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Prior Precision, Prior Accuracy, and 
the Estimation of Disease Prevalence 
Using Imperfect Diagnostic Tests
Jenni L. McDonald and Dave James Hodgson*

Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, 
United Kingdom

Estimates of disease prevalence in any host population are complicated by uncertainty 
in the outcome of diagnostic tests on individuals. In the absence of gold standard 
diagnostics (tests that give neither false positives nor false negatives), Bayesian latent 
class inference can be applied to batteries of diagnostic tests, providing posterior 
estimates of the sensitivity and specificity of each test, alongside posterior estimates 
of disease prevalence. Here we explore the influence of precision and accuracy of prior 
information on the precision and accuracy of posterior estimates of these key parameters. 
Our simulations use three diagnostic tests, yielding eight possible diagnostic outcomes 
per individual. Seven degrees of freedom allow the estimation of seven parameters: 
sensitivity and specificity of each test, and disease prevalence. We show that prior 
precision begets posterior precision but only when priors are accurate. We also show that 
analyses without gold standard can use imprecise priors as long as they are initialised 
with accuracy. Imprecise priors risk the divergence of MCMC chains towards inaccurate 
posterior estimates, if inaccurate initial values are used. We note that inaccurate priors 
can yield inaccurate and imprecise inference. Bounded priors should certainly not be used 
unless their accuracy is well established. Inaccurate estimates of sensitivity or specificity 
can yield wildly inaccurate estimates of disease prevalence. Our analyses are motivated 
by studies of bovine tuberculosis in a wild badger population.

Keywords: diagnostics, Bayesian inference, sensitivity, specificity, prevalence, bovine tuberculosis, accuracy, 
precision

Introduction

Uncertainty lies at the heart of real-world epidemiology. While hosts might be truly infected or 
uninfected, and diseased or not, our observation of these states suffers from imperfect detection 
of hosts, infection and disease. Ecological studies tend to deal with imperfect host detection using 
capture-mark-recapture methodologies [e.g., (1)], with limited consideration of biases in diagnoses 
themselves [but see (2)]. However, imperfect pathogen detection is a common occurrence when 
sampling live populations, with studies often drawing conclusions from the results of one or more 
tests, none of which are 100% accurate [e.g., (3)]. This is important because methods for the accurate 
detection of disease are pivotal to surveillance programmes that focus on the spatial and temporal 
spread of pathogens within and between populations, with infection prevalence often the primary 
parameter of interest (4–7).
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For many wildlife diseases, post-mortem analysis provides gold 
standard diagnosis, however this is not an option for most ecological 
studies of wild animals, where corpses are hard to find and where 
an understanding of natural disease dynamics is the primary goal. 
Given the rarity of gold standard diagnostics for live animals, the 
development of statistical approaches for the evaluation of imperfect 
diagnostic tests has been an active field of research applied to human 
[e.g., (8)] and veterinary medicine [e.g., (9)]. These approaches can 
account for misclassification of both test positive individuals and 
test negative individuals. Specifically, they quantify test sensitivity, 
which measures the probability of a positive test outcome caused by 
the individual having the disease (the probability of a true positive 
outcome), and test specificity, which measures the probability of a 
negative test caused by the individual not having the disease (the 
probability of a true negative outcome).

Accounting for test sensitivity and specificity is vital to the 
accurate estimation of disease prevalence in a host population. 
Bayesian latent class analysis evaluates the performance of 
diagnostic tests in the absence of a reference test (10, 11) and 
consequently provides suitably adjusted estimates of prevalence. 
The development of Bayesian approaches for diagnostic test 
evaluation now provides a means to simultaneously estimate 
the performance of multiple tests in the light of the others and 
provide accurate estimates of disease prevalence that accounts for 
diagnostic uncertainty (12). A desirable aspect of Bayesian analysis 
is the pairing of data with prior information to estimate parameters 
that may have been previously unidentifiable, offering practical 
advantages over frequentist approaches (13). Despite these obvious 
benefits, often little is known about test performance in the field 
and the determination of an informative prior can be a challenging 
and subjective process. Although we know the choice of a prior 
contributes to the posterior distribution (12), it remains unclear 
how such prior sensitivity affects our inference regarding disease 
prevalence.

