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The objective was to elucidate gene expression differences in uterus, caruncle, and 
cotyledon of ewes with subclinical pregnancy toxemia (SCPT) and healthy ewes, and to 
identify associated biological functions and pathways involved in pregnancy toxemia. On 
Day 136 (±1 day) post-breeding, ewes (n = 18) had body condition score (BCS; 1–5; 1, 
emaciated; 5, obese) assessed, and blood samples were collected for plasma glucose 
and β-hydroxybutyrate (BHBA) analyses. The ewes were euthanized, and tissue samples 
were collected from the gravid uterus and placentomes. Based on BCS (2.0 ± 0.02), 
glucose (2.4  ±  0.33), and BHBA (0.97  ±  0.06) concentrations, ewes (n  =  10) were 
grouped as healthy (n = 5) and subclinical SCPT (n = 5) ewes. The mRNA expressions 
were determined by quantitative PCR method, and prediction of miRNA partners and 
target genes for the predicted miRNA were identified using miRDB (http://mirdb.org/
miRDB/). Top ranked target genes were used to identify associated biological functions 
and pathways in response to SPCT using PANTHER. The angiogenesis genes VEGF 
and PlGF, and AdipoQ, AdipoR2, PPARG, LEP, IGF1, IGF2, IL1b, and TNFα mRNA 
expressions were lower in abundances, whereas hypoxia genes eNOS, HIF1a, and HIF 
2a, and sFlt1 and KDR mRNA expressions were greater in abundances in uterus and 
placenta of SCPT ewes compared to healthy ewes (P < 0.05). The predicted miRNA and 
associated target genes contributed to several biological processes, including apoptosis, 
biological adhesion, biological regulation, cellular component biogenesis, cellular pro-
cess, developmental process, immune system process, localization, metabolic process, 
multicellular organismal process, reproduction, and response to stimulus. The target 
genes were involved in several pathways including angiogenesis, cytoskeletal regulation, 
hypoxia response via HIF activation, interleukin signaling, ubiquitin proteasome, and 
VEGF signaling pathway. In conclusion, genes associated with blood vessel remodeling 
were lower in abundances and that the genes associated with hypoxic conditions were 
greater in abundances in the uteroplacental compartment of SCPT ewes. It is obvious 
that the factors that influence placental vascular development and angiogenesis as noted 
in this study set the course for hemodynamic changes and hence have a major impact 
on the rate of transplacental nutrient exchange, fetal growth, and health of the dam.
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INTRODUCTION

Pregnancy toxemia is a metabolic disorder of pregnant ewes, 
caused by an abnormal metabolism of carbohydrates and fats, 
which occurs during the final stage of pregnancy. The disease 
occurs more frequently in lean [body condition score (BCS) <2 
in the 5-point scale] or obese (BCS ≥4) animals, as well as in 
animals carrying two or more fetuses (1–4).

In ewes, glucose is the principal carbon source for placental 
and fetal oxidative metabolism and tissue formation (5, 6). A 
total of 30–50% of maternal glucose production in late gestation 
is taken up by uterine and fetal tissues (5–8), and 50–70% of this 
amount is used by the uteroplacental unit (6, 9, 10). During late 
gestation, increased energy demands of the rapidly developing 
fetus(es) cause an unbalanced lipid and carbohydrate metabolism 
in the pregnant animal and putting them at risk to pregnancy 
toxemia (1, 2). During late pregnancy, the impaired fat and 
carbohydrate metabolism produces increased levels of fatty acids 
and ketone bodies, mainly β-hydroxybutyrate (BHBA), besides 
the decreased glucose concentration (3, 4).

Pregnancy requires an expansion of maternal blood volume, 
an increase of cardiac output, and a redistribution of blood to the 
uterus to meet the needs of the growing fetus. Normal maternal 
vascular adaptation during pregnancy includes enhanced vaso-
dilation, with the greatest effect seen in the uterus. A range of 
pathophysiological factors including maternal stress due to poor 
nutrition, hyperthermia, or metabolic diseases such as pregnancy 
toxemia and eclampsia may affect important metabolic, transport, 
and hemodynamic functions of placentas. Excessive accumula-
tion of free radicals affects placental development and function, 
and may subsequently impact both the fetus and dam (11–14).

