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Zebra mussels (ZMs) (Dreissena polymorpha) and Eurasian watermilfoil (EWM) 
(Myriophyllum spicatum) are aggressive aquatic invasive species posing a conservation 
burden on Minnesota. Recognizing areas at high risk for invasion is a prerequisite for 
the implementation of risk-based prevention and mitigation management strategies. 
The early detection of invasion has been challenging, due in part to the imperfect obser-
vation process of invasions including the absence of a surveillance program, reliance 
on public reporting, and limited resource availability, which results in reporting bias. 
To predict the areas at high risk for invasions, while accounting for underreporting, we 
combined network analysis and probability co-kriging to estimate the risk of ZM and 
EWM invasions. We used network analysis to generate a waterbody-specific variable 
representing boater traffic, a known high risk activity for human-mediated transporta-
tion of invasive species. In addition, co-kriging was used to estimate the probability of 
species introduction, using waterbody-specific variables. A co-kriging model containing 
distance to the nearest ZM infested location, boater traffic, and road access was used 
to recognize the areas at high risk for ZM invasions (AUC  =  0.78). The EWM co- 
kriging model included distance to the nearest EWM infested location, boater traffic, and 
connectivity to infested waterbodies (AUC = 0.76). Results suggested that, by 2015, 
nearly 20% of the waterbodies in Minnesota were at high risk of ZM (12.45%) or EWM 
(12.43%) invasions, whereas only 125/18,411 (0.67%) and 304/18,411 (1.65%) are cur-
rently infested, respectively. Prediction methods presented here can support decisions 
related to solving the problems of imperfect detection, which subsequently improve the 
early detection of biological invasions.

Keywords: risk assessment, spatial modeling, geostatistics, early detection, surveillance, reporting,  
observation bias
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inTrODUcTiOn

Aquatic invasive species (AIS) have the potential to affect animal, 
environmental, and public health (1, 2). The state of Minnesota in 
the United States has experienced numerous AIS incursions and 
spend over 10 million dollars each year on activities intended to 
prevent, control, or manage AIS (3, 4).

Zebra mussels (ZMs) (Dreissena polymorpha) and Eurasian 
watermilfoil (EWM) (Myriophyllum spicatum) are AIS of concern 
for Minnesota and have been reported in Minnesota since 1989 
and 1987, respectively (5). The first introduction of ZMs into 
North America is attributable to ballast water from transatlantic 
ships (6). ZMs are rapidly propagating bivalves that disrupt the 
stability of the food web in aquatic ecosystems affecting both 
pelagic and benthic species (7). Removal of ZMs colonizing 
public water supply pipes and pipes of industrial facilities has cost 
nearly $267 million in the ZM affected region in North America 
between 1989 to 2004 period (8). Similarly, EWM, an invasive 
aquatic macrophyte, was likely introduced into North America 
through aquarium trade (6). EWM proliferates rapidly impeding 
the effective removal or control strategies upon establishment 
in a waterbody (9). Dense vegetation of EWM outcompetes 
native macrophytes and interrupts recreational activities (9). An 
intensive hand harvesting project to control EWM, conducted in 
the upper Saranac Lake in New York, reported a labor cost of 
$351,748/year in that one lake alone (10).

Aggressive and costly programs have been implemented in 
Minnesota to control AIS (3). For example, since 2014, $10 mil-
lion per year has been allocated by the Minnesota legislature to 
provide resources for county-based AIS prevention activities, such 
as education, surveys, and watercraft inspections (4). However, 
because the risk of AIS invasion had not been previously quanti-
fied, the resources were distributed proportionally to the share of 
boat ramps and trailer parking spaces in each county (4). The funds 
are invested on prevention of the introduction or limitation of the 
spread of AIS within the county (3, 4). Because of the high economic 
and conservation burden posed by the invasions, forecasting of the 
areas at high risk for invasions is an urgent research priority (2).

