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Cystoisospora suis is a coccidian species that typically affects suckling piglets. Infections 
occur by oral uptake of oocysts and are characterized by non-hemorrhagic transient 
diarrhea, resulting in poor weight gain. Apparently, primary immune responses to C. 
suis cannot readily be mounted by neonates, which contributes to the establishment 
and rapid development of the parasite, while in older pigs age-resistance prevents 
disease development. However, the presence of extraintestinal stages, although not 
unequivocally demonstrated, is suspected to enable parasite persistence together with 
the induction and maintenance of immune response in older pigs, which in turn may 
facilitate the transfer of C. suis-specific factors from sow to offspring. It is assumed 
that neonates are particularly prone to clinical disease because infections with C. suis 
interfere with the establishment of the gut microbiome. Clostridia have been especially 
inferred to profit from the altered intestinal environment during parasite infection. New 
tools, particularly in the area of genomics, might illustrate the interactions between C. 
suis and its host and pave the way for the development of new control methods not only 
for porcine cystoisosporosis but also for other mammalian Cystoisospora infections. The 
first reference genome for C. suis is under way and will be a fertile ground to discover 
new drugs and vaccines. At the same time, the establishment and refinement of an 
in vivo model and an in vitro culture system, supporting the complete life cycle of C. suis, 
will underpin the functional characterization of the parasite and shed light on its biology 
and control.
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inTRODUCTiOn

Cystoisospora suis (syn. Isospora suis), an apicomplexan parasite of swine, is the causative agent 
of neonatal porcine cystoisosporosis (coccidiosis). The parasite was first described in 1934 (1), 
but it received recognition only after the introduction of intensive, high-throughput pig breeding 
facilities in the mid-1970s (2–4). Suckling piglets are the most affected age group and frequently 
show pasty-to-watery non-hemorrhagic diarrhea and marked weight loss, while older pigs are 
less susceptible and excrete few or no oocysts without clinical signs upon infection. Despite high 
rates of morbidity, piglets exhibit high individual variability in the development of disease (5, 6), 
which leads to uneven weaning weights (7, 8). Infected piglets usually recover within 2 weeks post-
infection (9–11). Although cystoisosporosis has a ubiquitous distribution (12–15), the diagnosis is 
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still cumbersome because of variations in the excretion intensity 
(16) and short individual oocyst excretion periods (10).

Several species of the genera Eimeria and Cystoisospora can 
infect swine. Unlike in other livestock, where mixed infections 
with various Eimeria species are common (17–20), C. suis is 
the predominant pathogen in pigs (15, 21). Economic losses 
associated with coccidiosis in livestock are mainly due to 
impaired performance, retarded growth, mortality, and cost of 
treatment. Moreover, cystoisosporosis is thought to predispose 
the piglet to infection with secondary bacterial and viral patho-
gens, which subsequently increase morbidity, mortality, and 
managerial costs (22). There are no vaccines available so far, 
and toltrazuril is the only licensed drug for metaphylaxis that 
can effectively suppress oocyst excretion and improve piglet 
health both under experimental conditions (8, 23) and in the 
field (24). However, rapid emergence of resistance against all 
introduced anticoccidials in chicken Eimeria (25) is also of con-
cern regarding porcine cystoisosporosis, and there is an urgent 
need to develop new and sustainable intervention strategies 
against C. suis for combating neonatal porcine cystoisosporosis 
in the future.

An experimental model mimicking the field situation (10) in 
conventional piglets gave deeper insight into neonatal porcine 
cystoisosporosis. This was further strengthened by the establish-
ment of an in vitro culture system supporting the entire lifecycle 
of C. suis in intestinal porcine epithelial cells (26). Moreover, 
gnotobiotic piglets are available as infection models for specific 
applications (3, 21). Taken together, C. suis may serve as a rep-
resentative infection model for comparative research on mam-
malian cystoisosporosis.

CYSTOISOSPORA – wHAT DO we ReALLY 
KnOw ABOUT THe LiFe CYCLe?

Like other Cystoisospora species, C. suis entirely develops in one 
host (26, 27) (Figure  1). Directly after ingestion, sporulated 
oocysts undergo excystation and sporozoites invade the small 
intestine epithelium (12, 28) to reproduce within a parasitopho-
rus vacuole (29, 30). Asexual reproduction (merogony) peaks at 
day 4 and 5 post-infection. Unlike Eimeria, merogonic stages are 
not assigned to generations but to types defined by the number of 
nuclei, shape, size, and time of appearance (26, 27, 31). From day 
5, mature sexual stages can be identified (3, 31). After fusion to 
form a zygote, the unsporulated oocyst is excreted with the feces 
and undergoes sporogony outside the host (27, 28, 32).

