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Interest in microbial communities, or microbiota, of blood-feeding arthropods such 
as ticks (order Parasitiformes, suborder Ixodida) is increasing. Studies on tick micro-
organisms historically emphasized pathogens of high medical or veterinary impor-
tance. Current techniques allow for simultaneous detection of pathogens of interest, 
non-pathogenic symbionts, like Coxiella-LE and Francisella-LE, and microorganisms of 
unknown pathogenic potential. While each generation of ticks begins with a maternally 
acquired repertoire of microorganisms, microhabitats off and on vertebrate hosts can 
alter the microbiome during the life cycle. Further, blood-feeding may allow for horizontal 
exchange of various pathogenic microbiota that may or may not also be capable of ver-
tical transmission. Thus, the tick microbiome may be in constant flux. The geographical 
spread of tick vector populations has resulted in a broader appreciation of tick-borne 
diseases and tick-associated microorganisms. Over the last decade, next-generation 
sequencing technology targeting the 16S rRNA gene led to documented snapshots 
of bacterial communities among life stages of laboratory and field-collected ticks, ticks 
in various feeding states, and tick tissues. Characterizing tick bacterial communities 
at population and individual tissue levels may lead to identification of markers for 
pathogen maintenance, and thus, indicators of disease “potential” rather than disease 
state. Defining the role of microbiota within the tick may lead to novel control measures 
targeting tick-bacterial interactions. Here, we review our current understanding of micro-
bial communities for some vectors in the family Ixodidae (hard ticks) in North America, 
and interpret published findings for audiences in veterinary and medical fields with an 
appreciation of tick-borne disease.
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TiCKS AS OBLiGATe PARASiTeS: iMPLiCATiOnS FOR THe TiCK 
MiCROBiOMe

Ticks represent a unique group of hematophagous ectoparasites capable of transmitting the greatest 
variety of microorganisms to vertebrate hosts (1). With few exceptions, motile life stages for all 
three tick families (Ixodidae, Argasidae, and Nuttaliellidae) require a blood meal. The significance 
of ticks as vectors is not new. Ticks were the first arthropod to be associated with transmission of a 
disease agent. In the late 1800s, Smith and Kilbourne established Rhipicephalus (Boophilus) ticks as 
the vector for (Texas) cattle fever, caused by Babesia bigemina (2). After that discovery, the ability 
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of ticks to acquire, maintain and transmit pathogens became a 
significant and productive area of scientific research. Historically, 
tick-borne diseases were described first and then the etiologic 
agent pursued, as with Texas cattle fever. However, in some cases, 
tick-associated microorganisms of unknown pathogenicity were 
identified first, and an association with human or animal disease 
found later. Better diagnostic assays and heightened recognition 
of tick-borne diseases contributed to re-descriptions of tick-
associated microorganisms. The spotted fever group rickettsia, 
Rickettsia parkeri, was recovered from Amblyomma maculatum 
in Texas approximately 60 years prior to the index case, reported 
in 2004 (3). Additionally, the spirochete, Borrelia miyamotoi, 
first reported from Ixodes persucatus in Japan, was considered 
non-pathogenic until the first human cases 15 years later (4, 5). 
New reports of emerging pathogenic tick-borne bacteria, viruses, 
and protozoa are not rare (6–9). However, most tick-associated 
microorganisms are not likely pathogens.

There is increasing interest in the tick microbial community, 
how it may impact transmission and maintenance of pathogens, 
and how manipulation of the microbial community may serve 
as an avenue for tick or pathogen control (10). The microhabitat 
at the surface of a vertebrate host, such as a human, presents a 
complex source of organisms for ticks to potentially acquire 
(11). In addition, microorganisms may be exchanged through 
co-feeding as well as from the external environment, considering 
ticks spend approximately 90% of their life off the host. Further, 
the tick itself, through vertical transmission, contributes to the 
microbiome of its next generation. There are at least ten bacterial 
genera that are transovarially (vertically) transmitted, including 
some found only in ticks (e.g., Coxiella-LE, Francisella-LE, and 
Midichloria), and some common among various arthropods (e.g., 
Wolbachia and Arsenophonus) (12). Hawlena et al. found that the 
microbiomes of the ticks, Dermacentor variabilis and I. scapularis, 
were most affected by arthropod-related factors, rather than the 
host or environment (13). Not surprisingly, the preponderance 
of Francisella-LE and Arsenophonus genera in D. variabilis, and 
Rickettsia in I. scapularis, in their study likely depended more on 
vertical transmission. A combination of factors is likely, depend-
ing on the tick-associated microorganism.