The two AIS have been invading Minnesota waters for 
approximately 30 years; therefore, the measurement of propagule 
pressure, i.e., the “introduction effort,” needs to be focused at the 
local scale such as at individual waterbody (11). As a solution, 
previous studies have suggested using surrogate variables such 
as the number of boat ramps and distance to the major roads 
in the absence of waterbody-specific data when measuring the 
propagule pressure (12). One of the most challenging waterbody-
specific variables is the measurement of human-mediated disper-
sal (9, 12, 13). Use of human population density as a proxy for 
the human-mediated dispersal may serve as a solution. However, 
densely populated areas may also tend to report the invasions 
more frequently, compared to less populated areas (14),1 which 
may also lead to reporting bias and underreporting.

1 Kanankege KST, Alkhamis MA, Perez AM, Phelps NBD. Zebra mussels and 
Eurasian watermilfoil detection patterns in Minnesota (2017). Under review.

The objective of this study was to estimate the potential range 
expansion of ZMs and EWM in Minnesota, using a combina-
tion of network analysis and co-kriging, a spatial interpolation 
technique to account for underreporting. The advantage of using 
co-kriging is that the technique enables the prediction of values 
for the locations without observed data, using other correlated 
and highly sampled variables (15, 16). Co-kriging is commonly 
used in gold mining and lake and reservoir studies, and has rarely 
been used in veterinary epidemiological and public health stud-
ies as well (17–20). Environmental conservation studies, such as 
the controlling the spread of invasions, often suffer from lack of 
data and reporting bias because of the financial constraints on 
surveillance (1). In Minnesota, invasions are often reported by 
volunteers and the presence of the AIS may be missed in some 
waterbodies due to insufficient coverage, which decreases the 
sensitivity of the reporting. The specificity of the reporting sys-
tem, instead, may be considered acceptable, given that false posi-
tive cases are unexpected. False positives are unlikely because, 
the Minnesota Department of Natural Resources (MNDNR) 
confirms newly reported invasions prior to adding them to the 
official online database of infested waters (5). Consequently, the 
limitation of this passive surveillance system is the potential 
underreporting of the conditions. Co-kriging may also compen-
sate for the reporting bias and underreporting by augmenting 
the predictive power of one variable with the support of other 
correlated and highly sampled variables.

Recognition of areas at high risk may act as an early warning 
system and help the prioritization of waterbodies for a targeted 
and efficient allocation of limited resources to improve both 
defensive and offensive management strategies (21, 22). Such 
risk targeted approaches certainly represent improvements over 
the random selection of waterbodies for surveillance and man-
agement purposes (23, 24). For example, current guidelines for 
conducting AIS early detection and baseline monitoring in lakes 
of Minnesota suggest that volunteers select waterbodies based on 
factors such as public water access, boater traffic, tourist activity, 
etc. (25). However, selecting waterbodies based on multiple cri-
teria is challenging and we propose that a method which take all 
the most relevant risk factors into account and provide a risk rank 
would be a better fit to guide the volunteers. Study results may 
inform risk-based surveillance and management of invasions 
(21, 23), a process defined as making decisions for identifying, 
evaluating, selecting, prioritizing, and implementing control 
measures (26). This work demonstrates the use of analytical 
models to estimate risk while accounting for reporting bias, with 
the ultimate objective of evaluating and modifying the policies 
and practices on biological invasions (23).

MaTerials anD MeThODs

study area and ais Presence Data
A total of 18,411 point locations representing waterbodies of 
Minnesota were considered as the study population in this study. 
Waterbodies were mainly lakes and ponds (n = 18,263) and were 
represented by the centroids of each waterbody. In addition to 
the lakes, several riverine locations (n = 148) from major rivers 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


TaBle 1 | Number of waterbodies with the characteristic of each variable by 
2010 and 2015.

number of 
waterbodies 

by 2010

number of 
waterbodies 

by 2015

1 ZM invasion statusa 57 125
2 EWM invasion statusa 251 304
3 Connectivity to another ZM invaded 

waterbody via a river or a streamb

2,392 3,658

4 Connectivity to another EWM invaded 
waterbody via a river or a streamb

3,129 3,715

5 Eigenvector centrality of the boater traffic 
network

1,376 1,376

6 Inverse of the Euclidean distance to the 
nearest major road

18,411 18,411

aPresence only.
bConnected waterbodies only.
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were included in the analysis. Riverine locations were identified 
at the rivers’ midpoint within each county. The locational data for 
the waterbodies were extracted from the GIS layer referred to as 
“MNDNR Hydrography,” which is available from the Minnesota 
GIS Commons (27). Presence data for confirmed AIS locations 
were collected from the MNDNR database (5). By the end of 
2015, there were 125/18,411 (0.67%) ZMs and 304/18,411 (1.65%) 
EWM infested waterbodies in Minnesota (5, see text footnote 1). 
The confirmed presence of the AIS was used in the study regard-
less of the magnitude of infestation, because assessments on the 
magnitude of infestation are not available.

