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The trade of livestock is an important and growing economic sector, but it is also a 
major factor in the spread of diseases. The spreading of diseases in a trade network is 
likely to be influenced by how often existing trade connections are active. The activity α 
is defined as the mean frequency of occurrences of existing trade links, thus 0 < α ≤ 1. 
The observed German pig trade network had an activity of α = 0.11, thus each existing 
trade connection between two farms was, on average, active at about 10% of the 
time during the observation period 2008–2009. The aim of this study is to analyze how 
changes in the activity level of the German pig trade network influence the probability 
of disease outbreaks, size, and duration of epidemics for different disease transmission 
probabilities. Thus, we want to investigate the question, whether it makes a difference 
for a hypothetical spread of an animal disease to transport many animals at the same 
time or few animals at many times. A SIR model was used to simulate the spread of a 
disease within the German pig trade network. Our results show that for transmission 
probabilities <1, the outbreak probability increases in the case of a decreased frequency 
of animal transports, peaking range of α from 0.05 to 0.1. However, for the final outbreak 
size, we find that a threshold exists such that finite outbreaks occur only above a critical 
value of α, which is ~0.1, and therefore in proximity of the observed activity level. Thus, 
although the outbreak probability increased when decreasing α, these outbreaks affect 
only a small number of farms. The duration of the epidemic peaks at an activity level 
in the range of α = 0.2–0.3. Additionally, the results of our simulations show that even 
small changes in the activity level of the German pig trade network would have dramatic 
effects on outbreak probability, outbreak size, and epidemic duration. Thus, we can 
conclude and recommend that the network activity is an important aspect, which should 
be taken into account when modeling the spread of diseases within trade networks.
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inTrODUcTiOn

Live animal trade represents an important economic sector but is 
permanently subject to fluctuations. For instance, consignments 
of pigs increased to 48% within EU-27 member states between 
2005 and 2009 (1). However, the financial crisis in the subsequent 
years might have lessened this effect. The importance of live ani-
mal trade on the economy is also demonstrated during animal 
disease outbreaks. Trade restrictions with movement bans cause 
enormous financial losses for the affected livestock holdings and 
countries. For example, the outbreak of classical swine fever 
(CSF) in the 1990s in Germany led to an economical loss of 
approximately €1 billion (2). Thus, as demonstrated during CSF 
outbreak in Germany, livestock trade between farms is one of the 
major routes for the spread of animal diseases, although other 
infection routes, like proximity to infected herds or contact with 
contaminated persons and vehicles, exist as well (2).

Scientific research has primarily focused on the influence of 
the trade structure of farms on disease dynamics (3, 4). Farms 
differ with respect to their trade activity, i.e., with respect to the 
number of trading partners, trade connections, trade volume, 
and time intervals (5). Within the trade network, farms with 
greater trade activities are the most important contributors to 
disease spread (6). Veterinary epidemiology assessments utilized 
social network analysis (SNA) tools, such as centrality meas-
ures, developed within the field of social sciences, to calculate 
the importance of farms for the spread of animal infections. 
Numerous centrality measures, such as in- and out-degree, 
betweenness, and closeness (7), were correlated with standard 
epidemiological parameters, such as size of an epidemic, dura-
tion of the epidemic, time to peak of the epidemic, and the basic 
reproduction number R0 (4, 8–10).

Previous studies applying SNA on pig trade networks have 
already provided important insight for disease prevention and 
control. One aspect of this research was the identification of 
the structure of trade communities (11, 12). Another essential 
finding was that there is a large degree of heterogeneity associ-
ated with movements of pigs at the movement level and at the 
premise specific network level as well (13). As a result, pig trade 
has a right-skewed distribution of all centrality parameters, i.e., 
few holdings have high centrality, while most have a low cen-
trality. Thus, strategic removal of the most central nodes would 
result in a decomposition of the network into fragments, which 
would interrupt infection chains and prevent further disease 
spread (14–16). It was also shown that the holding types differ in 
their centrality measures, which allow for a targeted removal of 
specific holding types in the case of a disease outbreak (16–18). 
Further, SNA has been utilized to simulate the spread of specific 
diseases to estimate the effects of an outbreak, e.g., the spread of 
Methicillin-resistant Staphylococcus aureus (MRSA) through the 
Danish pig trade network (19).