With the development of next-generation sequencing tech-
nology, the number of taxa detected in ticks has risen sharply. 
Enthusiasm over tick microbiome studies has generated a fresh 
wave of hypotheses to test and has led to a variety of methodolo-
gies to be considered in future studies. Microbiome sequencing 
based on the 16S rRNA gene continues to be widely utilized, but 
reliable sequencing data requires high quality DNA of sufficient 
quantity. Microbial genomic DNA extraction methods may vary 
based on the sample matrix and target DNA (prokaryotic or 
eukaryotic). Different bacterial cell wall structures may result 
in bacterial species bias in an extract, depending on genomic 
DNA recovery method. Yuan et  al. tested six DNA extraction 
methods for human associated sample microbiome sequenc-
ing (14). Each method exhibited different bacterial genomic 
DNA recovery, with bead beating combined with mutanolysin 
exhibiting high cell lysis efficiency. Kit contaminants must also 
be considered (15). As tick microbiome analyses continue, the 
utility of archived extracts, samples that were not sufficiently 

cleaned prior to extraction, or extracts not enriched for micro-
organisms may improve if environmental contaminants can be 
distinguished from true symbionts, and samples are processed 
accordingly to minimize loss of these symbionts. In recognizing 
the limitations of published data, the scientific community and 
readership can better understand the biological significance of 
the tick microbiome.

MiCROBiOTA ASSOCiATeD wiTH 
COMMOn TiCK veCTORS in nORTH 
AMeRiCA

Microorganisms living in close relationship with ticks are symbi-
onts and can be categorized as obligate or facultative based on the 
potential for vertical or horizontal transmission and requirement 
for survival and reproduction, though these characteristics can be 
difficult to measure (16). Metabolic contributions from arthropod 
symbionts were recently reviewed (17). Co-infections with tick-
borne pathogens, non-pathogens or uncharacterized bacteria are 
also documented, as well as evidence that the community of sym-
bionts may influence maintenance and transmission of known 
pathogens (18). The abundance of microorganisms identified 
and novel associations uncovered continue to generate questions. 
Here, we highlight bacteria consistently dominating microbiome 
catalogs of ticks, focusing on some tick species of vector impor-
tance in North America. Obligate symbionts are summarized in 
Figure 1. For further reading, we suggest Narasimhan and Fikrig 
(10), Bonnet et al. (12), and Duron et al. (19).

The phylum Proteobacteria comprises the majority of bac-
terial species detected in ticks (20). Obligate symbionts that 
predominate include the genera Coxiella-LE in Amblyomma 
americanum and several Rhipicephalus spp., Francisella-LE in 
D. variabilis, and A. maculatum, Rickettsia in I. scapularis, and 
Midichloria in A. americanum (21–23). Wolbachia endosymbi-
onts, which are commonly found in other arthropods and some 
nematodes, are generally rare in ticks (24–26). Pathogens, when 
detected, seem to constitute a lower percentage of the bacterial 
population. Thus, one might predict that their presence does 
not impact the remaining microbial community. In comparing 
the community structure of bacteria from pathogen-infected 
(Anaplasma or Ehrlichia) and uninfected A. americanum, 
bacterial community structure did not significantly differ (27). 
Three phyla, Proteobacteria, Bacteriodetes, and Firmicutes, and 
genera Coxiella-LE and Rickettsia, Flavobacterium, and Bacillus, 
respectively, were commonly encountered, though there were 
discrepancies between Illumina sequencing and PCR for 
Anaplasma and Ehrlichia (27). In addition, while Coxiella-LE 
was more abundant in female compared to male ticks, the genus 
exhibited low relative abundance overall, and in comparison to 
Rickettsia. “Candidatus Rickettsia amblyommii” (now Rickettsia 
amblyommatis sp. nov.) (28) and “Candidatus Midichloria mito-
chondrii” dominated in A. americanum from North Carolina 
(23). Conversely, bacterial communities in A. americanum 
from Georgia were dominated by Rickettsia and Coxiella-LE, 
and exhibited frequent contributions from pathogenic 
(Ehrlichia) and uncharacterized genera (e.g., Midichloria) (29). 
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FiGURe 1 | Common maternally inherited symbionts detected in North American tick vectors belong to the Proteobacteria. Genera are in families Rickettsiacea 
(Rickettsia), Coxiellaceae (Coxiella-LE), Francisellaceae (Francisella-LE), Midichloriacea (Midichloria), and Enterobacteriaceae (Arsenophonus). Some symbionts not 
depicted here as shared among tick vectors have been occasionally reported in the literature or may be reported as common symbionts in the future as data 
increase. Other areas of overlap may also occur among tick symbionts; these are suggested by unlabeled areas.
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While Coxiella-LE may be frequently found in A. americanum 
populations (30), the contribution of this genus to microbial 
abundance may be minimal. Microbial populations in both 
colony and field-collected A. americanum appear to increase 
in diversity during tick feeding at the expense of contributions 
from Coxiella-LE (31).