Hypoxia plays critical roles in vascular development during 
embryonic and fetal growth in  utero (15). In endothelial cells, 
hypoxic conditions drive the transcription of multiple genes, 
which control vascular function, expansion, and remodeling. 
Although tissue hypoxia is the main driving force for angiogen-
esis, a growing body of evidence has demonstrated that oxidative 
stress can also be a potent trigger for the development of new 
vessels. However, high level of acute oxidative stress and/or 
chronic oxidative stress has a vital role in development of vas-
cular diseases (16), including placental ischemia. Development 
of insulin resistance diabetes and cardiovascular disease were 
associated with increased oxidative stress. Insulin resistance has 
been implicated as causative factor in the pathogenesis of ovine 
pregnancy toxemia (17).

The objective of this study was to determine the changes in 
gene expressions in uterus, caruncle, and cotyledon of ewes with 
subclinical pregnancy toxemia (SCPT).

MATERIALS AND METHODS

Animals and Sample Collection
Blood and tissue samples were collected during a previously 
reported clinical trial to determine the effect of daily tocopherol 
supplementation during late stage of pregnancy. Briefly, 18 preg-
nant ewes (3.1 ± 0.11 years of age; Dorset cross; impregnated by 
two different sires by natural service) with similar breeding dates 

were selected and were maintained under normal pasture condi-
tions. One week prior to the trial, the selected ewes were moved to 
the research facility. The ewes had access to 35 sq. ft/ewe paddock 
lots. In addition, they were fed free choice hay. The ewes were 
randomly assigned to receive (1) 500 mg of α-tocopherol (n = 6), 
(2) 1,000 mg of γ-tocopherol (n = 7), or (3) no treatment (n = 5) 
received a placebo. Animals were supplemented orally, once 
daily, from approximately 100 to 136 (±1) days post-breeding. 
On Day 136 (±1) post-breeding, all ewes received BCS (1–5; 1, 
emaciated; 5, obese), and blood samples were collected by jugular 
venipuncture for plasma glucose and BHBA (in tubes anticoagu-
lated with heparin 10 U/mL) and serum 8-isoprostane (in tubes 
without heparin) determination. All ewes were euthanized (Day 
136  ±  1), and tissue samples were collected immediately from 
the gravid uterus (full thickness) and placentomes (caruncle and 
cotyledon). Placentome and uterine samples were collected close 
to the umbilicus for consistency. Cotyledons were separated from 
caruncles by applying strong pressure. Tissue samples were placed 
in RNAlater (Qiagen Inc., Valencia, CA, USA) in 5-mL Nalgene® 
cryogenic vials (Sigma-Aldrich, St. Louis, MO, USA) and snap 
frozen immediately and stored at −70°C for subsequent evalua-
tion of mRNA expression. This study was approved by Virginia 
Tech Institutional Animal Care and Use Committee (IACUC; 
04-068-CVM). Tissue Use Protocol was approved by IACUC at 
Washington State University (ASAF #03922-001).

Determination of Glucose,  
β-Hydroxybutyrate, and Isoprostane
Blood samples (with heparin) were centrifuged at 3,500 × g for 
15 min, and plasma was separated and stored at −20°C until ana-
lyzed. Determination of plasma glucose was done by the glucose 
oxidase enzymatic method (MyBioSource, LLC, San Diego, CA, 
USA) as described in the previous reports (18, 19), and the BHBA 
was measured enzymatically as described previously (20), in trip-
licates using 96-well plates. Plates were read using Glomax®-Multi 
Detection System (Promega Corporation, Madison, WI, USA).

Blood samples (without heparin) were centrifuged at 1,200 × g 
for 10 min, and serum was separated and stored at −20°C until 
analyzed. Isoprostane in serum samples were estimated by direct 
ELISA as described previously (21). Briefly, 100 μL of anti-goat-8-
epi-PGF2α antibody (MyBioSource, LLC, San Diego, CA, USA) 
was added in the 96-well plates that were pre-coated with standard 
or samples and kept at 4°C for at least 24 h. After washing with 
buffer, 100 μL of secondary antibody, raised in donkey anti-goat 
IgG-HRP (Santa Cruz Biotechnology, Inc.), was added to each 
well. After washing with buffer, 200 μL of reagent containing the 
substrate of acetyl cholinesterase and then 50 μL of stop solution 
were added. Plates were read at 450  nm using Glomax®-Multi 
Detection System (Promega Corporation, Madison, WI, USA), 
and serum concentrations of isoprostane were calculated from 
standard curves.