Although SNA provides useful insights into epidemic dynam-
ics on trade systems, the methods used in SNA do not take 
into account the temporal ordering of trade links. Whenever 
a network is traversed using trade links, each traversal has to 
follow a causal sequence of connections. This constraint can 
have a significant impact on the spreading paths for pathogens 

in networks (20). For this reason, recent work has been focused 
on temporal network analysis, where each connection has a time 
stamp marking its occurrence time. The probability of contagion 
between two individuals is not constant in time and depends, 
beside the transmission rate and infectious period, also on the 
frequency and duration of the contact (21–24). Studies that 
considered the heterogeneity and duration of contacts and their 
importance for the epidemic showed the importance to elucidate 
the time dependency of activities in order to investigate disease 
dynamics (22, 24–26). Previously, it has been shown that the 
aggregation of trade links into static networks leads to an overes-
timation of the epidemic size (27–30), the outbreak probability 
(31), and the epidemic duration. Thus, scientific research in the 
veterinary field has increasingly focused on time-dependent 
networks. Methods have been adapted and extended from static 
analyses to time-dependent analyses (20, 27, 31–37).

A temporal network view on livestock trade networks includes 
the frequency of trade links. For the whole system, this frequency 
can be considered as the pace of trading. This raises the ques-
tion, whether it makes a difference for a potential spread of an 
animal disease to transport many animals at the same time (low 
frequency) or few animals at many times (high frequency). From 
the economic point of view, it is appropriate to choose a low trade 
frequency and transport many animals at the same time.

In this work, we analyze the impact of the overall trade fre-
quency on the spread of infectious disease. Hereby, we keep the 
total trade volume of the network constant and systematically 
investigate the impact of a changing frequency of traded animals. 
We define the activity of a network by averaging the frequency 
of all existing trade connections between node pairs and analyze 
how changes in the activity influence the probability of a disease 
outbreak, the final outbreak size, and the duration of an epidemic. 
A discrete stochastic SIR model is used to simulate the spread of 
a hypothetical disease through the trade network of the German 
pig production chain.

MaTerials anD MeThODs

In order to analyze the influence of network activity on the 
course of an epidemic, an outbreak model predicting the course 
of a hypothetical animal disease on a contact network between 
holdings belonging to the German pig production chain was set 
up. Besides the outbreak model, we propose a method how to 
systematically adjust the activity of the network.

Data and network setup
According to the EU directive EC/2000/15 (38), EU member 
states are obliged to collect and record livestock movement 
data in a national database. Pursuant to the German Animal 
Movement Directive (Viehverkehrsverordnung), each holding 
in the pig production chain (including piglet production, breed-
ing, raising, fattening, slaughtering, and trading) is obliged to 
notify the movement of pigs within 7 days. All data are stored 
in a database, “Herkunftssicherungs- und Informationssystem 
für Tiere” (HI-Tier). In Germany, movement data for pigs are 
collected on a daily basis. In general, movement data of livestock 
comprise information about the source and target farms (unique 
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FigUre 1 | Disease spread in a temporal network. If the source node i is 
infectious at time t = 0, the disease can spread via node x to node j. Node k 
cannot become infected, as the edge between node x and k is active at 
t = 1, thus before the disease has reached node x at t = 2.
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identifiers), the date of movement, and the number of animals 
moved (batch size).

For this study, pig movement data from the federal states of 
Bavaria and Baden-Württemberg between the years 2008 and 
2009 were used. It has previously been shown that a period of 
2  years is suitable to cover all characteristic properties of the 
German pig trade network (31). In our data set in most cases 
(90%), only one movement per week took place between a supplier 
and buyer. Consequently, we decided to use a weekly timescale for 
our analysis. In the case of two movements per week, those were 
merged into one occasion.

To describe the pattern of trade activity over time, a tem-
poral network was constructed. By implementing a temporal 
network, it is possible to take into account causality for network 
transversal. In other words, consecutive trade connections have 
to be temporally ordered in order to make up a valid indirect 
connection between farms (Figure 1). The network comprised 
nodes and edges, where each edge connected a node pair. Farms 
were represented by nodes, and movements of animals between 
farms at a certain point in time were represented by directed 
edges. A temporal network is defined as (V, , T), where V 
is the set of nodes within the network,  is the set of directed 
edges, and T represents the length of the observation period, 
as we considered weekly time steps, T  =  104  weeks. An edge 
(u, v, t, w)∈ describes the movement of w pigs from farm u to 
farm v at time t ≤ T. This network comprises |V| = 45,065 and 
||  =  1,237,753 edges (i.e., overall number of transports dur-
ing the observation period). Further, the static representation 
of the network was constructed by summing all observations 
in the temporal network over the study period, such as the 
static network is the time-aggregated network of . In the 
static representation of the network G(V, E), V represents the 
set of nodes and E the set of directed edges (|E| = 112,826). A 
directed edge between two nodes exists in the static network if 
a certain animal movement has taken place at least once during 
the observation period.