Microbiomes of laboratory-reared and wild ticks are likely 
influenced by generations of rearing in a specific environment 
and on specific hosts. Short-term environmental changes in a 
population do not appear to significantly impact the microbi-
ome. The Rickettsia genus is rarely detected in colony-reared  
A. americanum ticks compared to overwhelming infection rates 
of R. amblyommatis sp. nov. (“Candidatus R. amblyommii”) in 
wild A. americanum (28, 32–34). In colony-reared A. americanum 
nymphs, there was an overall loss in microbial diversity regardless 
of whether nymphal ticks molted and aged outdoors or in the 
laboratory; Coxiella-LE was present in all tick groups, though 
Rickettsia was not detected in any group (34). These findings  
support short-term changes in the environment as having a mini-
mal contribution on microbial communities. A closed related tick,  
A. maculatum shares a significant portion of its geographical 
range with A. americanum in the USA but differs in its phenol-
ogy, microhabitat, host preferences, and obligate symbionts. 
Microbiome analyses of A. maculatum revealed that salivary 
glands, but not midgut tissues, of laboratory-reared and field- 
collected ticks commonly contained an abundance of Francisella-
LE, while the genus Rickettsia was predominantly located in 
midguts. In addition, bacteria from the family Enterobacteriacea, 
which have not been commonly detected in A. americanum, 
constituted a greater portion of sequencing reads from both col-
lections of ticks (26).

Ixodes scapularis has public and veterinary health importance 
as a vector for agents including B. burgdorferi, Anaplasma 
phagocytophilum, and the protozoan, Babesia. The increasing 
incidence of Powassan virus II (deer tick virus) in New England 
recently renewed anxiety over this high profile vector (35). 
Disease prevalence varies geographically, with states in the 
northeastern USA contributing the majority of case reports for  
I. scapularis-associated diseases such as Lyme disease, in compari-
son to states in the southern USA within the I. scapularis range 
(36). Geographic variations in microbiota are documented in  
I. scapularis in the Mid Atlantic USA, South Atlantic USA, and New 
England. Enterobacteriaceae were dominant in North Carolina  
I. scapularis populations, whereas Rickettsia (Rickettsiaceae) were 
dominant from populations in other USA states; interestingly, a 
population of I. scapularis with high levels of Borrelia, in compari-
son to known Borrelia-endemic sites in New England, was iden-
tified in Virginia (37). Overall, male I. scapularis demonstrated 
greater diversity compared to females, an observation noted in 
other tick microbiome studies (23, 37). In an earlier study, 16S 
rRNA amplicons from I. scapularis were separated by temporal 
temperature gradient gel electrophoresis and sequenced, reveal-
ing the dominance of Rickettsia in New York populations (38). 
Additional genera included not only Borrelia and Anaplasma, but 
also Pseudomonas, Ralstonia and Rhodococcus, which encompass 
species found in the soil, members of Enterobacteriaceae, and 
Moraxella, that are considered commensal species in mucosal 
membranes.

Deforestation, increased urbanization, warmer winters and 
longer transitional autumn, and spring seasons will help expand 
the dissemination of some tick species into more northern 
geographical regions as well as to higher elevations (39, 40). 
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With this expansion is an increasing opportunity for ticks to 
contact different microbial communities outside of the microbial 
consortia encountered in traditional geographical regions. This 
is important because the vector microbiome may affect vector 
competence. Ixodes scapularis larvae reared under primarily 
sterile conditions and fed on gentamycin-treated mice under-
went an altered microbiome (“dysbiosis”). Larvae demonstrated 
diminished feeding and B. burgdorferi colonization, as well as 
lower expression of the glycoprotein, peritrophin, suggesting 
an intimate association between gut microbiome composition 
and integrity of the peritrophic membrane (41). Whether the 
overall microbiome, or niche-specific variations in tick tissues are 
relevant to tick-borne pathogen maintenance and transmission 
may depend on the pathogen’s natural history, including its ability 
to be vertically transmitted and its requirement for a vertebrate 
reservoir. As B. burgdorferi does not utilize transovarial transmis-
sion for maintenance, efficient acquisition from a reservoir host 
is likely critical for vector competency. The presence of certain 
pathogens may also modify tick microbiome composition. 
Abraham et  al. demonstrated that I. scapularis infected with  
A. phagocytophilum, are induced to express the I. scapularis anti-
freeze glycoprotein, resulting in diminished biofilm formation 
in the tick gut and allowing for A. phagocytophilum colonization 
(42). Dysbiosis here acted to enhance pathogen establishment.

