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The structure–function relationship of the temporomandibular joint (TMJ) of southern
sea otter has largely not been described. This study aims to describe the histological,
biochemical, and biomechanical features of the TMJ disk in the southern sea otter.
The TMJ disks from fresh cadaver heads of southern sea otter adult males (n=8)
and females (n=8) acquired from strandings were examined. Following macroscopical
evaluation, the TMJs were investigated for their histological, mechanical, and biochemical
properties. We found that the sea otter TMJ disks are, in general, similar to other
carnivores. Macroscopically, the TMJ disk was highly congruent, and the mandibular
head was encased tightly by the mandibular fossa with a thin disk separating the joint
into two compartments. Histologically, the articular surfaces were lined with dense fibrous
connective tissue that gradually transitioned into one to two cell thick layer of hyaline-
like cartilage. The disk fibers were aligned primarily in the rostrocaudal direction and
had occasional lacuna with chondrocyte-like cells. The disk was composed primarily of
collagen type 1. Biochemical analysis indicates sulfated glycosaminoglycan content lower
than other mammals, but significantly higher in male sea otters than female sea otters.
Finally, mechanical analysis demonstrated a disk that was not only stronger and stiffer
in the rostrocaudal direction than the mediolateral direction but also significantly stronger
and stiffer in females than males. We conclude that the congruent design of the TMJ,
thin disk, biochemical content, and mechanical properties all reflect a structure–function
relationship within the TMJ disk that is likely designed for the sea otter’s hard diet and
continuous food intake.

Keywords: temporomandibular joint, temporomandibular disk, southern sea otter, Enhydra lutris nereis,
structure–function
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INTRODUCTION

The temporomandibular joint (TMJ) is a synovial joint where
the head of the mandible on the condylar process articulates
with the mandibular fossa of the temporal bone (1). The fossa
and articular surface of the head of the mandible are separated
by an articular disk (1). A functioning and healthy TMJ and
disk ensures proper occlusion of teeth, effective mastication,
stress absorption, and dispersion of masticatory loads (2, 3).
In carnivores, the mandibular head moves in a hinge motion,
allowing only opening and closing the mouth with a minimal
or no lateral movement (4). The TMJ separates mammals from
other vertebrates, with its formation intricately associated with
the evolution of the three-ossicled ear (5, 6). Among different
animal species, the joint morphology, composition, and function
vary, reflecting differences in feeding mechanisms, anatomy, and
diet (7, 8).

Sea otters (Enhydra lutris) are small, blubber-less marine mam-
mals that occupy nearshore habitats in the north Pacific. Lacking
blubber, sea otters rely on their dense fur and high metabolic
rate for warmth (9, 10). A high metabolic rate necessitates a high
rate of food intake; they consume 20–30% of their body weight
in food per day (11). Sea otter prey includes a wide variety of
benthic invertebrates and fish, though the California subspecies
(southern sea otter; E. lutris nereis) almost exclusively eats inver-
tebrates, and rarely consumes fish (12). Invertebrate prey species
include many hard-shelled animals, such as crabs, sea urchins,
mussels, clams, and abalone (11). Although sea otters use tools
to open some hard-shelled prey, many prey items are crushed by
the teeth and powerful jaws (13). Direct consumption of hard-
shelled prey likely correlates with the presence of fractures and
attrition seen in otter dentition (11, 14), despite having enamel
that is 2.5 times tougher than humans (15). In addition, exposure
to abrasive sand particles in the diet may result in dental wear
(16). A recent analysis of a large southern sea otter skull collection
demonstrated the presence of TMJ osteoarthritis in 4.1% of the
specimens (17).

In carnivores, like the sea otters, the caudal end of the condylar
process of the mandible takes the form of a transversely oriented
cylinder that articulates snugly in a trough-like mandibular fossa
(19). Their dental arch includes 32 teeth as an adult consisting of
I3/2, C1/1, P3/3, and M1/2 that are dome shaped to dissipate ten-
sile stresses created by high occlusal forces needed for mastication
of hard food (14).

Because sea otters must consume ~25% of their body weight a
day in food to maintain their high metabolic rate, the presence
of TMJ abnormalities may reduce foraging abilities, potentially
affecting health and survival. Descriptions of dental anatomy and
pathology as well as TMJ disorders for a collection of dry skull
specimens of southern sea otters have been reported by our group
(14, 17). However, characterization of the soft and hard tissues
of the TMJ and understanding of its structure–function relation-
ship was undescribed. Therefore, this study aims to describe the
structure–function relationship of the TMJ disk of the southern
sea otter based on itsmorphological, histological, and biochemical
properties. Furthermore, our aim is to describe the biomechanical
characteristics of healthy TMJ disks.