The aim of this analysis was to investigate the influence of the 
network activity on the outbreak size of an epidemic. However, 
this outbreak size would be strongly influenced by differences in 
the reachability of the nodes, i.e., nodes form distinct reachability 

classes where a significant number of nodes may only cause trivial 
outbreak (11, 12). To reduce this bias, the data were first tailored 
to include only nodes, which are, in the static representation 
of the network, reachable from each other. We used the static 
network to identify the largest strongly connected component 
(LSCC; in a strongly connected component, each node is reach-
able by any other node in the component). The further analysis 
was limited to this LSCC, which we denote as G*. Thus, the static 
representation of the network enables the disease to reach all 
nodes in finite time, no matter which node is the source of infec-
tion. All nodes and edges, which were not elements of the LSCC 
in the static network, were removed, as well as the correspond-
ing elements from the temporal network. We hereby implicitly 
assumed that the concept of connectivity (35, 36) is preserved 
for the temporal network. In the resulting network, pigs moved 
between |V| = 7,455 farms (number of nodes in the LSCC) and 
|E|  =  27,149 transport routes (number of edges in the LSCC) 
were recorded during the observational period, corresponding 
to || = 315,481 transports in the temporal network.

setting the network activity α
Starting from the network generated as described above, we 
changed the activity systematically. The activity of a single edge in 
a temporal network  can be described by its frequency, i.e., how 
often a certain edge was active during the study period divided by 
the length of the study period. The network activity α was defined 
as the mean edge frequency of a network, with 0 < α ≤ 1. The net-
work activity α of a temporal network (V, , T) and its according 
static representation G(V, E) can be calculated as follows.

 α =
×


E T

, (1)

where || is the number of edges in the temporal network, |E| 
is the number of edges in the aggregated network, and T is the 
observation period.

In order to investigate the influence of α on disease dynam-
ics, we propose a method to systematically change the network 
activity. Since the results for a network with shifted α should be 
comparable to the original network, following constraints had to 
be considered: (i) the aggregated network G remained the same 
for all α, (ii) the total trade volume remained constant for all α, 
(iii) the temporal sequence of existing trade routes had to be 
preserved (see details below), and (iv) the observation period T 
was preserved.

In order to highlight the activity of a temporal network, we 
computed the activity according to Eq. 1 and denoted a temporal 
network with a certain network activity as α. For our observed 
network, we found α = 0.11, and we denote the observed network 
as α=0.11≡*.

In order to create networks with a reduced α, randomly chosen 
edges from *(V, , T) were removed. According to constraint (i), 
edges were removed in a way such that each edge of the aggregated 
network appeared at least once in the newly generated temporal 
network.

In order to increase α, we first considered our temporal 
network as a sequence of static network snapshots. In other 
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FigUre 2 | example for creating a graph with an increased α using a time shift of two time steps. In this example, the original graph has |V| = 4 nodes 
(A, B, C, D) and || = 6 directed edges (with u as the starting node and v as the receiving node), corresponding to |E| = 5 in the time-aggregated network. The 
edges are active at times t ϵ {1, 2, … , 5} (numbers next to the drawn edges), thus T = 5. The line widths of the edges correspond to the edge weights w. 
Overlapping edges (i.e., edges with the same u, v, t) are marked in red. The newly generated graph has the same number of nodes, but an increased number of 
edges (|| = 11). Note that, due to rounding errors, the sum of edge weights in the original and the new graph are only approximately equal.
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words, a temporal network consists of an ordered sequence 
α(V, , T) = G1, G2, … , GT, where each Gt ∈  is a static snap-
shot of the temporal network at time t. In order to increase 
α, each snapshot was first duplicated (once or multiple times) 
and time-shifted by a certain value chosen at random. Second, 
these snapshots were merged into a new temporal network. In 
the case of overlapping edges occurring between the same node 
pairs (i.e., multiple occurrences of directed edges active at the 
same time; regardless of their edge weights), the edge weights 
w (i.e., number of transported pigs) were averaged. Using this 
approach, the existing trade routes remain preserved as required 
by constraint (iii).