Dermacentor andersoni and D. variabilis are two key vectors 
for Rickettsia rickettsii, the agent of Rocky Mountain spot-
ted fever. Dermacentor spp. are predominantly colonized by 
Francisella-LE, although other arthropod symbiotic genera are 
common, including Arsenophonus and Rickettsia (21, 43, 44). 
In D. andersoni, microbial diversity shifted over three genera-
tions and could be manipulated with tetracycline imbibed with 
the blood meal (43). Interestingly, Acinetobacter was found 
to increase in salivary glands over three tick generations, and 
most significantly in ticks fed on tetracycline-treated calves, 
at the expense of Arsenophonus, Rickettsia, and Francisella-LE 
abundance. Acinetobacter, a ubiquitous genus found in soil, 
water, and in normal animal flora, includes species that are now 
considered pathogenic; further, multidrug-resistant strains of A. 
baumannii are being increasingly found in hospital settings (45). 
Francisella-LE and Arsenophonus were common endosymbionts 
in D. variabilis removed from wild Peromyscus leucopus mice col-
lected in Indiana, whereas Acinetobacter was not detected (44). 
Ixodes scapularis, also collected from P. leucopus in this study, 
did not have evidence of Francisella-LE or Arsenophonus but was 
dominated rather by the Rickettsia endosymbiont (44).

Rhipicephalus sanguineus, a common tick vector found infest-
ing dogs world-wide, will also attach and transmit disease agents 
to other hosts, including humans. This is significant considering 
R. sanguineus is responsible for transmission of canine bacterial 
and protozoan pathogens (e.g., Ehrlichia canis, Babesia vogeli, 
and Hepatozoon canis) and was recently implicated as the vec-
tor in a Rocky Mountain spotted fever outbreak in Arizona, 
where both dogs and humans were infected (46). Similar to  
A. americanum, the primary endosymbiont is Coxiella-LE (19). 
However, there is minimal information using next-generation 
sequencing about additional symbionts in the R. sanguineus 
microbiome. Using PCR and sequencing, other genera detected 

from R. sanguineus outside of North America include Rickettsia, a 
genus most closely related to Wolbachia, and Midichloria (47–49). 
An initial assessment of the Rhipicephalus (Boophilus) microplus 
microbial community provides further insight as it demonstrated 
a preponderance of Coxiella-LE associated with female ovaries 
and eggs (50). Borrelia, Wolbachia, and potential environmental 
contaminants including Staphylococcus spp. and Streptococcus 
spp. were also detected (50).

BLOOD FeeDinG in DRivinG THe TiCK 
MiCROBiOMe

The host blood meal and the process of imbibing blood induce 
physiological changes in ticks that appear to affect the tick micro-
biome. In fact, the vertebrate host species may itself affect the 
microbiome. For example, nymphs of the Lyme disease vector in 
the western USA, I. pacificus, demonstrated reduced microbiome 
species richness, replaced by a preponderance of Rickettsia, after 
feeding on the western fence lizard, a host that is refractory to  
B. burgdorferi. In comparison, nymphs that fed on B. burgdorferi 
reservoir hosts, mice, exhibited greater diversity at the expense 
of Rickettsia; they also demonstrated a significant reduction of 
microbial populations through maturing life stage (51). At a 
minimum, these data imply a relationship between host blood 
meal and microbiome diversity. While blood meal causes signifi-
cant changes within the microenvironment of a tick, the extent to 
which this affects microbial populations may ultimately depend 
on microbial adaptability.

