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Disease managers face many challenges when deciding on the most effective control 
strategy to manage an outbreak of foot-and-mouth disease (FMD). Decisions have to 
be made under conditions of uncertainty and where the situation is continually evolving. 
In addition, resources for control are often limited. A modeling study was carried out to 
identify characteristics measurable during the early phase of a FMD outbreak that might 
be useful as predictors of the total number of infected places, outbreak duration, and 
the total area under control (AUC). The study involved two modeling platforms in two 
countries (Australia and New Zealand) and encompassed a large number of incursion 
scenarios. Linear regression, classification and regression tree, and boosted regression 
tree analyses were used to quantify the predictive value of a set of parameters on three 
outcome variables of interest: the total number of infected places, outbreak duration, 
and the total AUC. The number of infected premises (IPs), number of pending culls, 
AUC, estimated dissemination ratio, and cattle density around the index herd at days 
7, 14, and 21 following first detection were associated with each of the outcome 
variables. Regression models for the size of the AUC had the highest predictive value 
(R2 = 0.51–0.9) followed by the number of IPs (R2 = 0.3–0.75) and outbreak duration 
(R2 = 0.28–0.57). Predictability improved at later time points in the outbreak. Predictive 
regression models using various cut-points at day 14 to define small and large outbreaks 
had positive predictive values of 0.85–0.98 and negative predictive values of 0.52–0.91, 
with 79–97% of outbreaks correctly classified. On the strict assumption that each of the 
simulation models used in this study provide a realistic indication of the spread of FMD 
in animal populations. Our conclusion is that relatively simple metrics available early in a 
control program can be used to indicate the likely magnitude of an FMD outbreak under 
Australian and New Zealand conditions.
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inTrODUcTiOn

Disease managers are faced with a number of challenges when 
deciding on the most effective disease control strategy to imple-
ment in an exotic animal disease outbreak. Foot-and-mouth 
disease (FMD) is particularly challenging given its wide range 
of host species, potential for rapid spread, and serious socio-
economic consequences. For countries such as Australia and 
New Zealand, FMD represents the most serious threat to their 
livestock industries. A recent study estimated the 2013 value of 
total direct economic loses over 10 years for a large multi-state 
outbreak of FMD in Australia at USD 47 billion (1). Animal prod-
ucts constitute a significant proportion of New Zealand exports, 
and the provisional results of recent modeling of the economic 
impacts of a large FMD outbreak in New Zealand have estimated 
net 2014 GDP losses over an 8-year period to be between USD 
13 and 17 billion (2). Consequently, Australia and New Zealand 
invest considerable resources in preparedness and planning for 
emergency animal disease outbreaks, including maintaining vac-
cine banks for FMD. Despite recent changes to contingency plans 
to recognize that vaccination could be an important component 
of an FMD control program, it is unclear how or when vaccina-
tion should be used, and if it is used, how vaccinated animals 
should be managed once an outbreak has been resolved.

Modeling studies carried out in Australia (3–5) and overseas 
(6–8) have shown that vaccination is effective in reducing the 
duration and/or size of FMD outbreaks in  situations where 
disease is widespread, where there is a high rate of spread or the 
resources for stamping out are limited. Reports suggest that early 
vaccination may have been beneficial in eradicating the disease 
earlier than was the case with recent FMD outbreaks in Korea (9) 
and Japan (10). Thus, vaccination is increasingly being recognized 
as a potential useful tool to assist in containing and eradicating 
FMD outbreaks in countries where the disease is not endemic. 
However, while vaccination may contribute to earlier eradication 
of the disease, it will be associated with additional costs – keeping 
vaccinated animals in the population will delay the period until 
FMD-free status is regained under current World Organization 
for Animal Health guidelines (11) and add additional complexity 
to post-outbreak surveillance programs. These issues are of par-
ticular concern for countries with significant exports of livestock 
and livestock products because, under current conditions, the use 
of vaccination and the presence of FMD vaccinated animals in the 
population could be expected to cause significant market access 
difficulties.

From a planning and management perspective, it would be use-
ful to have access to decision support tools that take into account 
the information that would be available to disease managers early 
in an outbreak to provide an indication of the potential severity 
of the outbreak that could ensue. This would enable decisions on 
specific measures like vaccination to be made at a time when they 
are likely to be most effective.

McLaws and Ribble (12) documented the relationship between 
the interval (in days) from incursion to detection and epidemic 
size [expressed as the total number of infected premises (IPs)] 
for 24 FMD outbreaks in non-endemic countries that occurred 
between 1992 and 2003. They did not find a direct relationship 

between time to detection and total number of IPs or total ani-
mals culled for disease control, concluding that the movement of 
animals through markets was the most critical factor contribut-
ing to large outbreaks. Sarandopoulos (13) conducted a review 
of 125 FMD epidemics in non-endemic temperate countries 
reported to the OIE between January 1, 2005 and December 31, 
2013 to identify associations between epidemic size/duration and 
early outbreak explanatory variables. The explanatory variables 
assessed in this study included susceptible animal densities, 
weather conditions at the time of detection, the number of IPs 
detected in the first 7 days, and the size of the area under control 
(AUC) at 7 days (based on a convex hull calculation). In total, ten 
candidate explanatory variables were tested for their association 
with epidemic size and duration using a zero-inflated negative 
binomial regression model. Cattle density, pig density, and the 
number of IPs at day 7 post-detection were all positively associ-
ated with epidemic size while increased average temperature in 
the month of detection was associated with “smaller” outbreaks.