Real-Time Polymerase Chain Reaction
Total RNA Extraction from Tissues
Total RNA was extracted from uterus, caruncle, and cotyledon 
tissues with RNeasy Mini Kit (QIAGEN Inc., Valencia, CA, USA) 
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according to the manufacturer’s protocol. RNA concentration was 
measured using a NanoDrop spectrophotometer (Thermo Fisher 
Scientific Inc., West Palm Beach, FL, USA). Sample absorbance 
ratio of 260/280 wavelength was observed to ensure the purity of 
RNA and they were 1.96–2.00. DNase treatment was performed 
using deoxyribonuclease 1 (amplification grade, Invitrogen™, 
Carlsbad, CA, USA). Briefly, the 1 μg of RNA sample was added 
with 1  μl of 10× DNase I reaction buffer, 1  μl of 10 DNase I 
enzyme, and DEPC-treated water. The mix was incubated for 
15 min at room temperature. After the reaction, the enzyme was 
inactivated by adding 1 μl of 25 mM EDTA and heating to 65°C 
for 10 min. Then, the RNA samples were stored at −20°C until 
complementary DNA (cDNA) preparation.

Polymerase Chain Reaction of Selected  
Genes of Interest
The mRNA was reverse transcribed to cDNA. The cDNA samples 
were prepared using the iScript cDNA Synthesis kit (Bio-Rad 
Laboratories, Hercules, CA, USA). A 500-ηg sample of RNA was 
reverse transcribed in 20-μL reaction at the incubating condi-
tions of 25°C for 5 min, 42°C for 30 min, and 85°C for 5 min; 
25 ηg/μL RNA equivalent cDNA was obtained. Qiagen Tag PCR 
master mix (Qiagen, Valencia, CA, USA), a pre-mixed solution, 
was used to amplify the fragment of the genes of interest. Final 
concentration of the primers was 0.3 μM. Initial denaturation was 
set at 94°C for 3 min. Followed by 30 cycles of denaturation at 
94°C for 1  min, annealing at 55°C for 1  min and extension at 
72°C were programed. A final extension step at 72°C for 10 min 
was included in thermocycling conditions. Primers (Table S1 in 
Supplementary Material) were designed either using the NCBI 
website or primer express version 3.0 (Applied Biosystems Inc., 
Carlsbad, CA, USA). Consideration was given to the set of prim-
ers (forward and reverse primers) to ensure separation of at least 
an intron and melting temperatures, and CG content were set 
at optimal, or close to optimal level. Amplicon was run on a 2% 
agarose gel and stained with ethidium bromide for visualization 
to ensure a single amplicon for a set of primers.

Determination of mRNA Expression  
Using Real-Time PCR
SYBR green chemistry was applied to observe relative mRNA 
expression. Fast SYBR green master mix (2×) (Applied Biosystems 
Inc., Carlsbad, CA, USA) was used to prepare the reaction mix. 
The final concentration of each primer was 0.3  μM. A 20-μL 
aliquot of three technical replicates was used for each sample. A 
1.6-μL volume of 25 ng/μL RNA equivalent cDNA was present in 
the total volume of the three triplicates. StepOne Plus instrument 
(Applied Biosystems Inc., Carlsbad, CA, USA) was used for the 
real-time PCR runs. Precycling stage was maintained at 95°C for 
20 s. Forty cycles of amplification was carried out with the condi-
tions of 95°C for 3 s and 60°C for 30 s (fast ramp speed conditions 
for the fast mixture). A continuous dissociation step was added to 
look for additional amplification products.

Carboxy-X-rhodamine (ROX) dye was set up for the passive 
internal reference. The baseline was automatically adjusted to 
obtain threshold cycles of each sample. Threshold cycles were 
normalized to an endogenous control, β-actin. A standard curve 

was obtained using one in five dilutions for each set of primer in 
order to check the amplification efficiency. Correlation coefficient 
for the dilution curve was ≥0.9900.

