pluripotent stem cells capable of con-
tributing to embryonic and fetal development. StemCells Dev (2013) 22:473–82.
doi:10.1089/scd.2012.0173

12. Verma V, Huang B, Kallingappa PK, Oback B. Dual kinase inhibition pro-
motes pluripotency in finite bovine embryonic cell lines. Stem Cells Dev (2013)
22:1728–42. doi:10.1089/scd.2012.0481

13. Hall V, Hinrichs K, Lazzari G, Betts DH, Hyttel P. Early embryonic develop-
ment, assisted reproductive technologies, and pluripotent stem cell biology in
domestic mammals. Vet J (2013) 197:128–42. doi:10.1016/j.tvjl.2013.05.026

14. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The
ground state of embryonic stem cell self-renewal. Nature (2008) 453:519–23.
doi:10.1038/nature06968

15. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse
embryonic and adult fibroblast cultures by defined factors. Cell (2006)
126:663–76. doi:10.1016/j.cell.2006.07.024

16. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced
pluripotent stem cells. Nature (2007) 448:313–7. doi:10.1038/nature05934

17. Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM. Derivation
of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S
A (2009) 106:10993–8. doi:10.1073/pnas.0905284106

18. Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ. Generation and
characterization of reprogrammed sheep induced pluripotent stem cells. Theri-
ogenology (2012) 77: 338–346.e331. doi:10.1016/j.theriogenology.2011.08.006

19. Talluri TR, Kumar D, Glage S, Garrels W, Ivics Z, Debowski K, et al. Derivation
and characterization of bovine induced pluripotent stem cells by transposon-
mediated reprogramming. Cell Reprogram (2015) 17:131–40. doi:10.1089/cell.
2014.0080

20. Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H, et al.
Live cell imaging distinguishes bona fide human iPS cells from partially repro-
grammed cells. Nat Biotechnol (2009) 27:1033–7. doi:10.1038/nbt.1580

21. Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, et al.
Single-cell expression analyses during cellular reprogramming reveal an early
stochastic and a late hierarchic phase. Cell (2012) 150:1209–22. doi:10.1016/j.
cell.2012.08.023

22. Koh S, Thomas R, Tsai S, Bischoff S, Lim JH, Breen M, et al. Growth require-
ments and chromosomal instability of induced pluripotent stem cells generated
from adult canine fibroblasts. Stem Cells Dev (2013) 22:951–63. doi:10.1089/
scd.2012.0393

23. Nishimura T, Hatoya S, Kanegi R, Sugiura K, Wijewardana V, Kuwa-
mura M, et al. Generation of functional platelets from canine induced
pluripotent stem cells. StemCells Dev (2013) 22:2026–35. doi:10.1089/scd.2012.
0701

24. Baird A, Barsby T, Guest DJ. Derivation of canine induced pluripotent stem
cells. Reprod Domest Anim (2015) 50(4):669–76. doi:10.1111/rda.12562

25. Shimada H, Nakada A, Hashimoto Y, Shigeno K, Shionoya Y, Nakamura T.
Generation of canine induced pluripotent stem cells by retroviral transduction
and chemical inhibitors. Mol Reprod Dev (2010) 77:2. doi:10.1002/mrd.21117

26. Lee AS, Xu D, Plews JR, Nguyen PK, Nag D, Lyons JK, et al. Preclinical deriva-
tion and imaging of autologously transplanted canine induced pluripotent stem
cells. J Biol Chem (2011) 286:32697–704. doi:10.1074/jbc.M111.235739

27. Whitworth DJ, Ovchinnikov DA, Wolvetang EJ. Generation and characteriza-
tion of LIF-dependent canine induced pluripotent stem cells from adult dermal
fibroblasts. Stem Cells Dev (2012) 21:2288–97. doi:10.1089/scd.2011.0608

28. Luo J, Suhr ST, Chang EA, Wang K, Ross PJ, Nelson LL, et al. Generation
of leukemia inhibitory factor and basic fibroblast growth factor-dependent
induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev
(2011) 20:1669–78. doi:10.1089/scd.2011.0127

29. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N,
Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients
after gene therapy for SCID-X1. Science (2003) 302:415–9. doi:10.1126/science.
1088547

30. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem
cells. Nature (2011) 474:212–5. doi:10.1038/nature10135

31. Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells:
mechanisms, achievements and perspectives in farm animals.World J StemCells
(2015) 7:315–28. doi:10.4252/wjsc.v7.i2.315

32. Whitworth DJ, Frith JE, Frith TJ, Ovchinnikov DA, Cooper-White JJ, Wolve-
tang EJ. Derivation of mesenchymal stromal cells from canine induced pluripo-
tent stem cells by inhibition of the TGFbeta/activin signaling pathway. Stem
Cells Dev (2014) 23:3021–33. doi:10.1089/scd.2013.0634

33. Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges
and recent progress. Nat Rev Genet (2014) 15:82–92. doi:10.1038/nrg3563

34. Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: his-
torical perspective and evolution of xeno-free culture systems. Reprod Biol
Endocrinol (2015) 13:9. doi:10.1186/s12958-015-0005-4