Using data from the outbreak of FMD that occurred in the 
UK in 2001, first fortnight incidence (FFI), i.e., the cumula-
tive number of new FMD-IPs found in the first 2 weeks of the 
response, was found to be a useful predictor of the size and dura-
tion of outbreaks at the regional and national scale (14, 15). The 
larger the number of detected herds within the first 2 weeks, the 
higher the risk of the large outbreak. Halasa et al. (16) extended 
the approach of Hutber et  al. to incorporate the first fortnight 
spatial spread (FFS) as well as FFI (which they renamed first 
fortnight outbreaks – FFO, since a true incidence rate is not 
actually calculated) – in a simple decision tool using simulated 
FMD outbreaks. In terms of outcome, in addition to the number 
of IPs and outbreak duration, they also considered the size of the 
AUC and costs. Halasa and colleagues found good correlations 
between FFO and FFS and all of the outcome variables, indicat-
ing that both FFO and FFS have the potential as predictors of 
epidemic outcomes. They also found that the type of index herd 
was a significant predictor of epidemic outcome.

The combined work of Hutber et al. (15), Halasa et al. (16), and 
Sarandopoulos (13) indicates that information available early in 
an outbreak can be used to make inferences about the potential 
severity of an FMD outbreak and could perhaps be incorporated 
into decision support tools. However, one of the concerns is that 
FFO and FFS are quite simple parameters that are likely to be 
sensitive to outbreak management response, in particular the 
effectiveness of the surveillance/reporting system. For example, 
while a low FFO may be indicative of a limited spread and small 
number of infected places, it could also be indicative of the 
adequacy of resources to undertake surveillance and tracing. 
In addition, based on the work of McLaws and Ribble (12) and 
Sarandopoulos (13), other factors such as animal densities at 
the location of the index premises and involvement of animal 
markets may also be important.

With this background, this study was undertaken to identify 
characteristics measurable during the early phase of a FMD 
outbreak that might be useful as predictors of the severity of an 
FMD epidemic (expressed as the total number of infected places, 
outbreak duration, and the total AUC). The study also aimed 
to assess how robust findings were across different incursion 
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scenarios and between different production and management 
systems. A key point is that in this study simulation models of 
FMD were used to generate a series of outbreaks listing incident 
infected places over time and geographical space. Regression 
approaches were then used to identify characteristics measurable 
during the early phase of a simulated outbreak that might be use-
ful as predictors of the total number of infected places, outbreak 
duration, and the total AUC predicted by each simulation model. 
The inferences drawn from this study are dependent on the strict 
assumption that each of the simulation models used in this study 
provide a realistic indication of the spread of FMD in animal 
populations.

MaTerials anD MeThODs

A modeling study was undertaken to test a range of explanatory 
variables as predictors of the total number of infected places, 
outbreak duration, and the total AUC in an FMD outbreak. 
The study involved two countries (Australia and New Zealand) 
and two modeling platforms. Linear regression, classification 
and regression tree (CART), and boosted regression tree (BRT) 
analyses were used to assess the association between putative 
explanatory variables and the three outcome variables.

Disease Models
The Australian Animal Disease Spread Model [AADIS (17, 18)] 
is a hybrid model that simulates the spread and control of FMD 
in livestock populations at a national scale. AADIS uses the herd 
as the epidemiological unit of interest and models the spread of 
disease both within and between herds. Spread of disease within 
a herd is modeled through a deterministic equation-based model, 
and between-herd spread is modeled with a spatially explicit 
stochastic agent-based model. There are five discrete spread 
pathways in the between-herd model: direct animal movements, 
local spread (infection of farms within close geographical prox-
imity by unspecified means), indirect contact (via contaminated 
equipment, people, or animal products), animal movements via 
saleyards, and windborne spread.

The model incorporates the attributes and spatial locations of 
individual farms, saleyards, weather stations, local government 
areas, and various other features of the environment. For FMD 
control, AADIS is configured to support the range of mitigation 
strategies described in Australia’s contingency plans for FMD 
(19) with the effectiveness of these measures dependent on avail-
able resources (4).

InterSpread Plus [ISP (20)] is a spatial and stochastic simula-
tion model of infectious disease in domestic animal populations. 
ISP is a state-transition model meaning that the epidemiological 
units of interest (farm locations) exist in either the susceptible, 
infected, or not-at-risk state at any given time. Similar to AADIS, 
ISP uses a series of user-defined parameters to define the spread 
of an infectious agent from one farm location to another through 
local spread, windborne spread, and direct and indirect contacts. 
Updated movement parameters are informed by findings from 
recent livestock movement studies in New Zealand (21, 22). 
Control measures, such as depopulation, vaccination, and move-
ment restrictions, in addition to varying disease surveillance 

intensity can be simulated, with the ability to carry out each 
of these activities subject to user-defined resource constraints, 
similar to the AADIS model.

study Design
Epidemics of FMD in Australia and New Zealand were simulated 
using the AADIS and ISP models, respectively. A total of 10,000 
FMD outbreak simulations were carried out using each model. 
For each simulation, FMD was introduced into a single livestock 
farm selected at random within assessed high risk areas for 
FMD. For Australia, the study area was the whole country, with 
initial seeding of infection confined to south eastern Australia 
(Figure  1A). South eastern Australia comprises the states of 
Victoria and Tasmania and parts of New South Wales and South 
Australia. This area contains a mix of farming enterprises. It is 
the center of Australia’s dairy production and is considered a 
higher risk area for introduction, establishment, and spread of 
FMD (23).

The study area for New Zealand comprised the whole of main-
land New Zealand, incorporating the North and South Islands. 
Initial seeding of infection was confined to the Auckland mega-
region (Auckland and its three neighboring regional council 
areas, Figure 1B) as it is assumed that the most likely introduc-
tion scenario for FMD into New Zealand would involve people 
or contaminated products seeding infection into livestock in this 
area. The Auckland mega-region has the largest international air 
and sea ports. Furthermore, yachts visiting the country are more 
likely to make landfall in the north.