Various environmental conditions influence the sporulation 
time. Lindsay et al. (33) found that the most rapid sporulation 
takes place between 30 and 37°C, which is well supported by 
the conditions prevailing in a modern farrowing unit. Rapid 
multiplication of sporozoites and merozoites inside the intestinal 
epithelium leads to massive histological alterations including 
atrophy, necrosis, and fusion of villi, hyperplasia of crypts, and 
desquamation of epithelial cells (12, 29, 34, 35). These changes 
persist for a considerable time after parasite development (8), 
which may contribute to the reduction in body weight gain due 
to lasting impairment of nutrient absorption.

Cystoisospora suis completes its life cycle within 5–6 days (36). 
Clinical signs can be seen as early as 3 days post-infection (dpi), 
shedding of oocysts typically starts on fifth dpi (6, 10, 21, 28, 31, 
35). However, these periods may differ, probably due to the age 
and health condition of the piglets and the virulence of the parasite 
strain (3, 10, 35). Oocyst excretion and symptoms show typical 
peaks at 5th–9th and 11th–14th dpi (21, 28, 30), which might be 
due to extraintestinal stages re-entering the intestines (3).

It has been shown for several Cystoisospora species (C. felis, 
C. rivolta, C. canis, and C. ohioensis) that sporozoites enter 
extraintestinal tissues, most often mesenteric lymph nodes but 
also liver, spleen, other lymph nodes or skeletal muscle, and form 
monozoic cysts. These extraintestinal stages have been found in 
definitive as well as in paratenic hosts (3, 27, 37). Also, C. belli 
extraintestinal cysts were described in humans (38). Paratenic 
hosts do not show clinical signs but act as carriers, since parasites 
can survive for at least 2 years within their tissues (32).

However, no study could so far unequivocally demonstrate 
the existence of C. suis extraintestinal stages in infected piglets 
or in potential paratenic hosts. Previous studies (31, 37, 39) 
could not provide evidence of extraintestinal stages in tissues of 
experimentally infected piglets or mice. Still, gnotobiotic piglets 
shed oocysts after intraperitoneal inoculation of liver, spleen, 
and lymph node homogenates from experimentally infected 
piglets (3).

In a preliminary study, C. suis-specific PCR of tissues from 
experimentally infected piglets revealed the presence of parasite 
DNA in several organs. In spleen and mesenteric lymph nodes, it 
could first be detected on the second dpi. In kidney tissues, it was 
detected on the second and in kidney and liver tissue from the 
fifth to the ninth dpi. In jejunal mucosa, it was found from the 1st 
dpi until the end of the study on 13th dpi (40). Although detection 
of DNA does not prove the presence of viable, infectious parasitic 
cells, these results indicate trafficking of C. suis to extraintestinal 
tissue, either by active migration or after phagocytosis, e.g., by 
macrophages, and still warrant further studies.

iMMUniTY AnD AGe ReSiSTAnCe 
AGAinST CYSTOISOSPORA – wHAT iS 
wHAT?

Many aspects, such as age, maturation of the gut immune system, 
as well as the immune status of the infected piglet, influence 
resistance to C. suis. Stuart et al. (41) showed that piglets infected 
during the first 3 days of their life develop severe clinical signs 
compared to 2-week-old infected piglets. Also, when piglets were 
infected at 3rd vs. 9th day of their life (or on both days) with 
high doses of C. suis, the clinical signs and oocyst output were 
most notable in early infection, while piglets infected on the 3rd 
and on 9th day of life and those infected for the first time on 
the day 9th of life did not significantly differ (42). Therefore, the 
authors concluded that age resistance (based on the maturation 
of the innate immune system) plays a more important role than 
acquired immunity. Age resistance seems to be a general feature 
in coccidiosis and is probably due to an increase of T cells and 
IFN-γ production in the spleen of mice with increasing age that 
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FiGURe 1 | Proposed model of C. suis development and immunity. (A) Oocysts are excreted with feces and undergo sporulation in the environment. (B) 
Sporulated oocysts excyst upon ingested by host to release sporozoites. (C) Sporozoites invade intestinal epithelium and develop to become merozoites (1). In 
contrast to Eimeria, merogony in C. suis is not synchronized but rather stages are defined as types (2–3). It is currently not known which type could act as 
extraintestinal resting stage. (D) Merogony is followed by gamogony resulting in fusion of macro- and micro-gametes to form a zygote and subsequently an oocyst. 
(e) The desynchronization of the merogonic development may also be responsible for the characteristic oocyst excretion occurring in two (or more) peaks, when 
some of the merozoites may undergo rapid development to gamogonic stages, while others enter into a development lag phase to undergo the sexual maturation 
for the next peak. (F) In response to infection, naïve B cells proliferate and produce IgA, IgG, and IgM. (G) Intake of colostrum and milk, rich in antibodies and 
cellular components could partially confer passive humoral immunity against C. suis from sow to piglets. (H) Following infection, TCR-γδ T cells show an almost 
30-fold increase in the epithelium and are assumed to be the major producers of IFN-γ, which could support the termination of primary infection in pigs harboring 
sufficient numbers of these cells in the gut, which is age dependent. (i) The existence of extraintestinal stages of C. suis in liver and spleen of adult pig has been 
proposed, but viable stages in these tissues have not been demonstrated yet.
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became resistant to primo infections with Cryptosporidium par-
vum (43). However, in some mammalian species, susceptibility 
increases with the age of the animal before it decreases again (44, 
45), which may also be related to changing immune responses in 
older animals (46).