Morphometry Analysis of Placental Unit
The placentome samples collected for histological evaluation were 
fixed in 10% neutral buffered formalin, sectioned at 5 μm, and 
stained with hematoxylin and eosin. They were evaluated on a 
Nikon E400 Eclipse microscope, and photomicrographs (100×) 
were taken with a Nikon camera with a 3 chip. Images were pro-
cessed with Nikon Act 1 software. Image processing and morpho-
metry analysis were performed using ImageJ 1.42q (NIH, USA) to 
evaluate the fractal dimension and lacunarity as described previ-
ously (22). A fractal dimension is a scaling rule comparing how a 
pattern’s detail changes with the scale at which it is considered. The 
fractal dimension is a valuable parameter to describe the complex-
ity. Lacunarity is a measure of homogeneity of structure or the 
degree of structural variance within an object. Briefly, FarcLac 2.5 
(NIH, USA) was used to perform fractal dimension. The FracLac 
scan images using a shifting grid algorithm that can do multiple 
scans from different locations on each image. The average value 
over all locations was considered as the final estimate of fractal 
dimension. During the same analytical process, lacunarity was 
also calculated. It was estimated as the average of the coefficient 
of variation for pixel density over all grid sizes and locations.  
A total of 30 locations were evaluated for each sample.

Prediction of Functional Gene and miRNA 
Partners, and Its Biological Function and 
Pathways
Predictions of functional gene network and their miRNA part-
ners were determined using GeneMANIA prediction server, as 
described previously (23–26). Target genes were predicted using 
miRDB (http://mirdb.org/miRDB/) for the predicted miRNAs, 
and top ranked predicted genes were run using PANTHER clas-
sification system (27) to identify associated biological processes 
and pathways in response to pregnancy toxemia.

Animal Grouping and Data Management
Based on BCS, glucose, and BHBA concentrations (Table 1), ewes 
(n = 10) were grouped as healthy (n = 5) and SCPT (n = 5) ewes 
(4). In the previous studies (21, 22, 28), tocopherol treatment was 
considered as the main effect. The alpha and gamma tocopherol 
concentrations in placenta, uterus, and serum on Day 136 between 
healthy and SCPT ewes were not found to be different (Table S2 in 
Supplementary Material). Thus, tocopherol treatment categories 
were excluded in the overall analysis of this study. Ewes’ serum 
isoprostane concentrations, mRNA relative fold changes and 
values of fractal dimension, and lacunarity of placental unit were 
grouped for the healthy and the SCPT categories for analysis. 
Three ewes in SCPT group had twins.

Statistical Analysis
The data were analyzed using SAS software (SAS version 9.12, SAS 
Institute Inc., Cary, NC, USA). Mean ± SEM differences in BCSs 
and plasma glucose and BHBA concentrations between healthy 
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Figure 2 | Mean ± SEM fractal dimension and lacunarity of placental 
vascular network of healthy and subclinical pregnancy toxemic ewes. 
Bars with different letters indicates parameters were significantly (P < 0.05) 
different between healthy and SCPT ewes.

Figure 1 | mRNA expression (±SEM) of vascular endothelial growth 
factor (VEGF), kinase insert domain receptor (KDR), soluble Fms-like 
tyrosine kniase-1 (sFlt1), endothelial nitric oxide synthase (eNOS), and 
placental growth factor (PlGF), hypoxia-inducible factors (HIF-1a, HIF-
2a, and HIF-2b), adiponectin (AdipoQ), adiponectin receptor 
(AdipoR)1, AdipoR2, peroxisome proliferator-activated receptor 
gamma (PPARγ), insulin-like growth factor (IGF)1, IGF2, and leptin 
(LEP), interleukin (IL)-6, IL-8, IL-1b, and tumor necrosis factor alpha 
(TNFα). (Gene expression of the control was set at 1, and gene expression 
of SGPT was related to the control; *P < 0.05).

Table 1 | Mean ± SEM body condition scores (BCSs) and plasma glucose, and β-hydroxybutyrate (BHBA) concentrations in healthy ewes (n = 5) and 
ewes with subclinical pregnancy toxemia (n = 5).