The following assumptions were used for the Australian and 
New Zealand FMD models. The time from incursion to first 
detection was probabilistically determined based on farming 
systems and expected disease reporting rates in the two coun-
tries. For Australia, data on the daily probability of detection and 
the delay from incursion to first detection were sourced from 
Martin et  al. (24). For New Zealand, data on the daily prob-
ability of detection were sourced from Murray and Sanson (25). 
Outbreak control was based on application of animal movement 
controls, enhanced surveillance, tracing, and stamping out (i.e., 
destruction, disposal, and decontamination) on detected IPs. 
These were applied according to each country’s FMD response 
plan (19, 26). Resources for disease control were based on each 
country’s estimates of expected resources (5). Each model run 
ended when disease was eradicated or after 1  year, whichever 
occurred first.

explanatory Variables
Three time points (days 7, 14, and 21 after first detection) were 
selected, and candidate explanatory variables based on data 
that would be available to disease managers at these time points 
were collated: (1) outbreak location: farm and animal densities 
around the site of first detection; (2) the involvement of markets/
saleyards; (3) measures of the geographic distribution of IPs, as 
measured by the AUC, and the number of discrete disease clus-
ters; (4) measures of temporal spread, as measured by the number 
of IPs reported, and the number of traced premises identified; 
(5) the rate of disease spread, as measured using the estimated 
dissemination ratio (EDR), calculated using the methods 
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FigUre 1 | Maps of (a) australia and (B) new Zealand showing the areas (shaded), in which FMD outbreaks were initiated. NSW, New South Wales; 
VIC, Victoria; TAS, Tasmania; SA, South Australia; WA, Western Australia; NT, Northern Territory; QLD, Queensland.
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TaBle 1 | explanatory variables tested.

Metric/parameter Details

Location characteristics – farm 
density, animal density (cattle, sheep, 
pig), human density at first detected 
farm site

Calculated for 5 km × 5 km cell 
centered on the index farm

Markets/saleyards involvement Any IP infection(s) via saleyard 
pathway recorded as a 0/1 for days 7, 
14, and 21

Size of area under control (AUC) Based on a dissolved polygon 
constructed around IPs using a 10 km 
buffer at days 7, 14, and 21

Number of clusters The number of non-contiguous 
polygons using a 10 km radius buffer 
around IPs at days 7, 14, and 21

Number of IPs The number of IPs reported at days 
7, 14, 21

Number of traced premises The cumulative number of backward 
and forward traced premises at days 
7, 14, and 21

Estimated dissemination ratio (EDR) Four-day EDR calculated at days 14 
and 21

Resources Number of premises awaiting 
destruction at days 7, 14, and 21
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described by Miller (27) and Morris et al. (28); and (6) adequacy 
of resources available for control. A description of each of the 
candidate explanatory variables is provided in Table 1.

For each simulated outbreak, we defined three outcome vari-
ables: the total number of IPs, outbreak duration (defined as the 
number of days from first detection until the date on which the 
last IP was culled), and the total AUC (in km2). Modeling results 
for each country were analyzed separately.

statistical Methods
Linear Regression
The Stata/IC statistical package (29) was used for all linear regres-
sion analyses. Datasets were imported into Stata and the three 
outcome variables and each of the explanatory variables checked 
for normality and log transformed, where necessary, to minimize 
problems due to non-normality and heteroscedasticity of model 
residuals (30). Scatterplots of each of the log transformed outcome 
variables and each of the log transformed candidate explanatory 
variables were made and the association between variable pairs 
assessed by superimposing a Lowess-smoothed curve on each 
plot. After log transformation, all relationships were linear or 
near linear. Subsequent analyses used two modeling techniques: 
(1) linear regression modeling using robust estimates to account 
for non-normally distributed dependent variables (31) and (2) 
negative binomial regression. It was considered appropriate to 
use linear regression techniques because the methodology is 
robust to violations of the requirement for normally distributed 
dependent variables if the number of observations is large (32, 
33). The outputs of the two regression models were similar, so 
only the results of the linear regressions are presented. The linear 
regression was preferred because a small proportion of values had 
excessively large residuals in the negative binomial models.

Candidate explanatory variables were initially tested for 
unconditional associations with each of the three outcome vari-
ables. Explanatory variables that were associated with the outcome 
variables with P < 0.20 were selected for inclusion in the initial 
multiple regression models. The initial multiple regression model 
was then reduced step-wise by removing the explanatory vari-
able with the highest PWald value. This process was repeated until 
all remaining explanatory variables had PWald  <  0.05. After the 
most parsimonious model was developed, all excluded explana-
tory variables were reassessed by adding them individually back 
into the model. All biologically plausible, first-order interaction 
terms were tested, one at a time and retained in the model if the 
PWald < 0.05 (no interaction terms were retained). The extent of 
confounding was assessed using the variance inflation factor. 
No significant confounding was observed in the final models 
presented.

We acknowledge that the outcome variables measured on a 
given EDI day (i.e., days 7, 14, and 21 post-detection), which were 
used as explanatory variables in each model were correlated with 
their corresponding outcome variable. To investigate this issue 
further, alternative models were developed where the outcome 
variable was expressed as (for example) the total number of 
IPs − IPs identified up to day 14. Using this approach, we identi-
fied no substantial differences in the final set of explanatory 
variables included in the model and the direction and magnitude 
of the adjusted measure of association between each explanatory 
variable and the outcome were essentially the same. For this rea-
son, and also to allow our findings to be compared with previous 
studies (16), we elected to use the total number of infected places, 
total outbreak duration, and the total AUC as outcome variables 
in each of the models presented.

While the explanatory variables that remained in each of 
the Australian and New Zealand regression models differed, 
those with the most explanatory power (that is, those with the 
highest beta weight values) were present in both of the country 
models. For parsimony, a simpler regression model was built 
using only the explanatory variables that were common to both 
the Australian and New Zealand models with little or no loss of 
explanatory power (see Results).

For the linear regression models, the R2 value is reported 
as a measure of the goodness of fit of the model. Based on the 
regression coefficients estimated for the explanatory variables 
included in each of the three regression models for each country, 
predictions of the total number of infected places, outbreak dura-
tion, and the total AUC were computed. Several cutpoints (e.g., 
more or less than 20 IPs) were then arbitrarily selected to divide 
the model iterations into large and small outbreaks. Two by two 
contingency tables were constructed to compare the regression 
model estimates with the actual values of the (classified) outcome 
variables. These data were then used to calculate negative and 
positive predictive values for the day 14 model estimates using 
standard techniques (34).