MATERIALS AND METHODS

Specimens
The heads of 16 (8 females and 8 males) fresh dead or euthanized
southern sea otter carcasses were obtained from the California
Department of Fish and Wildlife sea otter necropsy program
in Santa Cruz, CA, USA, with authorization from the US Fish
and Wildlife Service. All of the specimens were skeletally mature
adults containing fully erupted adult dentition; five specimens
were further classified as aged adults (estimated age ≥10 years).
After collection, each head was labeled with age, sex, and a unique
identification number, and then the specimens were stored at
−20°C for 1–5months prior to dissection. Prior to dissection, the
heads were thawed at 20°C for 18–24 h.

Gross Evaluation
Cone beam-computed tomography (CBCT) of the otter skulls
was performed in order to provide aid and reference for gross
evaluation and description of the anatomical features. Transverse
images were obtained at a slice thickness of 0.3mm and the CBCT
images were processed using Invivo5 software (Anatomage, San
Jose, CA, USA) and evaluated on a medical-grade flat-screen
monitor. Three-dimensional reconstructive images were gener-
ated to assess the spatial relationship of the bones of the TMJ.
The TMJs were evaluated by observation and palpation as well as
manipulation of the jaws to evaluate the range of motion and jaws
movements.

Microscopic Evaluation
The TMJ disks were removed and fixed in 10% buffered formalin
for 48 h. In addition, the mandibular heads and mandibular fossa
of the temporal bones as well as one whole joint were fixed in
10% buffered formalin and underwent additional decalcification
in 15% formic acid prior to tissue processing. Samples were
then paraffin embedded and sectioned at 5μm and stained with
hematoxylin and eosin (H&E) according to standard protocol.
Additionally, 5μm sections were stained with picrosirius red for
collagen content and structure, safranin-O for glycosaminoglycan
(GAG) content, and Bielschowsky silver for nerve fibers. Exami-
nation under polarized light on the picrosirius red stained slides
was performed to assess collagen organization. Standard proto-
cols were followed when producing the special stains. Sections
were assessed histologically by a veterinary pathologist (Natalia
Vapniarsky).

Immunohistochemistry Evaluation
Five micrometers formalin-fixed paraffin-embedded sections of
theTMJ diskwere labeled for collagen type I and type II. The slides
were deparaffinized in two consequent washes of xylene and then
rehydrated in descending concentrations of ethanol (100, 95, 80,
and 75%). The endogenous peroxidases were blocked by 3%H2O2
in methanol. Subsequently, the samples were blocked with goat
or horse serum over 1 h at room temperature. Monoclonal mouse
anti-collagen type I (Abcam ab90395) or rabbit anti-collagen
type II (Abcam ab34712) primary antibodies were applied and
incubated at 4°C overnight. After subsequent washing, secondary
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antibodies (Vectastain ABC Kit, Vector Labs) were utilized and
incubated for 30min at room temperature. The color was devel-
oped with DAB substrate. The tissue sections were counterstained
with Weigert’s hematoxylin. Sections of native bovine menisci
were used as positive and negative control tissues for collagen type
I and collagen type II labeling.

Biochemical Characterization
Punch biopsy samples (3mm in diameter and ~0.3mm in thick-
ness) from the approximate central region of the TMJ disk were
used for biochemical analysis. Disk tissue was weighed and mea-
sured prior to and following 48 h of lyophilization. The lyophilized
tissue was digested in 125μg/mL papain (Sigma, St. Louis, MO,
USA) in phosphate buffer (pH 6.5) containing 2mM N-acetyl
cysteine (Sigma) and 2mM ethylenediaminetetraacetic acid for
18 h at 60°C. GAG was quantified using a Blyscan GAG assay
(Bicolor, Westbury, NY, USA) based on 1,9-dimethylmethyl blue
binding.

Mechanical Characterization
Tensile testing was performed on an Instron 5565 (Instron, Nor-
wood, MA, USA). Testing was conducted following American
Standardized TestingMaterials (ASTM) Standard D3039. Rectan-
gular samples, measuring ~5–15mm in length, 1.51± 0.34mm
in width, and 0.28± 0.09mm in thickness, of the TMJ disk in
the rostrocaudal and mediolateral direction were obtained from
TMJ disks stored in protease inhibitor solution and evaluated
using the Instron (18). Samples were positioned between two
clamps and elongated at a rate of 1% of gage length per sec-
ond and the load–displacement data were used to develop a
stress–strain curve. The linear portion of the stress–strain curve

was used to determine Young’s modulus (EY) and the ultimate
tensile strength experienced by the disk tissue. Image J software
(National Institutes of Health, Bethesda, MD, USA) was utilized
for themeasurement of the cross-sectionalwidth anddepth of disk
samples.