Waterbody-specific Variables
Waterbody-specific variables (n  =  6), were used as predictors 
in the co-kriging models. The six waterbody-specific variables 
included (1) ZMs or (2) EWM invaded waterbody, (3) con-
nectivity to another ZM and (4) EWM invaded waterbody via 
a stream or a river, (5) boater traffic between waterbodies, and 
(6) inverse of the Euclidean distance to the nearest major road. 
Status of the invasions, i.e., confirmed presence of invasion was 
the primary variable for each AIS (variables 1 and 2). For the 
validation purposes, models were fit for years 2010 and 2015; 
therefore, two sets of each variable were calculated. The number 
of waterbodies from which each variable is available varied over 
the time (Table 1). However, the same boater traffic variable was 
used in both 2010 and 2015 model fits because boater traffic was 
calculated based on a survey conducted in 2013, as described 
below. The Euclidean distance to the nearest major road variable 
was the same for both 2010 and 2015 assuming the major roads 
remained unchanged.

Proximity and connectivity to infested waterbodies have 
been recognized as key risk factors leading to ZM and EWM 
invasions (9, 28). Because of the pairwise distance calculation 
for the semi-variance of candidate variables in the model, the 
kriging process includes the distance between locations as an 
integral part of the algorithm (15). Therefore, when AIS pres-
ence/absence is the primary variable, the spatial dependence, 
i.e., the distance to the nearest infested location is inherently 
included in the co-kriging model.

Surface water connectivity between waterbodies via a stream 
or a river was obtained by intersecting the map of the river 
and streamlines features with the polygon features represent-
ing lakes, ponds, and reservoirs using ArcGIS version 10.3.1 
(29). River and streamline feature data were obtained from the 
“Stream Routes with Kittle Numbers and Mile Measures” GIS 
layer available from the Minnesota GIS Commons (30). Several 
published studies identified the potential for downstream (e.g., 
via downstream drift) and upstream (e.g., via watercraft) spread 
of ZMs and EWM (28, 31, 32). However, the distance measures 
denoting the extent of the spread upstream or downstream were 
either not studied or varied among the published literature. 
Therefore, for simplicity, an invasion was assumed to occur both 
up and down stream regardless of the flow direction. Invaded 
locations that were not directly intersecting a river or streamline 
were given a buffer distance of 100 m around the point location, 
and the closest river or stream feature was assigned as connected 
because the proximity to the infested location poses the risk of 
invasion (7, 9). Rivers and streams were represented by a unique 
identification number referred to as “Kittle Numbers” assigned 
by the MNDNR (30, 33). Kittle numbers consisted of an alpha-
betical letter, followed by a string of digits (33). For example, if an 
invaded waterbody was connected to kittle number #H026, then 
any waterbody connected to #H026 was assigned as connected 
to an invaded waterbody. Connectivity networks were generated 
separately for ZMs and EWM.

Boater traffic between waterbodies may lead to human-
mediated dispersal of AIS (9, 13). Here, boater traffic was meas-
ured using data collected by the MNDNR Watercraft Inspection 
Program, a survey conducted since 1992 as a conservation 
measure to protect state waters (34). The Watercraft Inspection 
Program survey is conducted at selected waterbodies. Priority for 
data collection is given to those that are invaded, located near 
an invaded waterbody, highly used, or located close to popular 
travel destinations (34). The boaters who visit the waterbodies 
were interviewed regarding the previous waterbody visited and 
the waterbody they plan to visit next. In 2013, the Watercraft 
Inspection Program surveys were conducted at 240 locations, 
and 119 (49.6%) of those locations were invaded by either ZMs 
or EWM. Because of the miscellaneous reporting errors, only 
21% of the surveys were eligible to be used in the final Watercraft 
Movement Network. Based on the survey, boater traffic data 
were available from 1,376 unique waterbodies (7.5% of the total 
waterbodies). Because the analysis was focused on predicting the 
current risk of invasions rather than understanding the impact of 
boater traffic on past invasions, it was assumed that movements 
recorded in 2013 were representative of movement patterns 
observed between 1987 and 2015.