BCS Glucose (mmol/L) BHBA (mmol/L)

Healthy ewes SCPT ewes Healthy ewes SCPT ewes Healthy ewes SCPT ewes

2.6 ± 0.05a 2.0 ± 0.02b 3.2 ± 0.10a 2.4 ± 0.33b 0.34 ± 0.05a 0.97 ± 0.06b

SCPT, subclinical pregnancy toxemia.
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and SCPT ewes were calculated using ANOVA. Mean  ±  SEM 
differences in alpha tocopherol and gamma tocopherol concen-
trations in placenta, uterus, and serum of healthy SCPT ewes were 
calculated using ANOVA. The differences in fractal dimension 
and lacunarity in uteroplacental unit between healthy and SCPT 
ewes were tested by ANOVA. The PCR data were subjected to 
ANOVA using 2−ΔΔCt values to ascertain statistical significance of 
any differences in genes expressions between healthy and SCPT 
ewes (29).

RESULTS

Plasma Glucose and β-Hydroxybutyrate, 
and Serum Isoprostane Concentrations
Mean ±  SEM BCS and plasma glucose, and BHBA concentra-
tions for healthy ewes (n = 5) and for ewes with SPCT (n = 5) 
are presented in Table 1. The BCS and concentrations of glucose 
were lower and BHBA was greater in SCPT ewes compared to 
healthy ewes (P < 0.05). The serum isoprostane concentrations 
were different between healthy and SCPT ewes, 244.6 ± 14.2 and 
292.9 ± 9.1, respectively (P < 0.05).

mRNA Expression between Healthy and 
Subclinical Pregnancy Toxemia Ewes
The VEGF, PlGF, AdipoQ, AdipoR2, PPARG, Lep, IGF1, IGF2, 
IL1b, and TNFα mRNA expressions were lower in abundance 
in cotyledon, caruncle, and uterus of SCPT ewes compared to 
healthy ewes (Figure 1; P < 0.05). The sFlt1, KDR, eNOS, HIF1a, 
and HIF2a mRNA expressions were greater in abundance in 
cotyledon, caruncle, and uterus of SCPT ewes compared to 
healthy ewes (P < 0.05). The HIF2b mRNA expression was not 
different between healthy and SCPT ewes (P > 0.05) in coty-
ledon, caruncle, and uterus. The IL-8 mRNA expression was 
lower in abundance in cotyledon and in uterus (P < 0.05) but 
not in caruncle (P >  0.1) of SCPT ewes compared to healthy 
ewes. The AdipoR1 mRNA expression was lower in abundance 
in both units of the placenta (P < 0.05) but not in the uterus 
(P  >  0.1) of SCPT ewes compared to healthy ewes. The IL6 
mRNA expression was lower in abundance in the uterus of 
SCPT ewes compared to healthy ewes (P < 0.05) and the expres-
sion was not different in both units of placenta of SCPT and 
healthy ewes (P > 0.1).

Morphometry Analysis of Placental Unit
The healthy ewes had increased fractal dimension and decreased 
lacunarity in their placental vascular network compared to SCPT 
ewes (Figure 2; P < 0.05).

Predicted Functional Gene and  
miRNA Partners
Predicted functional genes investigated in this study are inter-
related (Figure 3). Different line colors represent the types of evi-
dence for the association. Predicted association was made based 
on neighborhood, gene fusion, co-occurrence, coexpression, 
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Figure 3 | Predicted functional gene partners: investigated genes 
were used as input genes; additional functional partners were 
obtained; and genes were connected by various links based on 
different functions.
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experiments, databases, text mining, homology, and at a confi-
dence score of 0.90. The relationship network of functional genes 
and miRNA is presented in Figure 4.

PANTHER analysis revealed that the predicted miRNA 
and associated target genes contributed to several biological 
processes, including apoptosis, biological adhesion, biological 
regulation, cellular component organization or biogenesis, cel-
lular process, developmental process, immune system process, 
localization, metabolic process, multicellular organismal process, 
reproduction, and response to stimulus (Figure  5). The target 
genes were involved in several pathways including angiogenesis, 
cytoskeletal regulation, hypoxia response via HIF activation, 
interleukin signaling, ubiquitin proteasome, and VEGF signaling 
pathway (Figure 6).

DISCUSSION

The goal of this study was to elucidate the differences in gene 
expressions of the uteroplacental compartment and morphometry 
of placental vascular network between healthy and SCPT ewes. 