Scanning Electron Microscopy
Samples obtained from the joint were fixed in 3% glutaraldehyde
for 48 h at 4°C. They were then dehydrated in an ascending
series of ethanol. After critical point drying, the samples were
sputter coated with gold prior to imaging on a Phenom Pro Desk-
top SEM (PhenomWorld, Eindhoven, the Netherlands). Collagen
fiber quantification and bundle diameter were performed using
ImageJ analysis software (NIH).

Statistical Analysis
To evaluate significant differences in mechanical and biochemical
properties of the TMJ disk between male and female southern
sea otter, a Student’s t-test was used. A P-value of <0.05 was
considered statistically significant.

RESULTS

Gross Evaluation
The spatial position of the TMJ of southern sea otters was found
to be at the level of the teeth occlusion (Figure 1). The TMJ was
found to be composed of a fusiform-like mandibular head on a
condylar process. The articular surfaces were smooth and glisten-
ing. The mandibular fossa of the temporal bone engulfed most of
the mandibular head. Due to the tight and congruent articulation,
it was difficult to separate the mandibular head from the fossa.

FIGURE 1 | Three-dimensional reconstruction of computed tomography images of (A–C) male southern sea otter and (D–F) female southern sea
otter. Lateral view (A,D), ventral view (B,E), and close up view of the left TMJ, lateral view (C,F). The condylar process of the mandible is positioned at the occlusal
plane. The mandibular fossa of the squamous temporal bone tightly encased the mandibular head on the condylar process.

Frontiers in Veterinary Science | www.frontiersin.org December 2015 | Volume 2 | Article 713

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


Lieske et al. The TMJ of Southern Sea Otters

Adiskmeasuring 0.28± 0.09mm in thickness in the sampledTMJ
disks was separating the mandibular head and mandibular fossa.

Microscopic Evaluation
The TMJs of the examined sea otters were found to be similar
to other carnivores. Macroscopically, the TMJ was highly con-
gruent with concave mandibular fossa tightly encasing dorsally
convex mandibular head of the condylar process. A thin TMJ
disk separated the joint into two compartments. Histologically,
the mandibular fossa was lined by ~200μm layer of dense fibrous
connective tissue that gradually transitioned into one to two cell
thick layer of hyaline-like cartilage outlined by distinct tidemark
line, which in turn transitioned immediately into ossified cartilage
zone (Figure 2). Within the fibrous layer, rare oval cells resem-
bling small chondrocyte were scattered randomly among rostro-
caudally oriented collagen fiber bundles. Similar histomorphology
was observed in the section of corresponding mandibular head
(Figure 2). A thin, 0.049–0.069mm, TMJ disk was biconcave and
histologically was composed of collagen fiber bundles oriented
in orthogonally intersecting planes (Figure 3). In the center of
the disk, the orientation of fibers was primarily rostrocaudal,
but in the rostral and caudal parts fiber orientation was much
more anisotropic. Occasional chondrocyte-like cells residing in
tight lacunae were randomly distributed among the collagen fiber
bundles. Each lacuna was outlined by minimal amount of hyaline
matrix. In the central portions, the disks were avascular but small
diameter blood vessels and occasional small islands of adipose
cells were present at the periphery of the disk. This observation
was supported by safranin-O staining, which highlighted sulfated
glycosaminoglycan (sGAG) substance around the lacunae in faint
orange (Figure 4). The collagen nature of the disk is highlighted
by intensely positive picrosirius red staining. No nerve fibers were
observed in H&E or Bielschowsky silver stained sections of the
disk.

Immunohistochemistry Evaluation
Immunohistochemical examination revealed faint but diffuse
immunoreactivity for collagen type I and almost complete absence
of immunoreactivity for collagen type II (Figure 4). The faint
staining for collagen type I may have been due to poor cross-
reactivity ofmonoclonal anti human collagen type I antibody with
otter tissue.

Biochemical Characterization
Biochemical analysis is represented in Figure 5. The hydration
of the disks ranged between 56 and 92%. Hydration averaged
74.6± 14% dry weight for female otters and 78.5± 7.7% dry
weight for male otters. There was no significant difference in
hydration percentage between males and females (P= 0.3999).
The GAG content per dry weight on contrary was significantly
higher in males than in females and averaged 0.12± 0.06 and
0.05± 0.03%, respectively (P= 0.024).