In order to satisfy constraint (iv), we used periodic boundary 
conditions, i.e., for each edge (u, v, t, w) = (u, v, t + T, w). In other 
words, if the new times exceeded the observation period T, the 
times were shifted by subtracting T.

The procedures described above would already be sufficient 
to change the activity α of the observed network *. Nevertheless, 
both procedures would violate constraint (ii), as the overall sum 
of edge weights changes as well. Therefore, the new edge weights 
had to be adjusted. During the observation period, a total of 
W = 24,995,162 transported pigs were recorded. The new edge 
weights for α were normalized, so that the sum of the new edge 
weights equaled the total of the observed edge weights W. Finally, 

edge weights for the generated network were rounded to a whole 
number, with the minimum number of pigs per transport set to 
one [constraint (i)].

For example, in a first step, we duplicated the graph * once and 
conducted a 52-week shift (i.e., a shift of 1 year in the duplicate). 
Thus, an edge active in the original graph at weeks 2, 40, 63, and 
92 would be active in a 52-week-shifted graph at weeks 54, 92, 11, 
and 40. Merging the original with the time-shifted graph would 
thus result in a graph where this certain edge is active at weeks 2, 
11, 40, 54, 63, and 92 (see Figure 2 for a more detailed example).

Overall, 22 different networks were generated with different 
activity values, including the original network *  =  0.11. The 
considered values for α were approximately evenly distributed in 
the interval (0; 1].

Disease Dynamics
SIR Model
In order to analyze the influence of network activity α on the 
course of an epidemic, we simulated the spread of a disease 
on different temporal networks α with parameter α. Disease 
dynamics were modeled by applying a stochastic discrete-time 
SIR model (29). Farms were treated as epidemiological units that 
are assigned to one of the three epidemiological states: susceptible 
(S), infected (I), and recovered (R). The infection spread along an 
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TaBle 1 | Description and value bound of the used parameters.

Parameter Description Value

Network α Network activity 22 values in the interval 
(0; 1]

Infection 
parameters

p Infection probability 
per transported animal

{0.25, 0.5, 0.75, 1}

pe Infection probability 
per edge, depending 
on batch size

calculated according 
to Eq. 2

μ Infectious period 4 weeks (constant)

Initial 
conditions

u Starting node 2,000 random samples 
from V

t Starting time 2,000 random samples 
from [1; T − 40]

Total runs 176,000
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edge (u, v, t, w), if at time t the supplying node u was in state I, 
and the receiving node v in state S. Thus, a receiving farm could 
only became infected, if a transport took place from the supplying 
farm to the receiving farm during the time period in which the 
supplying farm was in the I state. Infectious nodes stayed in the I 
state for μ time steps, thereafter they passed to the R state. Nodes 
in the R state remained in this state until the end of a simulation 
run. Infectious farms infect susceptible farms with probability pe.

Due to the fact that certain information was not available, the 
following model assumptions were made. (I) farms representing 
the nodes within the network were all treated identically (8, 29, 
31, 39). Thus, in this model, the number of animals on the farm, 
breed, farm type, or farm practices did not have an effect on the 
transmission dynamics. (II) the epidemiological status does not 
alter the trade contact structure. The latter is a strong assumption, 
but it allowed an examination of the influence of network topol-
ogy on unmanaged disease dynamics (29).

Model Parameters
In order to compute the transmission probability pe for each edge, 
we first considered the risk of infection for each transported 
animal. For every transport from an infected to a susceptible 
farm, each transported animal has a probability p to infect the 
receiving node. In this work, the probabilities p = {0.25, 0.5, 0.75, 
1} were considered. The receiving node became infected, when at 
least one transported animal spread the disease. The probability 
pe can be described with a binomial function B(w, p), whereas 
the function depends on the parameters edge weight w and an 
animals’ transmission probability p.

 p P X B w p pe
w

= >( ) ( ) = − −( )0 1 1~ , .  (2)

A transmission probability of p = 1 corresponds to a highly 
infectious disease: the supplied farm always became infected, 
independent of the batch size w. This corresponds to a worst-case 
scenario and is therefore often used in studies investigating the 
spread of diseases within the trade networks (6, 8, 31).