Here we explore how the accuracy and precision of prior 
information influence conclusions regarding disease prevalence. 
Our objectives are threefold. First, using simulated data for three 
diagnostic tests based on a previous analysis of bovine tuberculosis 
in a wild population of European badgers (9), we ask: (1) how does 
parameter identifiability compare between models that use precise 
(informative) and imprecise (vague or uninformative) priors? 
(2) How do inaccurate priors for test sensitivity and specificity 

influence conclusions regarding overall prevalence? (3) How 
accurate are prevalence estimates that rely on the assumption 
that specificity and sensitivity are both perfect (i.e., both = 1)? 
From an applied perspective, disentangling disease processes from 
test performance will aid in forecasting long-term dynamics and 
in developing control strategies. This is especially important as 
diagnostic uncertainty has the potential to hinder eradication 
efforts by masking or exaggerating observed disease patterns. 
However, without robust statistical approaches it is impossible to 
understand how such bias may influence prevalence estimates.

Materials and Methods

Simulated Data
We simulated results of three independent diagnostic tests for 875 
individuals, using the prior modes of prevalence, specificity and 
sensitivity taken from Drewe et al. (9) (Table 1). The observations 
lead to a cross-classification table for the joint test results y = (y111, 
y121, y112, y122, y211, y221, y212, y222) where y111 is number of sampled 
individuals that tested positive for all three diagnostic tests and 
y222 is number of sampled individuals that tested negative for all 
three diagnostic tests.

Assessment of Prevalence Estimation
The parameters for the model include the three sensitivities (Se), 
three specificities (Sp) and prevalence (π). Biological independence 
between tests was assumed. Multinomial cell probabilities for the 
population are given by: 

	﻿‍

y ∼ multinomial(n, pjjj), j ∈ {1, 2}
p111 = πSeASeBSeC + (1− π)(1− SpA)(1− SpB)(1− SpC)
p121 = πSeA(1− SeB)SeC + (1− π)(1− SpA)SpB(1− SpC)
p112 = πSeASeB(1− SeC) + (1− π)(1− SpA)(1− SpB)SpC
p122 = πSeA(1− SeB)(1− SeC) + (1− π)(1− SpA)SpBSpC
p211 = πSeASeB(1− SeC) + (1− π)SpASpB(1− SpC)
p221 = π(1− SeA)(1− SeB)SeC + (1− π)SpASpB(1− SpC)
p212 = π(1− SeA)SeB(1− SeC) + (1− π)SpA(1− SpB)SpC
p222 = π(1− SeA)(1− SeB)(1− SeC) + (1− π)SpASpBSpC‍�

TABLE 1  |   Simulated values taken from Drewe et al. (9) along with prior distributions used for precise, vague and badly stated priors.

Test Parameter
Simulated 

values

Prior distributions on the logit scale Normal (µ, σ)

Precise Vague Error Error Error Error

Test A Sensitivity 0.492 −0.032, 0.125 0, 1.65 −0.847, 0.162 0.809, 0.139 −0.032, 0.125 −0.032, 0.125

Specificity 0.931 2.602, 1.073 0, 1.65 2.602, 1.073 2.602, 1.073 2.602, 1.073 2.602, 1.073

Test B Sensitivity 0.809 1.443, 0.443 0, 1.65 1.443, 0.443 1.443, 0.443 1.443, 0.443 1.443, 0.443

Specificity 0.936 2.683, 1.117 0, 1.65 2.683, 1.117 2.683, 1.117 1.025, 0.271 6.907, 1.179

Test C Sensitivity 0.100 −2.197, 0.856 0, 1.65 −2.197, 0.856 −2.197, 0.856 −2.197, 0.856 −2.197, 0.856