35. Li M, Suzuki K, Kim NY, Liu GH, Izpisua Belmonte JC. A cut above the rest:
targeted genome editing technologies in human pluripotent stem cells. J Biol
Chem (2014) 289:4594–9. doi:10.1074/jbc.R113.488247

36. Cebrian-Serrano A, Stout T, Dinnyes A. Veterinary applications of induced
pluripotent stem cells: regenerative medicine and models for disease? Vet J
(2013) 198:34–42. doi:10.1016/j.tvjl.2013.03.028

37. Ebert AD, Liang P, Wu JC. Induced pluripotent stem cells as a disease modeling
and drug screening platform. J Cardiovasc Pharmacol (2012) 60:408–16. doi:10.
1097/FJC.0b013e318247f642

38. StarkeyMP, Scase TJ,Mellersh CS,Murphy S. Dogs really areman’s best friend –
canine genomics has applications in veterinary and human medicine! Brief
Funct Genomic Proteomic (2005) 4:112–28. doi:10.1093/bfgp/4.2.112

39. Koh S, Piedrahita JA. From “ES-like” cells to induced pluripotent stem cells: a
historical perspective in domestic animals. Theriogenology (2014) 81:103–11.
doi:10.1016/j.theriogenology.2013.09.009

40. Volk SW, Theoret C. Translating stem cell therapies: the role of companion
animals in regenerative medicine. Wound Repair Regen (2013) 21:382–94. doi:
10.1111/wrr.12044

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Betts and Tobias. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordancewith
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Veterinary Science | www.frontiersin.org October 2015 | Volume 2 | Article 414

http://dx.doi.org/10.1002/mrd.20392
http://dx.doi.org/10.1634/stemcells.2006-0357
http://dx.doi.org/10.1634/stemcells.2006-0357
http://dx.doi.org/10.1634/stemcells.2007-0640
http://dx.doi.org/10.1634/stemcells.2008-0433
http://dx.doi.org/10.1089/scd.2008.0336
http://dx.doi.org/10.1089/scd.2008.0336
http://dx.doi.org/10.1371/journal.pone.0019768
http://dx.doi.org/10.1371/journal.pone.0019768
http://dx.doi.org/10.1016/j.stem.2009.05.015
http://dx.doi.org/10.1089/cell.2014.0061
http://dx.doi.org/10.1038/nature14413
http://dx.doi.org/10.1242/bio.20134242
http://dx.doi.org/10.1242/bio.20134242
http://dx.doi.org/10.1089/scd.2012.0173
http://dx.doi.org/10.1089/scd.2012.0481
http://dx.doi.org/10.1016/j.tvjl.2013.05.026
http://dx.doi.org/10.1038/nature06968
http://dx.doi.org/10.1016/j.cell.2006.07.024
http://dx.doi.org/10.1038/nature05934
http://dx.doi.org/10.1073/pnas.0905284106
http://dx.doi.org/10.1016/j.theriogenology.2011.08.006
http://dx.doi.org/10.1089/cell.2014.0080
http://dx.doi.org/10.1089/cell.2014.0080
http://dx.doi.org/10.1038/nbt.1580
http://dx.doi.org/10.1016/j.cell.2012.08.023
http://dx.doi.org/10.1016/j.cell.2012.08.023
http://dx.doi.org/10.1089/scd.2012.0393
http://dx.doi.org/10.1089/scd.2012.0393
http://dx.doi.org/10.1089/scd.2012.0701
http://dx.doi.org/10.1089/scd.2012.0701
http://dx.doi.org/10.1111/rda.12562
http://dx.doi.org/10.1002/mrd.21117
http://dx.doi.org/10.1074/jbc.M111.235739
http://dx.doi.org/10.1089/scd.2011.0608
http://dx.doi.org/10.1089/scd.2011.0127
http://dx.doi.org/10.1126/science.1088547
http://dx.doi.org/10.1126/science.1088547
http://dx.doi.org/10.1038/nature10135
http://dx.doi.org/10.4252/wjsc.v7.i2.315
http://dx.doi.org/10.1089/scd.2013.0634
http://dx.doi.org/10.1038/nrg3563
http://dx.doi.org/10.1186/s12958-015-0005-4
http://dx.doi.org/10.1074/jbc.R113.488247
http://dx.doi.org/10.1016/j.tvjl.2013.03.028
http://dx.doi.org/10.1097/FJC.0b013e318247f642
http://dx.doi.org/10.1097/FJC.0b013e318247f642
http://dx.doi.org/10.1093/bfgp/4.2.112
http://dx.doi.org/10.1016/j.theriogenology.2013.09.009
http://dx.doi.org/10.1111/wrr.12044
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive

	Canine pluripotent stem cells: are they ready for clinical applications?
	Canine Embryonic Stem Cells
	Canine-Induced Pluripotent Stem Cells
	Considerations for Clinical Translation of Canine Pluripotent Stem Cell Technologies
	Acknowledgments
	References