Nodes remain in the I state for the infectious period μ and 
then pass to the R state. Nodes in the R state remained in this 
state. In this paper, we considered a constant infectious period of 
μ = 4 weeks [as estimated for cases, such as CSF, African swine 
fever, foot-and-mouth disease; Ref. (40)].

Initial Conditions
In the analysis presented here, the model predicted the disease 
dynamics for discrete intervals of 1 week. Initially, all farms were 
in the susceptible state (S). At a randomly chosen time, the state 
of one randomly selected farm was set to infected (I).

The disease dynamics were simulated on a temporal network 
α. All possible start times and initially infected nodes (index 
nodes) had the same selection probability. The start times were 
selected from the interval [1; T − 40] to avoid that the durations 
of the epidemics exceed the observation period of 104  weeks. 
We chose 40 weeks arbitrarily, as the first test runs showed that 
the duration of the epidemic only rarely exceeded this time 
period. However, in some cases, the duration of the epidemic 
still exceeded the study period – those cases were excluded from 

the further analysis. The simulation stopped when the number of 
infectious nodes reached 0.

Summary of Parameters
For each value of the activity parameter coming from one of the 
22 investigated α, each with the 4 transmission probabilities 
as described above, the simulation was repeated 2,000 times, as 
test runs showed that this number of iterations provided robust 
results. Thus, 176,000 simulation experiments were run in total 
(Table  1). In 175,877 of those simulations, the duration of the 
infection did not exceed the observation period and were used 
for further analysis.

analysis
We wanted to determine the probability that a disease outbreak 
occurs for a certain level of α. The outbreak probability was esti-
mated as the proportion of the 2,000 simulation runs, in which 
the disease spread beyond the starting node. In those cases where 
the disease spread beyond the starting node, the outbreak size 
was calculated as the total number of infected nodes. In addition, 
the outbreak duration was defined as the number of weeks in 
which infected nodes occurred. The distribution of the latter two 
measures was skewed to the right, and thus we give the median 
and the first and third quartiles (Q1, Q3).

All analyses were conducted using the open-source software R 
version 3.2.1 (41). The package igraph (42) was used to generate 
and analyze the network.

resUlTs

Descriptors of G*
For this static representation G*, we found an average shortest 
length of 6.33; the path length between the two most distant nodes 
(diameter) was 17. The median in-degree, measuring the number 
of trade partners delivering animals to a certain node was only 
one, while the median for the number of trade partners a certain 
holding delivers to (out-degree) was two (Table 2). The values for 
the median ingoing and outgoing closeness centrality were rather 
similar (Table 2), indicating that the number of steps required to 
reach a certain node equals the number of steps required to reach 
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FigUre 3 | Outbreak probability (±95% ci) depending on the network activity level α for different disease transmission probabilities p. The vertical 
orange line represents α for the observed pig trade network *.

TaBle 2 | Minimum, 25% quartile, median, 75% quartile and maximum of 
the calculated centrality parameters for G*, the static representation of 
the observed network.

Min Q1 Median Q3 Max

In-degree 1 1 1 2 665
Out-degree 1 1 2 3 358

Ingoing  
closeness 
centrality

0.000011 0.000018 0.000023 0.000026 0.000041

Outgoing 
closeness 
centrality

0.000012 0.000019 0.000022 0.000024 0.000037

Betweenness 
centrality

0.0 1.0 316.2 7,490.2 15,166,160.0
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any other node from a certain node. The number of shortest paths 
going through a certain node (betweenness centrality, Table 2) 
showed a high variation, ranging from 0 to 15,166,160.

Outbreak Probability
We observed that the outbreak probability is finite, independent 
of the particular values of transmission probability p and network 
activity α (Figure  3). Even for the smallest considered activity 
values (α = 0.01), the outbreak probabilities was in the region of 
5% for all considered transmission probabilities.

We now focus on the outbreak probability for a transmis-
sion probability of p = 1, i.e., the worst-case scenario, in which 
transports of any size spread the infection. In this scenario, a 
monotonous increase of the outbreak probability with increas-
ing activity was observed. The outbreak probability saturated 
for larger values of α. More precisely, the outbreak probability 
was greater than 99% for all α >  0.80. For small and interme-
diate values of α, it can be observed that even relatively small 
changes in α had a strong effect on the outbreak probability. Our 
observed network (α =  0.11) lies in this region. Consequently, 
small changes in the real system would result in large changes in 
the outbreak probability.