Network analysis, which provides a framework to identify 
units that are frequently or intensely connected within the 
network and identify contact patterns (35), was applied to the 
Watercraft Inspection Program data from 2013. A total of 187,074 
surveys were conducted between April 25, 2013 and November 
30, 2013. Recreational boater movement data are not collected 
during the winter season (34). In the analysis, network “nodes” 
were the waterbodies and visits between waterbodies served 
as “edges.” Each completed survey accounted for two edges, 
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representing the following links: (1) between the previously 
visited location and the surveyed location, and (2) between 
surveyed location and the next stated location that the watercraft 
would visit. Three centrality measures, namely, the Eigenvector, 
Betweenness, and Degree were calculated for the network. The 
centrality measure that highly correlates with the status of the 
invasions by ZM and EWM was chosen, upon calculating the 
Pearson correlation analysis. Eigenvector centrality was chosen 
as the network parameter representing the connectivity of each 
waterbody within the watercraft movement network. Eigenvector 
centrality is a representation of the relative importance of a node 
regarding its position and connectivity to other highly connected 
nodes in the network (35). It was assumed that highly connected 
nodes could play a major role in distributing AIS.

Distance to the nearest major road represents the convenience 
of accessibility to a waterbody. Boater traffic data are collected 
from limited waterbodies; however, an indirect measure of the 
potential visitations is the calculation of road accessibility (12, 36). 
Therefore, distance to the nearest major road from the waterbod-
ies was calculated using the major roads map of 2012, available 
through the Minnesota Geospatial Commons and originated from 
the Department of Transportation (37). As defined in the metadata 
of the spatial layer, road classes including interstate highways, 
freeways, arterials, and major collectors were considered as major 
roads in the analysis (37). The inverse of the Euclidean distance was 
used as the variable when fitting the models.

Data analysis: co-Kriging to estimate  
the Probability of introduction
Probability co-kriging was used to estimate the probability of 
ZM or EWM introduction into the waterbodies, conditional to 
the distance between locations and other waterbody-specific 
variables. Co-kriging is a linear weighted averaging method in 
which weights are selected to minimize the variance of the esti-
mation error by accounting for the spatial correlation between 
the waterbody-specific variables; weights are dependent on the 
distance between sampled locations (15). In this study, multiple 
correlated waterbody-specific variables were used to estimate the 
spatial distribution of the dependent variable in the non-sampled 
locations (15). The primary variable subjected to co-kriging is the 
invasion status of ZMs or EWM. Therefore, the “sampled loca-
tions” were those confirmed to be infested, whereas “not sampled 
locations” were those that without infestation reports. The cross 
correlation between variables is used to improve the predictions 
because the predictions are derived from both primary and sec-
ondary variables (15). A complete description of the application 
of co-kriging is available elsewhere (15, 19).

Pearson correlation coefficient was calculated to determine 
the correlation between the six waterbody-specific variables. 
Variables with a correlation coefficient ≥0.1 were selected to be 
included in the co-kriging models. Multiple co-kriging models 
were fit for both ZMs and EWM separately. Each model included 
the primary variable, i.e., the status of the invasion and two cor-
related variables. All possible two-way combinations were fit. 
Considering the potential mutualism between ZM and EWM 
suggested by multiple studies (38, 39), the variable pairing 

also included the use of invasion status of ZMs as a correlated 
variable used in co-kriging model to predict Eurasian milfoil and 
vice versa. Model performance was evaluated using the area under 
the receiver operating characteristic curve (AUC), a plot of model 
sensitivity (true positives) and 1 − specificity (i.e., false positives) 
(40). AUC values lower than 0.7 are considered relatively inac-
curate because the proportion of false and true positive results 
is not substantially different, whereas AUC values greater than 
0.7 are generally considered appropriate (40). Models with AUC 
value greater than 0.7 were considered accurate in this study.