As erythrocytes lyse in the tick gut lumen, midgut epithelial cells 
take up hemoglobin and other proteins through endocytosis, where 
intracellular digestion occurs. Heme, one of the products of diges-
tion, must be detoxified due to its ability to damage tissues through 
the production of reactive oxygen species and free radicals (52). 
Kumar et al. found that experimentally increasing oxidative stress in 
A. maculatum, using RNA interference to silence the catalase gene 
(CAT), did not decrease estimated total bacterial loads from salivary 
glands and midgut tissues (53). In fact, knockdown of Cu/Zn-SOD 
or Mn-SOD, two enzymes that additionally function to decrease 
oxidative stress, actually increased bacterial load in the midgut 
with reciprocal effects on bacterial load in the salivary glands; in 
contrast, copy numbers of the pathogen, R. parkeri, decreased in 
these tissues after Cu/Zn-SOD silencing, suggesting a differential 
effect on different bacterial species (54). The digested blood meal 
itself may be a direct source of antimicrobial compounds. In midgut 
extracts from D. variabilis that were capillary-fed B. burgdorferi, 
α- and β-chain hemoglobin fragments, as well as host ubiquitin in a 
complex with ribosomal S30, were associated with inhibition of the 
non-pathogen, Micrococcus luteus. As expected, B. burgdorferi spiro-
chetes in midguts of D. variabilis, which are incompetent vectors for  
B. burgdorferi, were not viable, though spirochetes remained intact 
(55). Interestingly, in I. scapularis, glutathione peroxidase (GPx/
Salp25D), a homolog to the peroxiredoxin antioxidants, has a 
protective effect on B. burgdorferi during acquisition by feeding on 
an infected host, though no effect on spirochete transmission (20). 
Ixodes scapularis GPx/Salp25D also has an apparent protective effect 
on the pathogen, Anaplasma marginale (56). In the A. maculatum-
Rickettsia system, the function of Salp25D and other selenoprotein 
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antioxidants is not entirely straightforward. Knockdown of the 
selenocysteine elongation factor resulted in significantly decreased 
transcription of various selenoprotein antioxidants, with the 
exception of SalpD25 (GPx), and resulted in a loss of antioxidant 
capacity in midgut and salivary gland tissues of field-collected A. 
maculatum. However, while R. parkeri levels expectedly diminished 
in the midgut, levels doubled in salivary glands (57).

There may be interesting metabolic implications with the pres-
ence of Enterobacteriaceae in ticks, considering normal aerobic 
respiration by this group is associated with release of reactive 
oxygen species. Survival mechanisms to withstand the resultant 
oxidative stress are well-documented in E. coli and are conserved in 
related bacteria, with homologous regulators present in members 
of the phylum Proteobacteria (58). In field-collected A. maculatum 
removed from hosts 8 days post-infestation, Enterobacteriaceae 
constituted the second most abundant group in the midgut, and 
was also strongly represented in laboratory-reared A. maculatum; 
Arsenophonus was not among the Enterobacteriaceae identified 
(26). Ixodes scapularis from North Carolina were dominated 
by Enterobacteriaceae, unlike I. scapularis from Virginia, South 
Carolina, Connecticut, and New York (37). Van Truren et al. also 
observed an inverse relationship between Enterobacteriaceae and 
the genus Rickettsia (family Rickettsiaceae) in Ixodes spp. popula-
tions; Rickettsia was rare in North Carolina sites dominated by 
Enterobacteriaceae (37).

Tick feeding is also associated with measurable changes in 
osmolarity within the gut environment, which in turn may affect 
microorganisms. In I. scapularis, morphology and motility of 
B. burgdorferi spirochetes were altered, and expression of key 
virulence factors stimulated, in association with fluctuations in 
osmolarity during tick feeding (59). Finally, once present within 
the tick, ticks may respond to microorganisms though their 
innate immune system, consisting of both humoral and cellular 
mechanisms (60). However, the mechanisms by which the tick 

immune system impacts the composition of the tick microbiome 
in the midgut and other tissues are poorly understood and beyond 
the scope of this review.

COnCLUSiOn

Over the last few decades, the scientific community has witnessed 
and driven the development of next generation sequencing plat-
forms for microbiome sequencing of the gastrointestinal tracts in 
humans, animals, and insects. Because ticks are significant vectors 
associated with emerging pathogens, understanding the contri-
butions of the tick microbiome in tick physiology and pathogen 
stability may lead to novel approaches to vector and pathogen 
control. With the tick genome described (61), the opportunity to 
apply the corresponding transcriptomics and proteomics, as well 
as metabolomics, may help to uncover some of the answers to the 
interaction between the tick host and its microbiome, and in turn 
how these interactions impact the presence of pathogens.
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