We now focus on transmission probabilities of p  <  1. For 
all considered p  <  1, a qualitatively similar behavior could 
be observed. Contrary to the worst-case scenario (p  =  1), the 
outbreak probabilities for p < 1 did not increase monotonously, 
but rather showed a maximum. The location of these maxima 
was shifted to the right for increasing values of p. It should be 
noted that the location of these maxima was relatively close to the 
activity of the observed network *.

Final Outbreak size
We now consider the cases where the infection spread beyond the 
starting node and the corresponding outbreak sizes for different 
values for α and p (Figure 4). For the worst-case scenario p = 1, 
the outbreak size increased monotonously with increasing α. The 
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FigUre 4 | Median outbreak size (measured as a fraction of total number of nodes) ± quartiles (Q1 and Q3) for different disease transmission 
probabilities p (in the case the disease spread beyond the starting node). The vertical orange line represents α for the observed pig trade network *.
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possibility that all nodes in the network became infected was only 
found at this scenario (p =  1), but only for very high network 
activities. For the observed network (α = 0.11), ~15% of the nodes 
would become infected in the worst-case scenario.

For smaller transmission probabilities (p <  1), we observed 
that outbreak sizes are significantly smaller than in the worst-case 
scenario. In contrast to the worst-case scenario, the outbreak sizes 
showed a maximum at approximately α = 0.3.

The authors would like to stress the fact that the outbreak size 
showed a critical threshold regarding the network activity. This 
means that there was a critical activity αcrit, such that finite out-
breaks occurred only if α > αcrit. To estimate αcrit, we calculated the 
central point between the last value of α below and the first value 
above the threshold. For transmission probability p = 1, we found 
αcrit =  0.1, and for transmission probabilities of 0.75, 0.5, 0.25, 
we found αcrit = 0.15. Interestingly, the activity of the observed 
network was close to the critical region. For p = 1, the activity 
of the observed network * was only slightly above the critical 
threshold, whereas for transmission probabilities p  <  1, the 
observed network was subcritical. As it is typical for such critical 
regimes, small changes in the activity result in large changes in the 
outbreak size (Figure 4).

Outbreak Duration
Although the shapes of the outbreak durations were similar for 
different transmission probabilities, we found that the outbreak 

duration increased with higher transmission probabilities 
(Figure 5). However, for all transmission probabilities, a maxi-
mum in the outbreak probability at approximately α = 0.2 could 
be found, with the exception of p = 0.25, where the maximum was 
at approximately α = 0.3. The reason for these maxima is the exist-
ence of two dueling effects. (i) For small α, the outbreak duration 
correlates with the outbreak size. Outbreaks were typically small 
here, and increasing α increased the possible number of paths to 
other nodes. Topological and temporal shortcuts played a minor 
role here. (ii) For large values of α, the network was likely to form 
a number of shortcuts, accelerating the spread of a disease.

DiscUssiOn

In this study, we investigated how the spreading of hypothetical 
infectious diseases through a trade network is influenced by the 
networks activity level. For the observed German pig trade net-
work α = 0.11, thus each existing trade connection between two 
farms was on average active at about 10% of the time during the 
observation period (using weekly time steps). At this observed 
low network activity, the chances for a disease to spread beyond 
the starting node were relatively low, especially for low transmis-
sion probabilities (e.g., 10% at p = 0.25). Even in the case that an 
infection spread, the total number of infected farms was for all but 
the worst-case scenario only about 0.2% of the nodes within the 
network. Previously, the size of the largest connected component 
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has often been used as an estimate for the potential final size of 
an epidemic spreading through a network (43). However, even at 
the applied worst-case scenario (p = 1), the size of the epidemic 
in our simulation was only a fraction (around 16%) of the total 
number of nodes for the observed trade data. Using the LSCC 
would therefore have considerably overestimated the final size of 
the epidemic. Thus, our results indicate that, at the observed level 
of the network activity, the threat of large epidemics spreading 
through the German pig trade network is relatively low, especially 
for diseases with low transmission rates. However, as we focused 
in our study on the spread of diseases through the trade network, 
the actual number of infected farms could be higher due to addi-
tional spreading via other infection routes (2).