The variables contributing to the co-kriging model with 
highest AUC were chosen. Hence, final models consisted of the 
primary variable representing the invasion status of each AIS and 
two other waterbody-specific variables. AUC values were calcu-
lated for each of the co-kriging models by true validation, which 
was done by fitting models to the invasions by 2010 and validating 
using the invasions reported between 2011 and 2015. Results of 
the co-kriging analysis were the probability of finding an AIS 
invaded waterbody conditional to the presence of an invaded 
location in the proximity and the waterbody-specific variables 
incorporated into the model. Small lag sizes (e.g., 0.04 km) and 
few lags (e.g., n = 12) were used in the computation of the co-
kriging semivariogram. The use of small lag size and few lags was 
intended to reduce the exponential increase in the influence of 
an infested location to the nearby cells, i.e., to reduce the effect 
of high spatial autocorrelation (15). The choice of the parameter 
values for the co-kriging attributes such as the anisotropy factor 
and the angle were based on the spatial cluster analysis and direc-
tionality tests for the data (see text footnote 1). The parameter 
values are summarized in Table S1 in Supplementary Material.

The performance of the final co-kriging models for ZMs 
and EWM was estimated based on the predictive powers of 
the candidate models. The predictive powers were measured 
estimating the sensitivity and specificity, and the AUC of the 
candidate models. In the context here, sensitivity and speci-
ficity reflect the ability of the model to predict invaded and 
not invaded waterbodies, respectively. Because the goal of the 
model was to predict potential infestations, high sensitivity, 
rather than high specificity, was targeted when optimizing the 
models. In addition to the true validation, the co-kriging mod-
els were cross validated using k fold cross validation (k = 5). 
Cross validation is a process in which a set of AIS infested 
locations were left out from the model fitting, and the fitted 
model output was used to estimate the probability of finding 
an AIS invasion at those left out locations (41). Eighty percent 
of the cases were used for the model training, and testing was 
done using the 20% of the withheld cases for each validation. 
To maintain the consistency, the co-kriging parameters rec-
ognized during the true validation were used when fitting the 
models for the cross validation.

interpretation of the co-Kriging Outputs
Predicted probabilities were extracted for each of the water-
bodies from the probability output of the co-kriging models, 
for ZMs and EWM separately. The outputs were ranked into 
five “risk rank” categories based on the quantiles of the output 
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FigUre 1 | Co-kriging model outputs illustrating the probability of introduction of zebra mussels (ZMs) and Eurasian watermilfoil (EWM) to Minnesota waterbodies, 
for the invasions as of 2010. The risk classes 1 through 5 indicate the intensity of the probability of introduction, where class 5 represents a high probability of ZM  
or EWM introduction. The number of waterbodies under each category and as a percentage of the total waterbodies (n = 18,411) is listed.

5

Kanankege et al. Co-Kriging to Determine Aquatic Invasions

Frontiers in Veterinary Science | www.frontiersin.org January 2018 | Volume 4 | Article 231

probability values. The risk ranks 1 through 5 were defined as 
follows: (5) very high, (4) high, (3) intermediate, (2) low, and 
(1) negligible risk of AIS introduction. The co-kriging risk rank 
resulting with highest sensitivity and specificity was considered 
the threshold for each model. The calculated probabilities of 
AIS invasion using co-kriging represent current risk status.  
In the absence of effective eradication measures to remove AIS 
from invaded waterbodies, the waterbodies that are currently 
recognized to be at risk will remain in the same status while the 
intensity of the risk of invasion may increase when newly AIS 
invasions are reported (Figures 1 and 2).

resUlTs

The Pearson correlation coefficients for each variable pair are 
summarized in Table  2. The variable pair with the highest 
AUC value for the true validation of the ZM model was the 

Eigenvector centrality of the watercraft movement network and 
the distance to the nearest major road (AUC = 0.78), whereas 
EWM was best predicted by the Eigenvector centrality of the 
watercraft movement network and the surface water connec-
tivity to infested waterbodies (AUC =  0.76). The AUC values, 
sensitivity, and specificity at the threshold risk rank = 3 for the 
cross validations and true validation of co-kriging models are 
summarized in Table 3. The final model included the variables 
that were correlated with the invasion status and highly sampled.