Regression Trees
Acknowledging the possibility of non-linear relationships 
between the explanatory variables and the three outcome vari-
ables used in this study, we used CART and BRT analyses as an 
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TaBle 2 | Descriptive statistics of explanatory variables from the aaDis model of foot-and-mouth disease.

Variable n Mean (sD) Median (Q1, Q3) Min, max

Day 7
IPs 6790 4 (3) 3 (2–6) 1, 24
AUC (km2) 6790 734 (579) 459 (344–927) 300, 4242
Clusters 6790 2 (2) 1 (1–3) 1, 14
IPs per km 6790 0 (0) 0 (0–0) 0, 0
Traces 6790 3 (3) 2 (0–4) 0, 30

Day 14
IPs 6790 9 (10) 5 (3–10) 1, 82
EDR 6790 0.55 (0.89) 0 (0–1) 0, 15
AUC (km2) 6790 1168 (1282) 651 (357–1394) 300, 10,980
Clusters 6790 3 (3) 2 (1–4) 1, 28
IPs per km 6790 0 (0) 0 (0–0) 0, 0
Traces 6790 6 (7) 3 (1–8) 0, 97

Day 21
IPs 6790 12 (16) 5 (3–13) 1, 148
EDR 6790 0.42 (0.77) 0 (0–0.78) 0, 9
AUC (km2) 6790 1297 (1564) 667 (364–1543) 300, 16,270
Clusters 6790 3 (4) 2 (1–4) 1, 34
IPs per km 6790 0 (0) 0 (0–0) 0, 0
Traces 6790 8 (12) 4 (1–9) 0, 147

Others
Cattle densitya 6790 49 (83) 28 (9–62) 0, 1644
Sheep densityb 6790 120 (131) 82 (18–176) 0, 1615
Pig densityc 6790 32 (100) 0 (0–13) 0, 946
Human densityd 6790 23 (135) 3 (1–8) 0, 3725

AUC, area under control; EDR, estimated dissemination ratio.
aCattle density: number of cattle/km2.
bSheep density: number of sheep/km2.
cPig density: number of pigs/km2.
dHuman density: number of humans/km2.
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alternative approach for identifying associations in these data. 
CART analysis involves recursively partitioning an outcome 
variable into two parts based on the value of a given predictor 
variable that best splits the data. A complete CART returns a 
“tree” with multiple splits, depicted as branches. Predictor 
variables and their split points are chosen to optimize a given 
goodness-of-fit criterion, such as minimizing the residual sum 
of squares (for continuous data). CART analysis is mathemati-
cally identical to some multivariable regression techniques, but 
presents the results in a way that is easily understood by non-
technical audiences.

In contrast to CART, a BRT analysis generates a large number 
of regression trees based on random samples of the data (35). 
A BRT model returns a list of predictor variables used to create 
the splits in each of the trees computed using the randomly sam-
pled data. A relative weight is then calculated for each predictor 
variable by computing the average number of times the variable 
was chosen for splitting weighted by the squared improvement 
to the model from each split and scaled to sum to 100. Larger 
weights indicate a stronger influence between an explanatory 
variable and the outcome. The BRT analysis requires the ana-
lyst to specify the learning rate and tree complexity. Learning 
rate controls how much each tree contributes to the model as 
it develops. In general, smaller learning rates result in better 
predictions than larger learning rates. Tree complexity sets the 
number of interactions fitted in the model: a tree complexity of 

two allows for two-way interactions, three allows for three-way 
interactions, and so on.

Classification and regression tree analyses were carried out 
for each of the three outcome variables for the Australian and 
New Zealand data using the rpart package (36) implemented in 
R version 3.3.1 (37). The BRT analyses were carried out using the 
dismo package (38) in R.

resUlTs

Of the 10,000 outbreaks that were simulated, FMD did not 
establish (there was no spread from the seed herd) in 3210 
simulations in Australia and 1180 simulations in New Zealand. 
These simulations were excluded from subsequent analyses. 
Descriptive statistics of the simulated outbreaks and explanatory 
variables for Australia and New Zealand are shown in Tables 2 
and 3, respectively. Descriptive statistics of the outcome variables 
for the AADIS (Australia) and ISP (New Zealand) models (that 
is, the total number of infected places, outbreak duration and the 
total AUC) are shown in Table 4.

For the New Zealand (ISP) simulations, the area used for seed-
ing FMD outbreaks had a substantially higher density of cattle 
(median of 152 head/km2) than the areas where FMD was seeded 
for the Australian (AADIS) simulations (median of 28 head/km2).

Compared with the FMD outbreaks simulated by AADIS, ISP 
simulated relatively high numbers of IPs during the early phase of 
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TaBle 4 | Descriptive statistics of the three outcome variables from the 
aaDis model of FMD in australia and the interspread Plus model of FMD 
in new Zealand.

Model – outcome 
variable

n Mean  
(sD)

Median  
(Q1, Q3)

Min, max

aaDis
Total number of IPs 6790 22 (51) 6 (3–16) 2, 844
Outbreak duration 6790 53 (38) 43 (30–61) 16, 365
Area under control 6790 1523 (2136) 680 (368–1669) 300, 29,953

interspread Plus
Total number of IPs 8784 32 (46) 15 (5–39) 2, 424
Outbreak duration 8784 52 (28) 43 (31–64) 21, 263
Area under control 8784 1542 (1220) 1176 (636–2110) 316, 12,815

TaBle 3 | Descriptive statistics of explanatory variables from the interspread Plus model of foot-and-mouth disease.