For our analysis, we limited the trade network to the LSCC 
in order to avoid bias in the results caused by differences in the 
reachability of the nodes. The observed network activity of the 
untailored network (α = 0.105) was very similar to the activity in 
the LSCC (α = 0.112), indicating that changes from the observed 
network activity would have the same effect on the outbreak 
probability, -size, and -duration. However, due to the differences 
in the reachability of the nodes, a much higher variation in the 
results is to be expected (20).

Interestingly, the German pig trade network seems to be at 
a rather unstable state, as even small changes in the networks 
activity level would have a large impact on the spreading of 

diseases. The main factor that could change the network activity 
of the German pig trade network is likely to be the farm size. 
In the last years, the pig production in Germany and other EU 
countries increased, resulting in larger farm sizes and increased 
number of traded pigs (1, 44). This would also result in increasing 
animal transports, which could by archived either by increasing 
the animals per transport (i.e., edge weights) or by a higher 
frequency of transports (i.e., higher activity level), whereby the 
latter would likely have a higher impact on disease dynamics. If 
an increase in the network activity is to be expected in the long 
term, the probability for an outbreak and outbreak size are likely 
to increase, as shown in this study. Considering all three inves-
tigated measurements (outbreak probability, final outbreak size, 
and duration of epidemic), it becomes apparent that an increase 
in the network activity should be avoided. Further, in order to 
confine disease spreads, a decrease in the activity of the German 
pig trade network would be conducive, even if this reduction 
would only be minor. In our model, a decrease of the activity is 
realized by random deletion of edges. We assume that a targeted 
deletion of edges might even have a larger effect (45). From a 
practical point of view, a reduction in the network activity would 
mean that animal transports from one farm to another would 
have to be concentrated to fewer occasions. This also implies that 
a matching pig production schedule would be necessary, favoring 
“all-in-all-out” production systems.
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The final outbreak size for different network activities shows, 
as depicted in Figure 4, strong similarities to the threshold behav-
ior known from epidemic SIR-type models (46). This epidemic 
threshold describes a condition above which an epidemic becomes 
global, while below this threshold only a limited number of nodes 
become infected (46, 47). To estimate the epidemic threshold 
in a given network is thus important as it allows predicting the 
possibility that an infection spreads on a large scale. Hence, it 
is essential for the planning control and intervention strategies. 
Different methods exist to identify the epidemic thresholds, with 
the performance of those methods depending on the topology of 
the network (48, 49). The results of our study show not only the 
existence of a threshold but also that its position varies with the 
transmission probability. Read and colleagues (22) demonstrated 
for a small-scale human contact network that the encounter rate 
had a strong effect on the outbreak size at high transmission rates 
but could find no significant effect at low transmission rates. This 
concurs with our results, where the effects of the network activity 
on the outbreak size were most produced at high transmission 
rates. Again, it seems that the actual activity of the investigated 
system is close to this threshold value, as even a small increase 
in the activity level has a large impact on the outbreak size of an 
epidemic.

The outbreak probability peaked in a region below this thresh-
old for a global epidemic. As the total number of transported 
animals was kept constant for all network activities, the batch 
sizes per transport increased, while the frequency of transports 
decreased at low network activities. Thus, as the edge infection 
probability pe depends on the batch size, the chance to transmit 
a disease beyond the starting node is rather high at low network 
activity levels, given the case that a transport occurs. As the 
number of transports is low at low levels of α, the epidemics are 
restricted to only a few livestock holdings. On the other hand, a 
decrease in the observed outbreak probabilities for large values 
of α can be observed, which can be explained by the fact that 
the batch sizes are small in this regime. Thus, disease spread was 
dominated by strong fluctuations in edge infection probability pe. 
These described effects only apply to transmission probabilities 
<1, as in the case of p = 1, the spreading of diseases is independ-
ent of the batch size.