We used BCS and biochemical parameters to distinguish SCPT 
ewes from healthy ewes. The SCPT ewes had lowered BCS and 
blood glucose concentration and increased BHBA concentration 
without any clinical signs of the disease (4). The findings of the 
study indicated that expressions of the genes (VEGF and PlGF) 
associated to vascular remodeling were lower in abundances in 
SGPT ewes; the genes (HIF1a, HIF2a, and eNOS) associated to 
hypoxic condition were greater in abundances in SGPT ewes; 
morphometry analysis of angiogenic parameters of uteroplacen-
tal unit displayed reduced vascularization suggestive of hypoxic 
conditions in SCPT ewes compared to healthy ewes.

In this study, the BCS and concentrations of glucose were 
lower and BHBA was greater in SCPT ewes compared to healthy 
ewes. Susceptible, thin ewes develop ketosis because a chroni-
cally inadequate ration is offered or because other diseases such 
as lameness or dental diseases limit intake and, with increasingly 
insufficient energy to meet increasing fetal demands, the ewe or 
doe mobilizes more body fat, with resultant ketone body produc-
tion and hepatic lipidosis. The ewes included in the study were 
observed to have normal appetite. Ewes with a poor BCS or that 
are overconditioned and carrying more than one fetus are most 
at risk of developing pregnancy toxemia, although the condition 
can occur even in ideally conditioned ewes on an adequate ration. 
In this study, three animals had twins and no differences between 
ewes carrying singletons and twins were detected.

A multifaceted variety of angiogenic growth factors are 
recognized as regulators of the vascularization process, and 
these include VEGF, PlGF, sFlt-1, KDR, and HIFs (30–32). The 
sheep placenta produces these angiogenic factors throughout 
gestation and tissue- and cell-specific patterns of expression 
have been documented in normal pregnancies (33) and in 
those where placental insufficiency and fetal growth restric-
tion have been induced by maternal hyperthermia (34). In the 
current study, VEGF and PlGF gene expressions were lower in 
abundances, whereas sFlt1 and KDR expression were greater in 
abundances in placenta and uterus of SCPT ewes compared to 
healthy ewes. In addition, HIF1a, HIF2a, and eNOS expressions 
were greater in abundance in placenta and uterus of SCPT ewes. 
In women, sFlt-1 is increased, and VEGF and PlGF are decreased 
in placenta under hypoxic conditions (35–40). It is possible that 
the binding of sFlt1 to free VEGF and PlGF reduces their avail-
ability, thereby causing endothelial cell dysfunction, leading to 
ischemia, proteinuria, and other maternal systemic symptoms 
in SCPT ewes (41, 42).

Hypoxia-inducible factor is the main regulator of the cellular 
response to low oxygen levels in mammalian species. The HIF1a 
and HIF2a both play important roles in vascular development 
and endothelial function (43–45). The HIF1a is the molecular 
link between hypoxia and pregnancy disorders as it induces 
antiangiogenic factor sFlt1 and vasoconstrictor Urotensin-II (46, 
47). The HIF2a reported to have effects on cell proliferation, inva-
sion, and angiogenesis, processes important in placentation (48). 
So, in human, it is apparent that balanced expressions of HIFs 
are needed for normal vascularization, whereas excessive HIF 
results in endothelial dysfunction. In the present study, increased 
expressions of HIF1a and HIF2a in the placenta and the uterus 
of SCPT ewes plausibly induced excessive hypoxia and caused 
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poor placental vascularization by suppressing VEGF and PlGF via 
increased sFlt1 and KDR.

It is evident that PPARγ plays a predominant role in normal 
vascular function (49, 50) and in the differentiation of labyrinthine 
trophoblast lineages (51) which, along with the fetal endothelium, 
form the vascular exchange interface with maternal blood (52). 
The PPARγ null placentas develop a malformed labyrinth zone 
(52), suggesting a critical role for PPARγ in the progression of 

normal pregnancy. Moreover, administration of a PPARγ agonist 
improved several signs of this condition. Conversely, PPARγ 
antagonist treatment to pregnant rats resulted in significant 
decrease in VEGF and significant increase in sFlt-1. In this study, 
PPARγ mRNA abundances were lower in SCPT ewes compared 
to healthy ewes. This may have caused ischemia, endothelial dys-
function, proteinuria, and an imbalance of angiogenic proteins in 
SCPT ewes (41, 42, 53).
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Figure 6 | Pathway for integrated miRNAs and genes in pregnancy 
toxemia in ewes. PANTHER pathway; total number of genes: 111; total 
number of pathway hit: 35.