Variable n Mean (sD) Median (Q1, Q3) Min, max

Day 7
IPs 8784 9 (10) 6 (3–12) 1, 141
AUC (km2) 8784 934 (623) 739 (452–1216) 314, 5856
Clusters 8784 2 (1) 1 (1–2) 1, 10
IPs per km 8784 0 (0) 0 (0–0) 0, 0
Traces 8784 12 (12) 8 (4–16) 0, 113

Day 14
IPs 8784 15 (18) 9 (4–20) 1, 218
EDR 8784 0.69 (0.93) 0.5 (0–1) 0, 19
AUC (km2) 8784 1169 (830) 928 (576–1553) 314, 7368
Clusters 8784 2 (1) 1 (1–2) 1, 10
IPs per km 8784 0 (0) 0 (0–0) 0, 0
Traces 8784 16 (16) 11 (5–22) 0, 148

Day 21
IPs 8784 20 (23) 11 (5–25) 1, 255
EDR 8784 0.62 (1.05) 0.2 (0–1.0) 0, 20
AUC (km2) 8784 1287 (930) 1021 (617–1716) 314, 8310
Clusters 8784 2 (1) 1 (1–2) 1, 9
IPs per km 8784 0 (0) 0 (0–0) 0, 0
Traces 8784 18 (18) 12 (5–24) 0, 165

Others
Cattle densitya 8784 166 (84) 152 (104–217) 0, 570
Sheep densityb 8784 86 (79) 70 (24–122) 0, 893
Pig densityc 8784 5 (24) 0 (0–1) 0, 349
Human densityd 8784 891 (2162) 273 (153–653) 4, 24,048

AUC, area under control (km2); EDR, estimated dissemination ratio.
aCattle density: number of cattle/km2.
bSheep density: number of sheep/km2.
cPig density: number of pigs/km2.
dHuman density: number of humans/km2.
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each epidemic. The median number of IPs on days 7, 14, and 21 
for ISP was 6, 9, and 11 (respectively) compared with 3, 5, and 5 
for AADIS (Tables 2 and 3). Similarly, the number of traces gen-
erated by ISP in the early phase of each epidemic was higher than 
those generated by AADIS. The median number of traces gener-
ated by days 7, 14, and 21 for ISP was 8, 11, and 12 (respectively) 
compared with 2, 3, and 4 for AADIS. There are three possible 
explanations for these findings: (1) differences in characteristics 
of the countries and/or study regions and incursion scenarios 
used for each model; (2) differences in model parameterization, 
resulting in different probabilities of farm-to-farm transmission 

of virus; and (3) differences in model design (in ISP the prob-
abilities of transmission vary according to farm type but not farm 
size whereas in AADIS both farm size and farm type influence 
probabilities of transmission).

Outbreak durations for the two models were similar: a 
median of 43 (minimum 16, maximum 365) days for AADIS 
compared with a median of 43 (minimum 21, maximum 
263) for ISP. The size of the AUC was substantially lower for 
the AADIS simulations. The median AUC for the AADIS 
simulations was 680  km2 (minimum 300, maximum 29,953) 
compared with 1176 km2 (minimum 316, maximum 12,815) 
for ISP.

linear regression
Regression coefficients and their standard errors for the linear 
regression models of the total number of infected places, 
outbreak duration, and the total AUC for the AADIS and ISP 
models of FMD are provided in Table 5. Table 6 provides details 
of the goodness of fit (R2) for each of the linear regression models 
developed for Australia and New Zealand. A consistent pattern 
was observed with the goodness of fit of the models improving 
from days 7 to 14 to 21 for all outcome variables for both the 
Australian and New Zealand data sets.

Positive and negative predictive values for “large” or “small” 
outbreaks (for the total number of IPs and total AUC) or “short” 
or “long” outbreaks (for outbreak duration) for AADIS and ISP 
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TaBle 5 | regression coefficients and their standard errors for the multivariable linear regression models of first 14-day predictors of area under 
control, the total number of infected places, and outbreak duration for the aaDis and interspread Plus models of FMD.

explanatory variable coefficient (se) t P-value 95% ci

aaDis – total number of iPs
Intercept −0.02 (0.019) −0.80 0.421 −0.05 to 0.02
Number of IPs at day 14 1.27 (0.008) 164.51 <0.001 1.25 to 1.28
Pending culls at day 14 0.18 (0.017) 10.64 <0.001 0.15 to 0.22

aaDis – outbreak duration
Intercept 13.87 (0.480) 28.88 <0.001 12.92 to 14.81
Area under control day 14 0.39 (0.008) 51.72 <0.001 0.38 to 0.40
EDR day 14 0.12 (0.009) 14.31 <0.001 0.11 to 0.14
IP density day 14 18.45 (0.721) 25.60 <0.001 17.04 to 19.86

First detected farm type
 Beef intensive Reference
 Dairy −0.09 (0.021) −4.16 <0.001 −0.13 to −0.05
 Feedlot −0.20 (0.020) −9.98 <0.001 −0.23 to −0.16
 Mixed beef-sheep 0.11 (0.018) 6.24 <0.001 0.08 to 0.14
 Pigs (large) −0.50 (0.020) −25.28 <0.001 −0.54 to −0.46
 Pigs (small) −0.27 (0.017) −15.66 <0.001 −0.30 to −0.24
 Sheep 0.25 (0.019) 12.73 <0.001 0.21 to 0.28
 Smallholder −0.26 (0.048) −5.44 <0.001 −0.35 to −0.17

aaDis – area under control
Intercept −0.57 (0.023) −25.09 <0.001 −0.62 to 10.52
Area under control day 14 1.10 (0.003) 313.84 <0.001 1.09 to 1.11

interspread Plus – total number of iPs
Intercept 0.19 (0.016) 11.63 <0.001 0.15 to 0.22
Number of IPs at day 14 1.11 (0.006) 174.93 <0.001 1.10 to 1.12
Pending culls at day 14 0.13 (0.010) 13.22 <0.001 0.11 to 0.15

interspread Plus – outbreak duration
Intercept 7.07 (0.173) 40.76 <0.001 6.73 to 7.41
Area under control day 14 0.29 (0.005) 55.24 <0.001 0.28 to 0.30
EDR day 14 0.21 (0.007) 29.62 <0.001 0.19 to 0.22
IP density day 14 7.82 (0.241) 32.36 <0.001 7.34 to 8.29