As the necessary information was not available to us, we had 
to made several simplifications for our analysis. Especially, the 
farm type has already been shown to be an important factor in 
the spreading of the disease in animal trade networks (15). The 
farm type defines how long animals remain at a certain node. 
It is likely, that if the network activity would change due to an 
overall increase or decrease in the German pig production, the 
change in the activity of the individual trade connections would 
be irregular and vary according to the type of the source and the 
receiving node. This would be an important point to consider in 
further studies, as heterogeneous waiting times have been shown 
to influence the spread of diseases in networks (50, 51). For our 
simulation, we neglected within-herd transmission dynamics as 
well. Within-herd transmission depends not only on the specifics 
of a disease but is also influenced by several external factors that 
were not available to us (e.g., farm size or biosecurity measures 
on the farm level). The numbers of infected animals within a 

farm vary over time (52), and it is unlikely that all animals are 
simultaneously infected over a certain time period, as assumed in 
our simulation. Consequently, the presented results could over-
estimate the probability of a disease outbreak and the size of the 
epidemic. For our model, we assumed that the epidemiological 
status of the farms does not alter the trade contact structure. This 
applies to rather harmless diseases, like porcine reproductive and 
respiratory syndrome (PRRS), porcine circovirus type 2 (PCV2), 
or MRSA. However, depending on the severity of a disease, trade 
connections with an infected farm could cease. The withdrawal 
of trade connections would not be instantaneous but depend on 
various factors like incubation period or the occurring of clinical 
symptoms, resulting in a high variation between the time of infec-
tion of a farm and the potential termination of trade connections. 
Thus, the more likely a disease results in trade restrictions and the 
faster those restrictions are applied, the more our model is prone 
to overestimate the size of an epidemic. In case of an outbreak of a 
severe disease, trade connections could change due to the targeted 
implementation of trade restrictions by veterinary authorities. 
However, the extent of trade restrictions often differs between 
countries. For instance, during the bluetongue virus outbreak in 
Europe starting in 2006, trade restrictions in France were directed 
to specific areas (53), while in Germany, as well as in Austria and 
Swiss, the whole country was declared a single restriction zone at 
an early stage of the epidemic (54–56). Thus, if the whole country 
is declared a single restriction zone, the within-country trade 
network would likely show only marginal changes. The effect 
of lowering the contact rate on outbreak probability, -size, and 
-duration is shown in this analysis, but the implementation of 
trade restrictions directed to specific areas could lead to different 
dynamics.

In our study, we presented the network activity as a new 
indicator value for networks. With this parameter, it is possible to 
investigate how changes in the mean frequency in the activation 
of existing trade connections can affect the spread of diseases. By 
setting the total trade volume constant, as we did in this study, 
it was possible to differentiate between effects of trade frequency 
and trade volume. There are two specific characteristics of α: first, 
it is designed to be a characteristic of a temporal network. It has 
been shown that several network parameters drawn from a static 
network correlate with standard epidemiological parameters. 
Especially in networks with a right-skewed degree distribution, 
as we found for the pig trade network, nodes with a high degree 
can play an important role in the spreading of diseases (8, 14, 16). 
However, the frequency of trade links cannot be represented by a 
static network; static networks generated from different levels of α 
would be identical and thus network measurements (like centrality 
measurements) would be identical as well. As static networks do 
not take the temporal causality of the paths into account, results 
drawn from such static representations can be problematic. For 
example, it has been shown that compared to a temporal network, 
its static representation overestimates the size of a disease outbreak 
(20). Thus, in the last years, measurements for temporal networks 
have been developed (20, 57), and their relation to disease spread, 
however, remains to be investigated. In comparison with most 
of those measurements, the calculation of the network activity is 
simple, as it is obtained from the total number of edges in the 
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static and the temporal network. Second, the network activity is a 
measurement for the state of the whole network and not for single 
nodes. It can be used as a measurement of how well a temporal 
network is described by its static representation. An α = 1 would 
be equal to network, where each existing trade link is active at 
all time steps, thus the static representation would be true at any 
time. The more closely the network activity is to one, the more 
accurate is its static representation. Still, for now, we would like 
to suggest carefulness in applying the results to other networks. 
While the general pattern is likely to stay the same, the exact 
location of the maxima/threshold of the investigated parameters 
could vary. Further, when comparing the network activity of dif-
ferent networks, care must be taken to use the same time period 
and time steps, as α changes with those two values.

In this study, we could demonstrate that the network activ-
ity α is an important factor in evaluating the effects of a disease 
spread in the German pig trade network. We would like to 
propose applying this indicator number to other networks used 
to demonstrate the spread of disease or other malicious agents as 
well, as the networks’ activity is likely to have a strong impact on 
the spreading.
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