Maturation of the porcine immune system can also influ-
ence the clinical outcome. Piglets are born with a premature 
immune system, which only starts to develop during the first 
few weeks of age. Neonatal piglets do not have well-developed 
Peyer’s patches; CD2+CD4− and CD8− T cells make most of the 
intraepithelial lymphocytes and CD8+ cells are not present until 
the seventh week of life. Also, T cells within the lamina propria 
of the small intestine and interfollicular areas of Peyer’s patches 
were found to be fewer compared to older pigs. Likewise, the 
small intestinal mucosa of new-born piglets is characterized by 
the absence of lymphoid cells with the exception of a few antigen 
presenting cells and T cells (47), which may explain the severity 
of the disease in young piglets due to the inability to adequately 
respond to the parasite. In older piglets, by contrast, Worliczek 

et al. (16) detected changes in the T-cell populations of infected 
piglets, which displayed decreased cell numbers in blood, spleen, 
and mesenteric lymph nodes and increased T-cell numbers in 
the epithelium and the lamina propria of the jejunum of C. suis 
infected piglets, indicating a specific immune response to infec-
tion. The most prominent subpopulation in the gut epithelium 
was T-cell receptor-γδ (TcR-γδ) cells, which are engaged in the 
primary immune response to pathogens (16, 34). TcR-γδ T-cells 
were also found to be involved in the immune response against 
other coccidian parasites, e.g., Eimeria vermiformis of mice (48).

For other coccidian parasites, humoral immune response 
seems to have a minor role in the protection mechanism. Schito 
et al. (49) suggested that primary infection with different Eimeria 
spp. is controlled by innate immune response. Stimulation of 
humoral immunity by Eimeria is known but its effectiveness in 
controlling the infection is still unclear (50). Immune sera from 
E. tenella-infected chicken and E. falciformis in mice enhanced 
the phagocytic activity of macrophages (51, 52). In spite of the 
fact that piglets are born with an immature immune system (47), 
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cellular immune responses might be involved in the development 
of immunity against coccidian parasites including C. suis (16, 53–
55). The role of passive immune response and the transmission 
of immune components from infected sows to piglets had been 
neglected by many authors (41, 56, 57). However, earlier works 
have shown that colostral antibodies may participate in resistance 
against natural infections with C. suis (58, 59). Recently, Schwarz 
et al. (60) demonstrated that naturally acquired C. suis-specific 
antibodies (IgA, IgM, and IgG) were transferred from sows to 
their piglets via colostrum, which in turn provided partial pro-
tection against the outcome of experimental infection (clinical 
disease and oocyst shedding) in the presence of high IgA titers 
in colostrum as well as milk and serum of superinfected sows. 
It is currently unclear whether the detected immunoglobulins 
have a protective function by themselves or are merely markers 
for protection conveyed by other, not yet explored, mechanisms.

CAn COMPARATive GenOMiCS HeLP TO 
UnRAveL BiOLOGY AnD SUPPORT new 
inTeRvenTiOn STRATeGieS?

While the genomes of many coccidian species are available in the 
ToxoDB database (61), C. suis is still lacking a reference genome. 
Moreover, the number of chromosomes is also unknown. 
To date, only few ribosomal and mitochondrial sequences of 
Cystoisospora species were generated for phylogenetic studies, 
which established that the genus Cystoisospora constitutes a 
monophyletic clade with the Sarcocystidae, and it is closely 
related to Toxoplasma and Neospora (62–64). These studies also 
confirmed the hypothesis that heteroxeny is an evolutionary 
derived character in Cystoisospora (62).