Mechanical Characterization
Tensile strength of the TMJ disks is demonstrated in Figure 6.
Ultimate tensile strength in the rostrocaudal direction for the
females and males averaged 11.5± 9.1 and 5.38± 2.54MPa,

FIGURE 2 | Histological image of the total joint (A), the mandibular
head (B), and the mandibular fossa (C). The articular surfaces were lined
by ~200μm layer of dense fibrous connective tissue that gradually
transitioned into one to two cell thick layer of hyaline-like cartilage. [H&E
staining Bar= 1mm for (A) and Bar= 200μm for (B,C)].

respectively. In the mediolateral direction, tensile strength aver-
aged 9.06± 6.64 and 4.30± 2.34MPa in females and males,
respectively. There was a significant difference in tensile strength
between males and females in the rostrocaudal (P= 0.046) and
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FIGURE 3 | Scanning electron microscopy of the TMJ disk in cut section (A) and surface (B) views demonstrating that collagen fiber bundles were
oriented in orthogonally intersecting planes. In the center of the disk, the orientation of fibers was primarily rostrocaudal, but in the anterior and posterior parts
fiber, orientation was much more anisotropic.

mediolateral (P= 0.043) direction. Young’s modulus for the
female otters in the rostrocaudal and mediolateral direction aver-
aged 7.23± 3.24 and 10.5± 15.9MPa, respectively. The male
otters averaged 9.99± 7.74MPa in the rostrocaudal direction and
7.56± 7.24MPa in the mediolateral direction. There was no sig-
nificant difference betweenmales and females in regard to Young’s
modulus in neither the rostrocaudal direction (P= 0.5180) nor
the mediolateral direction (P= 0.6315).

DISCUSSION

The present study provides the first insight into the struc-
ture–function relationship within the TMJ of southern sea otters,
as well as important characteristics of the TMJ disk of this sub-
species. The TMJ has a tight congruency with the mandibular
fossa encasing most of the mandibular head. In addition, the
mechanical strength and sulfatedGAGs of the disk in femaleswere
significantly different than that of males indicating stronger TMJ
disk in females.

The TMJ of southern sea otters and its associated soft tissue and
bony structures carried similarities to that of other carnivores that
rely on heavy mastication (19, 20). Specifically, the mandibular
head on the condylar process articulated with the mandibular
fossa of the squamous temporal bone (1). The joint was separated
to two compartments by a remarkably thin disk. The TMJ was
highly congruent and encapsulated tightly by the mandibular
fossa. In addition, the spatial location of the TMJ was at the
occlusal level as is seen in other carnivores. None of the samples
examined had gross or histological signs of joint pathology, which
is in agreementwith our previous report on lowoccurrence ofTMJ
pathology in southern sea otters (17). These findings indicate that
the TMJ of southern sea otters is a highly specialized joint adapted
to absorb stress and strain with high reliability. Furthermore, the
exceptionally thin joint disk may suggest that the majority of the
loads are distributed through the large articular surface area of the
joint rather than being supported by the disk (18, 21). This TMJ

design is likely advantageous as sea otters need tomeet a large daily
energy requirement. Due to their lack of blubber, sea otters rely on
metabolic heat loss from consumption of food items to maintain
their body temperature (9, 11, 12).Withmass-specific daily energy
requirements ranging from 0.57MJ day−1 kg−1 for an adult male
to 0.87MJ day−1 kg−1 for a molting pup, an average 29 kg adult
male sea otter would need to consume nearly 4,000 kcal day−1 (22,
23). In addition, many sea otters consume a diet of hard-shelled
prey, which sea otters must crush to obtain the fleshy, calorically
dense portions (11, 12, 24). Therefore, it is possible that the TMJ of
southern sea otters is designed to accommodate great masticatory
strength with long-term dependability.

Biochemical andmechanical characteristics of the southern sea
otter’s TMJ disk suggest functions other than solely supporting
tensile and compressive forces. We found that the GAG content
was lower than the reported values for California sea lion (25), pig
(26, 27), African elephant (28), and human TMJ disks (8). GAG
and its associated proteoglycans, such as biglycan and decorin,
are typical for fibrocartilage and may play a role in collagen fibril
formation and orientation andmay contribute to increased tensile
strength. The higher concentration of GAGs in male otters was
associated with lower tensile strength which somewhat contra-
dict this notion (8, 29). Also, within our specimens, the average
ultimate tensile strength and tensile stiffness was higher in the
rostrocaudal direction than in the mediolateral direction, as often
seen in other species (8). The average ultimate tensile strength
and tensile stiffness was lower than those reported in California
sea lions in both the rostrocaudal and mediolateral direction (25).
This may be due to the differing feeding mechanisms and prey
species of otters and sea lions. Sea lions use a pierce-feeding
method compared to the chewing of sea otters (25).