Output maps for both ZM and EWM co-kriging and the 
number of waterbodies classified under each risk rank are seen 
in Figures  1 and 2. Figure  1 illustrates the risk maps for the 
models fitted for the invasions by 2010, whereas Figure 2 shows 
the risk based on the invasions by 2015. Therefore, by 2015, at 
the risk rank = 5, a total of 2,293 (12.45%) and 2,289 (12.43%) 
waterbodies were at very high risk of invasion by ZMs and EWM, 
respectively. Among the waterbodies at very high risk at risk rank 
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TaBle 3 | Summary of co-kriging model validations for the probability of zebra 
mussel (ZM) and Eurasian watermilfoil (EWM) introductions in Minnesota.

aUc sensitivity at 
risk rank 3

specificity at risk 
rank 3

Cross validation ZMs 0.73 0.70 0.63
EWM 0.79 0.82 0.74

True validation ZMs 0.78 0.78 0.72
EWM 0.76 0.83 0.61

Cross validation was done using the k fold test (k = 5). True validation was done by 
fitting models for invasions as of 2010 and validating using the invasions reported 
between 2011 and 2015. Area under the receiver operating characteristic curve (AUC), 
sensitivity, and specificity at the threshold risk are summarized.

TaBle 2 | Pearson correlation coefficient for the six waterbody-specific variables 
used in the study.

ZM invasion 
status (primary 

variable)

eWM invasion 
status (primary 

variable)

1 ZM invasion status 1.00 0.10
2 EWM invasion status 0.10 1.00
3 Connectivity to another ZM  

invaded waterbody via a river  
or a stream

0.12 0.04

4 Connectivity to another EWM  
invaded waterbody via a river  
or a stream

0.09 0.10

5 Eigenvector centrality of the boater  
traffic network

0.28 0.34

6 Inverse of the Euclidean distance  
to the nearest major road

0.21 0.09

ZM, zebra mussels; EWM, Eurasian watermilfoil.

FigUre 2 | Co-kriging model outputs illustrating the probability of introduction of zebra mussels (ZMs) and Eurasian watermilfoil (EWM) to Minnesota waterbodies, 
for the invasion status of 2015. The risk classes 1 through 5 indicate the intensity of the probability of introduction, where class 5 represents a high probability of ZM 
or EWM introduction. The number of waterbodies under each category and as a percentage of the total waterbodies (n = 18,411) is listed.
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5 for both the AIS, 755 waterbodies were in common. Therefore, 
a total of 3,827 (20.78%) waterbodies were at high risk for either 
ZM or EWM invasions.

DiscUssiOn

This study was aimed at predicting the risk of ZMs and EWM 
invasions in Minnesota using network analysis and co-kriging, a 
geostatistical modeling technique. Recognizing areas at high risk 
for invasion may facilitate early detection and efficient control 
through risk-based management. This study emphasized the 
use of co-kriging on observed data affected by underreporting 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


7

Kanankege et al. Co-Kriging to Determine Aquatic Invasions

Frontiers in Veterinary Science | www.frontiersin.org January 2018 | Volume 4 | Article 231

and other reporting biases by augmenting the predictive power 
of one variable with the support of other correlated and highly 
sampled variables. In the absence of active surveillance, inva-
sions are recorded based on public reporting and subsequent 
confirmation by the MNDNR. Therefore, presence of the AIS 
may be missed in some waterbodies due to insufficient coverage, 
resulting in underreporting. Results suggested that, by 2015, 
nearly 20% of the waterbodies in Minnesota were at high risk 
of invasions by either or both AIS. This included 2,293/18,411; 
12.45% waterbodies at risk of ZM invasions and 2,289/18,411; 
12.43% waterbodies at risk of EWM invasions, whereas only 
125/18,411 (0.67%) and 304/18,411 (1.65%) confirmed the inva-
sions, respectively. Recognition of areas at high risk may act as 
an early warning system and help prioritization of water bodies 
for risk-based surveillance and management.