First detected farm type
 Dairy dry Reference
 Lifestyle −0.003 (0.015) −0.25 0.800 −0.03 to 0.03
 Beef-sheep-mixed −0.042 (0.016) −2.63 0.009 −0.07 to −0.10
 Dairy milking −0.084 (0.016) −5.33 <0.001 −0.12 to −0.05
 Pig breeding −0.138 (0.087) −1.59 0.111 −0.31 to 0.03
 Pig fattening 0.232 (0.271) 0.86 0.392 −0.30 to 0.76

interspread Plus – area under control
Intercept −0.28 (0.027) −10.45 <0.001 −0.33 to −0.23
Area under control day 14 1.07 (0.004) 275.96 <0.001 1.06 to 1.08

EDR, estimated dissemination ratio.

TaBle 6 | goodness-of-fit statistics (R2) for each of the linear regression 
models for the total number of infected places, outbreak duration, and 
area under control using days 7, 14, and 21 explanatory variables for the 
aaDis and interspread Plus models of FMD.

Model – outcome Day 7 Day 14 Day 21

aaDis
Total number of IPs 0.84 0.92 0.96
Outbreak duration 0.61 0.71 0.77
Area under control 0.77 0.96 0.98

interspread Plus
Total number of IPs 0.73 0.85 0.91
Outbreak duration 0.43 0.58 0.67
Area under control 0.73 0.85 0.91
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are shown in Table  7. The proportions of correctly classified 
outbreaks ranged from 0.88 to 0.97 for AADIS and 0.79 to 0.92 
for ISP.

regression Trees
Classification and regression tree analyses were carried out to 
identify factors associated with the total number of IPs, outbreak 
duration, and total AUC. Similar to the approach used for the 
linear regression analyses, three sets of explanatory variables were 
used: those at day 7 post-detection, day 14 post-detection, and day 
21 post-detection. Using these three sets of explanatory variables 
with each of the three outcome variables and both the Australian 
and New Zealand data sets resulted in 18 CART analyses in total. 
BRT models using the same explanatory variables and the same 
outcome variables were developed using the Australian and New 
Zealand data.

The CART for the predicted total number of IPs using day 14 
explanatory variables for the Australian and New Zealand data 
are shown in Figures 2 and 3, respectively. For both the AADIS 
and ISP models, the number of IPs at day 14 had the greatest 
influence on the total number IPs. For the AADIS model, in 
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TaBle 7 | Positive and negative predictive values and the proportion of 
outbreaks correctly classified as large or small (or short or long) using 
the day 14 linear regression model for the aaDis and interspread Plus 
simulated FMD outbreaks.

Model – outcome cut pointa Predictive value correctly 
classified

Positive negative

aaDis
Total number of IPs 20 0.97 0.83 0.96
Total number of IPs 54 0.97 0.80 0.95
Outbreak duration 54 0.94 0.68 0.88
Outbreak duration 90 0.95 0.62 0.94
Area under control 1000 0.98 0.91 0.96
Area under control 3000 0.98 0.88 0.97

interspread Plus
Total number of IPs 20 0.89 0.87 0.88
Total number of IPs 54 0.94 0.77 0.92
Outbreak duration 54 0.85 0.64 0.79
Outbreak duration 90 0.92 0.52 0.91
Area under control 1000 0.94 0.87 0.85
Area under control 3000 0.94 0.79 0.92

aUsed to classify outbreak as small or large.
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addition to the number of IPs identified at day 14, the total 
AUC at day 14 and cattle density influenced the total number 
of IPs.

The five most influential explanatory variables (and their 
weights) from the BRT models for the total number of IPs, out-
break duration, and the total AUC for the Australian and New 
Zealand data are listed in Table  8. Consistent with the CART 
analyses, for both AADIS and ISP, the number of IPs identified at 
day 14 was associated with each of the three outcome variables. 
While for ISP the number of IPs identified at day 14 had the 
highest weight for each of the three outcomes, the total number 
of outbreak clusters identified at day 14 had the greatest weight as 
a predictor of the total AUC for AADIS. For AADIS, the density 
of cattle was associated with each of the three outcome variables, 
albeit with a relatively low regression weight in each model (10.2, 
15.4, and 0.1 for the total number of IPs, outbreak duration, and 
the total AUC, respectively).

The predictive ability of each of the day 14 boosted regres-
sion models was assessed by calculating the positive and nega-
tive predictive values for each model (Table 9), similar to the 

FigUre 2 | classification and regression tree summarizing day 14 post-detection variables predictive of the total number of iPs using aaDis. The 
number of IPs identified at day 14 post-detection had the strongest association with the total number of IPs followed by cattle density at the location of the index 
premise. Relatively large outbreaks were those where there were more than 32 IPs identified by day 14 and where cattle density at the location of the index premise 
was greater than or equal to 82.38 head/km2.
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approach taken for the linear regression models. Overall, the 
BRT models were able to correctly classify simulated outbreaks 
as either large or small (for the total number of IPs and total 
AUC) or short or long (for outbreak duration) with the propor-
tion of correctly classified outbreaks ranging from 0.82 to 0.96 
for AADIS and 0.77 to 0.93 for ISP. In general, negative predic-
tive values for the BRT models were greater than the positive 
predictive values.

DiscUssiOn

During a disease outbreak, decisions on control are often made 
under significant uncertainty and in conditions that are continu-
ally evolving. Resources are often limited and will influence the 
effectiveness of disease control efforts. Experience overseas sug-
gests that resource and logistical issues are critical considerations 
when evaluating disease control strategies (39–41). Vaccination 
is increasingly being recognized as an important tool to assist 
in containing and eradicating FMD outbreaks (6–8, 42, 43). 