Figure 5 | Biological process for integrated genes and miRNAs in 
pregnancy toxemia in ewes. GO biological process; total number of 
genes: 111; total number of process hit: 219.
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Pregnancy toxemia is characterized by a clustering of bio-
chemical and clinical characteristics, including insulin resistance 
(17). Similar to other pregnancy complications, alterations in the 
levels of insulin, IGF1, leptin and adiponectin, cytokines, and 
VEGF also occur in this condition. Further, these metabolic 
syndromes are associated with a low-grade, chronic state of 
inflammation characterized by increased circulating free fatty 
acids, and chemoattraction of macrophages, which also produce 
inflammatory mediators into the local milieu (54–56). These 
effects are further amplified by the release of inflammatory 
cytokines, such as IL1β, IL6, and TNFα. It should be noted that 
adiponectin was implicated in the pathogenesis of insulin resist-
ance. Administration of adiponectin significantly ameliorates 
insulin resistance. Further adiponectin enhances fatty acid 
oxidation and glucose uptake by decreasing circulating free fatty 
acids and improving whole-body insulin action (57). In this 
study, SCPT ewes had lower adiponectin expression in placenta 
and uterus plausibly lowered the glucose utilization by the 
uteroplacental unit contributed to hypoxic conditions. It should 
be noted that there is a functional network involving VEGF, 
IGF, and MMP in placenta and uterus, which is important for 
normal placentation (58). The IGF2 signaling has been found to 
upregulate VEGF function. IGF2 has effects on cell proliferation 

and apoptosis; lower levels of IGF2 may conceivably reduce 
cell proliferation and placental mass, in addition to increasing 
apoptosis (59).

In this study, circulating isoprostane was increased in SCPT 
ewes compared to healthy ewes. Increased isoprostane con-
centrations are reported in normal and IUGR pregnancies (60, 
61). It should be noted that mild oxidative stress and resultant 
increase in isoprostane might be involved in normal pregnancy. 
However, in placental abnormalities caused by oxidative stress, 
there is increased isoprostane generation (62) as noted in this 
study.

Remarkably, the genes investigated and predicted miRNAs 
and targeted genes were related to several biological functions. 
The targeted genes contributed to several biological processes, 
such as apoptotic process, biological adhesion, biological 
regulation, cellular component organization or biogenesis, cel-
lular process, developmental process, immune system process, 
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localization, metabolic process, multicellular organismal process, 
reproduction, and response to stimulus. The target genes were 
involved in several pathways including angiogenesis, cytoskeletal 
regulation, hypoxia response via HIF activation, interleukin 
signaling, ubiquitin proteasome, and VEGF signaling pathway. 
The biological functions explained the association of pregnancy 
toxemia (regulation of metabolic process: carbohydrate and glu-
cose metabolism and catabolic process), placental vascularization 
(regulation of angiogenesis: blood vessel development, exocyto-
sis and apoptosis and involvement of interleukins, endothelial 
growth factors, insulin-like growth factors, and adipokines), 
and hypoxic condition (regulation of nitric oxide synthase and 
hypoxia).

CONCLUSION

Pregnancy is a dominant physiological state during which 
an alteration in metabolism may be expected because of a 
greater demand for nutrients by developing fetus. In addition 
to alterations in nutrient partitioning, the placentogenesis are 
tightly associated with diverse pathophysiological changes 
in the feto-maternal compartment. The findings of the study 
indicated that expressions of the genes associated with vascular 
remodeling were lower in abundances and that the genes associ-
ated with hypoxic condition were greater in abundances in the 
uteroplacental compartment in SCPT ewes. In addition, mor-
phometry analysis of angiogenic parameters of uteroplacental 

unit displayed reduced vascularization suggestive of hypoxic 
conditions in SCPT ewes compared to healthy ewes. It is obvious 
that the factors that influence placental vascular development 
and angiogenesis as noted in this study set the course for hemo-
dynamic changes and hence have a major impact on the rate 
of transplacental nutrient exchange, fetal growth, and health of 
the dam.
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