The key predictors of the best fitted co-kriging models, for 
both ZMs and EWM, were the distance to the nearest infested 
location and the boater traffic, i.e., Eigenvector centrality of the 
boater traffic network. This result emphasizes the proximity 
between waterbodies and human-mediated dispersal as useful 
predictors of potential invasions (7, 9). The strong relationship 
between hitchhiking ZM larvae along with the residual water, 
boat equipment, and recreational gear is a known risk factor 
for invasions (13). Affirmatively, the secondary variables in the 
final co-kriging model for ZMs were both indicators of human-
mediated dispersal of the AIS, the boater traffic and the distance 
to the nearest major road which represents the convenience 
for frequent accessibility. The final co-kriging model for EWM 
suggests that their distribution is attributable to the proximity 
between waterbodies as determined by the invasion status of 
EWM, the natural dispersal via connecting surface water such 
as rivers and the human-mediated transportation (i.e., variables 
2, 4, and 5). The predictive power of the boater traffic using the 
Eigenvector centrality measure is augmented with the use of 
the inverse distance to the nearest major road as a secondary 
predictor, which adjusted for the potential underreporting. The 
Pearson correlation between ZM invasions and the inverse of 
the distance to the nearest major road was 0.21 (Table 2), which 
was stronger than other variables. Distance to the nearest major 
road represents the convenience of frequent accessibility to the 
waterbody.

In the absence of active surveillance, AIS invasions are 
recorded based on public reporting and subsequent confirma-
tion by the MNDNR (5). Therefore, densely human populated 
areas are likely to be reported with invasions more frequently 
than less populated areas, where underreporting is possible (14; 
see text footnote 1). Considering the commonalities between 
waterbodies with currently reported invasions and searching 
for waterbodies with similar characteristics using waterbody-
specific variables may be one of the solutions to correct for 
underreporting (25). However, selecting waterbodies based 
on multiple criteria such as public water access, boater traffic, 
and tourist activity. is challenging and through this study we 
provide a method which take the most correlated variables 
into account and produce risk maps and risk ranks for each 
waterbody, which may offer a better guidance to volunteers 
who search for potential invasions. This approach of risk-based 

and targeted surveillance would provide more opportunities to 
reduce the problem of underreporting.

An important strength of the present study is that the boater 
traffic was calculated at the waterbody level. This is more informa-
tive compared to the representation of boater movement by 
county centroids, such as the studies by Stewart-Koster et al. (22) 
and Buchan and Padilla (12). Representation of the boater traffic 
by county leads to either overestimation or underestimation of 
the importance of individual waterbodies (22).

Areas at high risk for AIS infestations may be identified using 
a variety of modeling techniques. Species distribution modeling 
(42), diffusion models (43), gravity models (44), regression 
models (12), machine learning techniques (45), risk models 
(46), and model combinations (22) are approaches commonly 
used for the estimation of AIS distribution risk. Some of the 
abovementioned computationally complex modeling techniques 
are powerful when determining the risk of invasions; however, 
the complexity of these models can make the translation of the 
model output into practice a difficult task. Compared to above 
modeling techniques, co-kriging is a less complicated analysis. 
When translating the science to policy, the concept of using 
correlated and highly sampled variables to estimate unknown 
variables is rather simple and straightforward. Therefore, the 
use of co-kriging as an introductory tool to assess the risk and 
introducing the method to the decision-makers perhaps is a step 
further into translating science into practice.