FigUre 3 | classification and regression tree summarizing day 14 post-detection variables predictive of the total number of iPs using interspread 
Plus. The number of IPs identified at day 14 post-detection had the strongest association with the total number of IPs followed by human population density at the 
location of the index premise. Relatively large outbreaks were those where there were greater than or equal to 69.5 IPs identified by day 14.

TaBle 8 | identified explanatory variables (n = 5) and their weights (in 
brackets) for the boosted regression tree model of first 14 day predictors 
of area under control, the total number of infected places, and outbreak 
duration for the aaDis and interspread Plus models of FMD.

Model – outcome explanatory variables (weights)

aaDis
Total number of IPs IPs day 14 (60.8), cattle/km2 (10.2), AUC day 14 (9.4), 

number of traces day 14 (4.0), EDR day 14 (3.1)
Outbreak duration IPs day 14 (40.7), cattle/km2 (15.4), AUC day 14 (9.3), 

number of pigs/km2 (7.6), EDR day 14 (6.2)
Area under control Number of clusters day 14 (90.1), IPs day 14 (9.6), 

IPs/km2 (0.1), number of traces day 14 (0.1),  
cattle/km2 (0.1)

interspread Plus
Total number of IPs IPs day 14 (81.4), human population density 

(5.1), EDR day 14 (3.5), IPs/km2 day 14 (2.3),  
cattle/km2 (1.7)

Outbreak duration IPs day 14 (50.4), human population density (14), EDR 
day 14 (12.1), IPs/km2 day 14 (5.4), cattle/km2 (4.5)

Area under control IPs day 14 (39.8), number of traces day 14 (36.3),  
IPs/km2 (11.6), number of clusters day 14 (7.2), 
EDR day 14 (2.3)
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Vaccination has been shown to be most effective in  situations 
where disease is spreading rapidly or resources are inadequate 
to maintain effective stamping out (4). A number of studies have 
shown that vaccination is more beneficial when used early in an 
outbreak (8, 44, 45).

Although vaccination can be an important tool to control 
FMD, it will make achieving recognition of FMD-free status 
more difficult – keeping vaccinated animals in the population 
will delay the period until FMD-free status is regained under 
the World Organization for Animal Health (OIE) guidelines 
and add additional complications to the post-outbreak surveil-
lance program (46). Shifting attitudes to vaccination among the 
international veterinary community means that it is no longer 
viewed as a measure of last resort. In Australia and New Zealand, 
vaccination will be given consideration as a potential additional 
measure (alongside stamping out) from day one of any FMD 
eradication response. However, given the complications and costs 
associated with implementing a vaccination strategy, it would 
only be used if authorities consider that it would be beneficial in 
managing the outbreak (19, 26, 47). A decision to vaccinate early 
in the outbreak may result in situations where it was not actually 
required and have consequent implications for post-outbreak 
surveillance, management of vaccinated animals, and regaining 
FMD-free status and access to markets. Conversely, not using 
vaccination in some situations may lead to larger and longer 
outbreaks, increased control costs, and greater on-going impacts 
on industry and local communities.

Although Australia and New Zealand have developed 
frameworks to support decision-making on FMD control 
(19, 48), these are qualitative and subjective. We reason that 
it would be useful if disease managers could identify early 
in an outbreak those situations that are likely to progress 
to “large” outbreaks and for which additional measures like 
vaccination are likely to be beneficial. In this context, measur-
able parameters such as the number of IPs, numbers of traced 

premises and/or farms under surveillance, and estimated rates 
of spread might be useful indicators of the potential severity 
of an outbreak.

The overarching aim of this project was to identify factors that 
could be used to predict the total number of IPs, outbreak dura-
tion, and the total AUC. Here, “factors” refers to characteristics of 
the physical environment in which an FMD incursion first occurs 
(e.g., farm density, animal density, human population density) 
or characteristics of the outbreak itself (e.g., the number of IPs 
reported at a given point in time post first detection). We were 
particularly interested in how robust the findings were to out-
breaks in different settings. For this study, we used a wide range 
of FMD incursions in terms of location, production systems and 
seed farm type, and time to first detection (determined probabil-
istically). These outbreaks were simulated in two countries using 
two independent modeling platforms.

It is reassuring for animal health authorities that, in both 
countries, the simulated FMD outbreaks tended to be small 
and readily able to be contained and eradicated with available 
resources. For both countries, median outbreak durations were 
around 6  weeks. This finding assumes that FMD is reported 
relatively quickly and resources are adequate to implement 
effective control programs. For Australia, the median time from 
first introduction to reporting was 17 days (range 9–89), and for 
New Zealand, the median time to detection was 13 days. A pre-
vious Australian study found considerable regional variability 
in the probability that an individual infected farm would report 
suspect FMD (24, 49). Recent experience of outbreaks of FMD 
in non-endemic countries indicate that it can take up to 3 weeks 
after introduction of the virus to the primary farm before the 
disease is recognized (40, 50–52). However, early detection does 
not necessarily mean that an outbreak will be small. A total of 
3.4% of the 10,000 outbreaks of FMD in Australia that were 
simulated in this study had more than 100 IPs and 7.2% of the 
10,000 outbreaks lasted longer than 90 days. For New Zealand, 
there was a 7.2% probability of an outbreak involving more than 
100 IPs and an 8.6% probability of an outbreak lasting more 
than 90 days.

The key objective of this study was to test whether information 
known or available to disease managers early in an FMD outbreak 
could be used to predict the severity of the epidemic outcome. 
Epidemic outcome was defined in terms of the total number of 
IPs, outbreak duration, and the total geographic AUC. While 
FFO and FFS have been shown to correlate with epidemic size 
(16), it was recognized that it would be more useful to consider 
a broader range of times than just 14  days. Accordingly, three 
time points were considered: 7, 14, and 21 days into the control 
program. A range of potential explanatory variables were tested 
using different analytical approaches, including linear regression, 
CART, and BRT analyses.