Biochemical and mechanical analysis indicated that in addi-
tion to species specific adaptations, there may also be differ-
ences between males and females. To the best of our knowl-
edge, sex-specific differences have not been described for other
species of mustelids or carnivores, and it is not immediately

Frontiers in Veterinary Science | www.frontiersin.org December 2015 | Volume 2 | Article 715

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


Lieske et al. The TMJ of Southern Sea Otters

FIGURE 4 | Histological section of the southern sea otters TMJ disk. (A,C,E) Sea otter TMJ disk H&E, Safranin-O, and Picrosirius red, respectively, 10× scale
bar=500μm. (B,D,F) Sea Otter TMJ disk H&E, Safranin-O, and Picro Sirius Red, respectively, 40× scale bar= 100μm. (G) Sea Otter TMJ disk demonstrates
immunoreactivity for collagen type I, 20× scale bar=200μm. (H) Sea otter TMJ is no immunoreactive for collagen type II, 20× scale bar= 200μm.

obvious why such a disparity would exist for sea otters. One
possible explanation would be consumption of different prey
species between male and female sea otters. However, extensive

research on sea otter foraging patterns, especially in California,
do not support that hypothesis. Research has indicated that sea
otters of both sexes specialize in consuming two or three prey
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FIGURE 5 | The hydration (A) and sulfated GAG content (B) of the disks of the southern sea otter. Hydration averaged 74.6±14.4% per dry weight for
female otters and 78.7±7.7% per dry weight for male otters. Sulfated GAG content averaged 0.12±0.06% for the males and 0.05±0.03% for the females.

FIGURE 6 | Mechanical analysis demonstrates Young’s modulus for the female and male southern sea otters (B) averaged 7.23± 3.24 and
9.99± 7.74MPa in the rostrocaudal direction, respectively, and 10.5± 15.9 and 7.56±7.24MPa in the mediolateral direction, respectively. UTS for the
female and male southern sea otters (A) averaged 11.5±9.1 and 5.38±2.54MPa in the rostrocaudal direction, respectively, and 9.06±6.64 and 4.30±2.34MPa
in the mediolateral direction, respectively.

items, which comprise the majority of the diet, and individual
prey preferences are passed from mother to offspring (30, 31).
However, foraging strategies can differ slightly betweenmales and
females. For example, Bodkin et al. found that male sea otters
made deeper foraging dives than females (32). Despite decades of
thorough observations, no studies have indicated any difference
in the frequency or abundance of consumption of any prey items
between males and females. This observation is also supported
by the equal rate of tool-use, which sea otters may use to open
hard-shelled prey, by males and females (13). Therefore, a prey-
mediated difference in TMJ tensile strength and GAG content
between males and females is extremely unlikely.

A behavioral difference between male and female sea otters is
the next logical explanation for the observed sex-based differences
in TMJ characteristics. Like foraging, a multitude of studies over
the last several decades have documented the behavioral char-
acteristics of sea otters. Behavioral research indicates that male
and female exhibit an almost entirely identical range of behaviors;
however, mating and pup rearing have sex-specific differences,
both including differing uses of the mouth/jaw between the sexes.
During mating, the male sea otter grasps the female, which often
includes the male biting the nose/rostrum of the female, some-
times for extended periods of time (12). Observations indicate

that this behavior is more frequent and more aggressive among
the male southern sea otters compared to other subspecies of
sea otter. Females, on the other hand, use their mouths/jaws
for carrying/dragging their pups (11). Females also share food
with their pups, which potentially could result in increased food
processing (i.e., increased use of the TMJ), however, the com-
bined food intake of a female and her pup is still less than
an adult male (22). Since females of many species carry their
young in their mouths, it would be worth looking for sex-specific
differences in TMJ characteristics in those species as well to
determine whether this is the likely explanation for the sex-
based differences observed in the sea otter TMJ. Other, currently
uninvestigated explanations for the differences we observed also
are possible.

In conclusion, the present study provides a unique insight into
the structure–function characteristics of the southern sea otter
TMJ and provides a comparison between sexes. Our findings
suggest that the TMJ structure of the species is adapted to the sea
otter’s diet and feeding behavior. The TMJ is specialized to absorb
stress and strain with high reliability and that southern sea otters
rely more on articulating bony structures then the disk. Males and
females differ in the mechanical and biochemical characteristics
of the disk that is likely linked to their feeding behavior. We hope
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that this study will inform on the role of southern sea otter’s TMJ
in feeding, function, and potentially for population recovery.
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