Current Next Generation Sequencing (NGS) technologies 
allow assembling of new genomes in a rapid and inexpensive 
way. First estimates based on NGS data showed that the genome 
of C. suis is about 84  Mb and contains more than 8000 genes 
(65). These numbers are comparable to other coccidian species; 
however, comparative genomics analyses revealed that only about 
60% of the C. suis genes have orthologs in T. gondii (65), implying 
a greater divergence than expected between these two species. 
Thus, to generate a comprehensive gene catalog of C. suis it will be 
crucial to integrate gene predictions with RNA-Seq data from dif-
ferent developmental stages. This will also allow for identification 
of genes involved in life stage transitions, as similarly performed 
in E. tenella (66). Finally, RNA-Seq can elucidate the molecular 
changes of C. suis and pig during infection, as exemplified in 
experiments in N. caninum (67) and T. gondii (68).

Intervention strategies can also be aided by genomics. 
Currently, the drug toltrazuril is the only treatment avail-
able against C. suis; however, resistance has already emerged in 
Eimeria (69), implying the necessity to find new effective drugs. 
The availability of the gene catalog of C. suis will be a starting 
point to detect drug targets, based on the functional annotation of 
protein-coding genes. Typically, annotation of gene function can 
be inferred on the basis of orthologous proteins, using tools such 
as Blast2GO (70). Afterwards, screening for drug targets can be 
performed on the basis of the functions of candidates identified 

as drug targets in other coccidia. These include protein kinases 
(71–73), apicoplast proteins (74), enzymes involved in fatty acid 
biosynthesis (75) and shikimate metabolism (76), mitochondrial 
proteins (77), and others, reviewed in Ref. (78). Another approach 
to identify drug targets involves comparing the metabolic path-
ways of parasite and host (79), for example, selecting pathways 
that are present in C. suis but absent in pig.

An alternative control route might be vaccination; however, 
there is at present no vaccine available against C. suis. Although 
early attempts using the merozoite attachment protein SAP 
induced a 96–99% reduction in merozoites (80), the resulting 
vaccine patent was withdrawn. In this regard, genomics can also 
contribute to vaccine discovery: using the reverse vaccinology 
paradigm (81), it is possible to screen the genome for vaccine 
candidates by identifying proteins with immunogenic features. 
This approach has been successfully applied in various bacterial 
species (82). However, the inherent complexity of eukaryotic 
pathogens has hindered the application of this strategy in such 
organisms. Recently, the feasibility of reverse vaccinology has 
been reviewed in the coccidian parasite N. caninum (83). In 
parallel, bioinformatics tools and pipelines have finally emerged 
to address the specific issue of detecting vaccine candidates in 
eukaryotic pathogens (84–87). An overview of the in silico analy-
sis of the C. suis genomics data is depicted in Figure 2.

inTeRACTiOnS OF C. SUIS wiTH THe 
GUT MiCROBiOTA

The gut ecosystem is maintained by close cross-talk between 
host, intestinal microbiota, and parasites (98), and ultimately 
this has implications on host health and diseases (99). Excretory 
and secretory products of intestinal parasites may continuously 
disrupt the balance between the gut microbiota and the body 
(100), whereas on the other hand, metabolic products of the 
microbiota may also interfere with the establishment and sur-
vival of parasites, subsequently changing the outcome of parasitic 
infection (100).