Although there was some variability between the different 
analyses and between countries, the cumulative number of IPs 
at specified time points early in the outbreak were consistently 
found to be strongly associated with the final number of IPs and 
the duration of an outbreak. It was possible to build relatively 
simple linear regression models for predicting the magnitude 
and duration of simulated FMD outbreaks that fitted both the 

TaBle 9 | Positive and negative predictive values and the proportion of 
outbreaks correctly classified as large or small (or short or long) using 
the day 14 boosted regression tree model for the aaDis and interspread 
Plus simulated FMD outbreaks.

Model – outcome cut pointa Predictive value correctly 
classified

Positive negative

aaDis
Total number of IPs 20 0.79 0.97 0.93
Total number of IPs 54 0.76 0.98 0.96
Outbreak duration 54 0.72 0.87 0.82
Outbreak duration 90 0.70 0.96 0.94
Area under control 1000 0.93 0.96 0.95
Area under control 3000 1.00 0.90 0.90

interspread Plus
Total number of IPs 20 0.79 0.91 0.86
Total number of IPs 54 0.74 0.95 0.91
Outbreak duration 54 0.64 0.85 0.77
Outbreak duration 90 0.63 0.92 0.91
Area under control 1000 0.90 0.89 0.90
Area under control 3000 0.81 0.94 0.93

aUsed to classify outbreak as small or large.
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Australian and New Zealand data (see Table 5). R2 values as a 
measure of goodness of fit ranged from 0.3 to 0.9 depending on 
time point, outbreak variable, and country (Table 6). A consistent 
pattern was observed, with the fit of the models improving from 
days 7 to 14 to 21 for all dependent variables and for both data 
sets (Australia and New Zealand). The total AUC had the high-
est predictability and duration of an outbreak the lowest. In this 
study, we found that the number of IPs occurring up to a given 
time point provided the most predictive power for both size (total 
IPs) and outbreak duration. This confirms previous findings by 
Hutber et al. (15) and Halasa et al. (16). The AUC at a given time 
point was most predictive of the total AUC.

These findings were confirmed in the CART and BRT analy-
ses. Consistency between the different approaches helps build 
confidence that the criteria identified are relevant to response 
decision-making. CART techniques are a useful alternative as 
they provide a visual decision tree output that is intuitive and 
likely to be well received by those not familiar with statistical 
analysis (see Figures  2 and 3). The tree diagrams produced in 
a CART analysis are consistent with clinical reasoning used by 
animal health professionals and can help to structure explana-
tions of prediction. Compared with regression-based approaches, 
an advantage of a CART analysis is that it can accommodate 
non-linear relationships between an outcome variable and a set 
of explanatory variables as well as missing data.

Boosted regression trees have the advantages of being able to 
handle a range of explanatory variable types, not requiring any 
data transformations, and being able to account for complex, 
non-linear relationships (35). BRTs are better-able to describe 
linear relationships and are more robust in terms of predictive 
accuracy, although interpretability suffers as a result. CARTs and 
BRTs are complementary. CARTs are relatively simple and provide 
readily interpretable output; BRTs are more complex and robust, 
but with reduced interpretability. The BRTs for both countries 
had good predictive ability when the total number of IPs was less 
than 100. When the total number of IPs was greater than 100, the 
BRT analyses tended to under predict total IP numbers.

Although it is informative to build statistical models to 
summarize factors influencing outputs from complex simulation 
models of FMD, for disease managers, the key issue is how 
this information can be used to support decision-making. From 
a disease manager’s perspective, it is useful to consider how 
good the models are at predicting small and large outbreaks. 
To do this, it is necessary to make some judgment calls about 
what constitutes a “large outbreak.” It is difficult in advance to 
reach agreement on what are acceptable benchmarks in terms 
of eradicating FMD, as this will be influenced by the time and 
location of an outbreak, availability of resources, etc. Accordingly, 
we looked at a series of arbitrary “cut points” for classifying 
outcomes into small and large (or long and short) outbreaks. 
Model sensitivity, specificity, and positive and negative predictive 
values were calculated using these cut-points. In general, the 
linear regression models were very good at predicting when an 
outbreak would be small or short; the positive predictive values 
varied from 0.85 to 0.98 meaning that a small outbreak was 
correctly predicted between 85 and 98% of the time. It should 

also be noted that having predicted a small outbreak at day 14 
(which would probably mean that a decision to vaccinate would 
not be made), this decision could be revisited at a later time in 
the outbreak when more information was available. Incorrectly 
predicting a large outbreak and using vaccine when it is not 
actually required will have trade implications and increase 
outbreak costs. The models were less accurate at predicting a 
large or long outbreak with the negative predictive values for 
outbreak duration exceeding 90  days being as low as 0.52 for 
the models of FMD in New Zealand. The negative predictive 
values for the total number of IPs and the total AUC were better 
ranging from 0.77 to 0.91 for both AADIS and ISP.

The BRT models were able to correctly classify simulated 
outbreaks as either large or small with the proportion of correctly 
classified outbreaks ranging from 0.77 to 0.96. Negative predic-
tive values tended to be higher than the positive predictive values 
for the BRT models.

In conclusion, this study shows that based on simulated FMD 
outbreak data relatively simple metrics available at 1–3  weeks 
into the control program can be used to predict the size of an 
FMD outbreak under Australian and New Zealand conditions 
and provide a basis for making decisions on the use of vaccina-
tion as a control measure. It should be noted that the simula-
tion modeling analyses carried out for this study focused on 
introduction of FMD into the areas considered to be at higher 
risk of disease entry and dissemination in Australia and New 
Zealand (23). The results need further validation with modeling 
data generated from other areas of these countries. Finally, it 
should be recognized that in the absence of FMD outbreaks in 
Australia and New Zealand, this study has fitted statistical mod-
els to simulated, not real outbreak data. Although the modeling 
teams have been careful to parameterize the respective models 
as realistically as possible, it is inevitable that assumptions and 
extrapolations from overseas experience have had to have been 
made. These considerations need to be taken into account when 
using the findings from this study.
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