One limitation of our approach is that co-kriging interpo-
lation assumes that the probability of AIS introduction is a 
continuous variable across geographical space (15). However, 
the probability of AIS introduction is waterbody specific and 
not a continuous variable. In this study, the assumption of 
continuous probability may be justified because Minnesota is a 
water rich state with over 19% of the state is consisting of lakes, 
ponds, rivers, and wetlands (27). This assumption of continuous 
probability is also supported by the density and complexity of 
the overland boater traffic (Figures S1 and S2 in Supplementary 
Material). Although this simplification of continuous probabil-
ity is held commonly in spatial modeling (20), the invasions only 
occur at the susceptible locations, i.e., the waterbodies. In co-
kriging, probability is computed for cells and, here, we assumed 
the probability of infection to be 0 for those cells in which no 
waterbody was found, whereas the probability of AIS introduc-
tion was computed for cells that was occupied, at least in part, 
by a waterbody. Presentation of co-kriging models in the format 
of isopleth maps with a continuous probability surface is com-
mon in the spatial modeling (20). As mentioned in the methods, 
magnitude and the duration of the infestation would have been 
ideal to be included in the analysis because it is a measure of 
the risk an infested waterbody pose on susceptible waterbodies 
(9). However, magnitude of invasions was not readily available 
because the collection of magnitude of invasions is a costly and 
labor-intensive process (47, 48) and the distribution of AIS 
within waterbodies is patchy based on the substrate composi-
tions (48, 49). Similarly, the assignment of surface water con-
nectivity both upstream as well as downstream, without limiting 
the distances, may lead to potential overestimation of the risk of 
invasion. However, assignment of distance limits of upstream 
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and downstream transmission was subjective as described by 
multiple studies (28, 31, 32). Another limitation is the lack 
of AIS distribution data in the states adjacent to Minnesota, 
which is important for effective cross-boundary control and 
preventive measures. For example, waterbodies in east central 
Minnesota are affected by both ZMs and EWM. However, the 
study described by Stewart-Koster et al. (22) indicated low risk 
of the ZM and EWM invasion across the border in northeastern 
Wisconsin (22). Our study does not account for ZMs and EWM 
invasions in the adjacent states either, which indicates the risk of 
invasion may have been underestimated. Being confined within 
the political boundaries often results in reducing the model 
accuracies (50). The geographical area for the analysis was not 
expanded to the Midwest or great lakes because some of the 
required data, such as boater movement, was not available from 
all the locations.

As seen in Figure 2, a total of 5,458 (29.64%) of the waterbod-
ies were recognized to be equal or above the threshold risk rank 
3 for ZM invasions. Similarly, 7,119 (38.66%) of the waterbodies 
were predicted to be above the risk rank 3 for EWM invasions. 
From a management stand point, these numbers of waterbodies 
are still too high to plan a cost-effective risk-based surveillance 
or develop targeted management plans. Therefore, risk-based 
management using limited resources requires prioritizing the 
waterbodies at high risk for screening (21, 24). This inherent 
difficulty of recommending sample sizes to be collected from 
risk regions is also discussed by another study where co-kriging 
was used to conduct a post  hoc comparison of the association 
between highly pathogenic avian influenza (H5N1) incidences 
and intensity of surveillance activities of sampling wild birds by 
administrative region (20). Resource availability, degree of risk 
awareness, and participation in reporting by the region were rec-
ognized as key factors defining the extent of surveillance efforts 
(20). We suggest focusing on the waterbodies of biological and 
recreational importance. This can be a value-based judgment and 
should include a variety of stakeholders and agreed upon criteria. 
Prioritization of the waterbodies could also be done by conduct-
ing a risk-based survey by subdividing the counties into smaller 
polygons or using township areas. One such approach is the 
hexagonal tiling method, which is commonly used in ecological 
studies (51). The risk rank generated from this study may also be 
useful to improve the MNDNR’s Watercraft Inspection Program 
by recruiting watercraft inspectors at areas recognized to be at 
high risk for invasions and not currently inspected.

Risk-based management is not a novel concept (21, 26). 
However, the attempt to incorporate spatial models in invasion 

risk assessment to inform the decision and policy-making 
process may improve the efficiency and effectiveness of the AIS 
control programs, through targeted and risk-based sampling 
schemes (23, 24). As demonstrated here, co-kriging enables 
predicting values for locations without complete data, using 
correlated and highly sampled variables, which can be used as a 
solution to the underreporting in ecological and epidemiologi-
cal studies. This work seeks to encourage the use of scientifically 
supported quantitative procedures such as network analysis 
and co-kriging to solve the problem of imperfect detections, 
which subsequently improve the early detection of biological 
invasions.
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FigUre s1 | The boater traffic between waterbodies based on the Watercraft 
Inspection Program conducted by Minnesota Department of Natural Resources. 
The data from year 2013 are illustrated. Panel (a) represents the movement of 
boaters from previously visited waterbody-to-waterbody where the survey data 
were collected. Panel (B) represents the movement of boaters from waterbody 
where the survey data were collected-to-the waterbody where they plan to visit 
next.

FigUre s2 | An illustration of the Eigenvector centrality for the waterbodies in 
the boater traffic network created using the surveys of Watercraft Inspection 
Program conducted by Minnesota Department of Natural Resources. The data 
from year 2013 are illustrated.
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