The digestive tract of piglets is sterile at birth and becomes rap-
idly colonized with microorganisms from the surrounding envi-
ronment (101, 102). Strict anaerobes predominate in the normal 
flora and this microbial composition and diversity underpins the 
health status of the pigs (103, 104), especially during the suckling 
and post-weaning period. Symbiotic interactions between host 
and gut microbiota mainly occur along the intestinal mucosa 
(105). Since C. suis is mainly localized in the intestinal mucosa, 
more precisely in the epithelial cells of the villi and, in heavier 
infections, also the crypts (12), it is prudent to assume that it may 
strongly interact with the gut microbiota of the host. It is well 
documented that coccidiosis in chickens highly influences the 
diversity of gut microbiota (106–108). Damage of intestinal epi-
thelium during intracellular multiplication of Eimeria enhances 
mucus secretion from goblet cells together with leakage of glyco-
proteins and mannose residues, which favors growth and adher-
ence of pathogenic bacteria-like Clostridium perfringens (109, 
110) and Salmonella typhimurium in germ-free chickens (111). 
More recently, Kirino et  al. (112) reported significantly higher 
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FiGURe 2 | Schematic view of the in silico analysis of genomic data for C. suis. The genome sequence can be assembled with next generation sequencing 
using a combination of short and long reads libraries. Tools such as CLC (CLC Bio-Qiagen, Aarhus, Denmark), Maker (88), and Blast2GO (70) can be applied for de 
novo assembly, annotation, and functional annotation, respectively. Other NGS technologies, such as RNA-Seq (89) and CHIP-Seq (90), together with proteomics 
(91), can be used to unravel the biology of the parasite and to discover new drugs and vaccines. Changes involved in host–parasite interaction (A) and 
developmental switches (B) can be identified both at the genetic and epigenetic level by RNA-Seq and CHIP-Seq, respectively: transcripts are reconstructed using 
the programs TopHat (92) and Cufflinks (93); differentially expressed genes are detected by edgeR (94); CHIP-Seq data are processed with the MACS software (95). 
(C) 3D structure of drug candidates can be reconstructed by homology using Swiss-Model (96); screening of virtual libraries of compounds can be performed with 
AutoDock (97). (D) Vaccine candidates can be identified using Vacceed (86) and validated by proteomics approaches, such as mass spectrometry, with the aid of 
the software PEAKS (Bioinformatics Solutions Inc., Waterloo, ON, Canada).
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Eimeria OPG count in fecal samples of Japanese beef cattle suffer-
ing from hemorrhagic enteritis compared to the control animals. 
Based on microbiological examination, the authors also found 
that the mean fecal coliform count was also significantly higher 
in the cattle harboring both Eimeria zuernii and Cl. perfringens.

Cystoisosporosis is characterized by high morbidity and low 
mortality within a litter. Increased mortality, however, may be 
related to coinfection and/or secondary bacterial infection (103, 
113). Entry of pathogenic microorganism following disruption 
of mucosal barrier as a result of multiplication of C. suis has also 
been demonstrated in pigs (114). Results obtained by Mengel et al. 
(103) highlighted a correlation between clostridial infection and 
clinical cystoisosporosis, which further confirms the hypothesis 
that C. suis creates a suitable environment for extensive develop-
ment of Cl. perfringens, as severe clinical signs and mortality 
occurred only in pigs that harbored both pathogens.

Klaus (115) examined the fecal flora of piglets from three 
groups, one infected with C. suis on the first day of life, one 
infected with C. suis and treated with toltrazuril 2  days later, 
and one uninfected group. It was evident that the fecal flora 

of young piglets undergoes significant changes during the first 
weeks of life, with an initial high excretion of E. coli and other 
enterobacteriaceae, followed by an increase of lactobacilli, which 
appeared to stabilize the intestinal environment. Irrespective of 
treatment groups, high numbers of enterococci were excreted 
during the period of parasitic invasion. The average excretion of 
Cl. perfringens was highest in the infected untreated group and 
lowest in the uninfected animals, indicating that infection with 
C. suis seems to alter the succession of bacterial colonization and 
that this effect can be partially reversed by toltrazuril treatment 
(115). These results are in accordance with a study conducted by 
Alnassan et al. (116), where prophylactic medication of chickens 
with toltrazuril before infection caused less severe coccidial and 
subsequent necrotic enteric lesions in treated individuals. Further 
research on the development of the gut microbiota during the 
first weeks of life is needed to understand the role of bacterial 
colonization in the pathogenesis of coccidiosis in young animals 
including piglets.

Moreover, as pigs may serve as an animal model for many 
human pathologies (117), interactions between C. suis, the gut 
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microbiota, and the intestinal immune system in piglets may also 
help to understand the pathogenesis of other neonatal diarrheal 
diseases in mammals.

COnCLUSiOn

Although current knowledge on the immunity and host– 
pathogen interactions of neonatal porcine cystoisosporosis is 
still fragmentary, recent findings indicate that sustainable control 
must focus on immunity-based methods and new drug targets, 
taking into consideration the interaction of the parasite with the 
gut microbiome. As the immature immune system in new-born 
piglets seems to be incapable of controlling the parasite, the role 
of maternal immunity should be reconsidered. The presence of 
a single available compound against cystoisosporosis calls for 
urgent development of new drugs and vaccines as sustainable 
control methods against C. suis. We prospect that genomics 
and transcriptomics analyses will certainly play a major role 

in finding new drug targets and vaccines. Moreover, since  
C. suis significantly disturbs the composition of the microbial gut 
community, intervention strategies must focus on a more holistic 
approach to piglet health. We anticipate that a deeper understand-
ing of the biology C. suis will favor the flourishing of studies in 
other mammalian hosts, where coccidiosis is often enigmatic and 
frequently neglected. Since new tools are available to carry out 
research on porcine cystoisosporosis, we propose that C. suis can 
serve as a model for cystoisosporosis in other mammals.
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