Specificity 0.999 4.595, 2.129 0, 1.65 4.595, 2.129 4.595, 2.129 4.595, 2.129 4.595, 2.129

Prevalence 0.24 −1.153, 0.272 0, 1.65 −1.153, 0.272 −1.153, 0.272 −1.153, 0.272 −1.153, 0.272

Badly stated priors are precise but inaccurate for one of the sensitivities or specificities of the tests. These inaccuracies are emboldened in the body of the table. “Precise” priors are 
chosen to be precise on the probability scale, which means that canonical links between mean and variance can make them look imprecise on the logit scale when the mean is near 
zero or one. We provide the back-transformation of these priors onto the probability scale as red dashed lines in Figures 1 and 2.
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where j = 1 describes a positive test outcome, and j = 2 describes 
a negative test outcome for each of the three tests A, B and C. 
Prevalence π was set at 0.24.

To ensure parameters were bounded between 0 and 1 we modelled 
the logit of sensitivities, specificities and prevalence using Normal 
prior distributions with mean µ and SD σ. We compared precise 
priors (small σ, implying strong prior knowledge) with vague priors 
(large σ, implying weak prior knowledge). Inaccurate but precise 
priors (implying strong prior belief in a wrong parameter value) 
were also incorporated to explore the influence of misinformed 
beliefs on inference of disease prevalence. Priors for the different 
modelling scenarios are shown in Table 1.

Study System
Our simulations of test specificity and disease prevalence are 
based on the long term study of natural epidemiology of M. 
bovis among wild European badgers in Woodchester Park, 
Gloucestershire, UK. Here, badgers are regularly live trapped, 
sampled using diagnostic tests, and released (14). Three 
diagnostic tests were used routinely during the period assessed 
by Drewe et al. (9) to assess the infection status of each trapped 
individual. Blood samples are taken to test for antibodies to M. 
bovis using Stat-Pak (simulated as Test A), and further used to 
test for a cell-mediated response to M. bovis using interferon-
gamma (IFNg; Test B). Samples of faeces, urine, tracheal 

FIGURE 1  |   Distributions for sensitivity and specificity of diagnostic tests, alongside prevalence estimates from a constant model. Showing the precise prior 
distributions (red-dashed line), the posterior distribution (black-solid lines) and simulated mean value (grey-dashed line).

https://www.frontiersin.org/journals/Veterinary_Science#articles
http://www.frontiersin.org/journals/Veterinary_Science
https://www.frontiersin.org


4 May  2018 | Volume 5 | Article 83Frontiers in Veterinary Science | www.​frontiersin.​org

McDonald and Hodgson Precision and Accuracy in Bayesian Epidemiology

aspirate, oesophageal aspirate and swabs from bite wounds 
(where present) are collected for mycobacterial culture (Test C). 
Estimates of specificity and sensitivity of each of the diagnostic 
tests, used here to inform our simulations, are drawn from 
Drewe et al. (9), although these were subsequently updated by 
Buzdugan et al. (15). Given this description of the study system, 
it is difficult to justify the assumption of independence of test 
outcomes made by our simulations; tests A & B are applied to 
the same blood samples; the test sensitivities and specificities 
depend on different stages of disease progression in infected 
individuals. This, combined with the importance of the badger-
bTB system, is why we emphasise that this analysis is motivated 
by, but not definitive for, theprevalence of bovine tuberculosis 

in badgers. A definitive analysis would have to account for non-
independence of test outcomes, and for longitudinal patterns of 
disease progression within host individuals.

Model Fitting
We fit all models using Bayesian methods and estimated 
the posterior distributions for all parameters using MCMC 
implemented in winBUGS (16) with the R2Winbugs package 
(17) in R (18). Convergence was assessed both visually ensuring 
mixing of the chains and formally within the model calculating 
the potential scale reduction factor (﻿‍R̂‍). When ﻿‍ R̂‍ is close to 
one we can be confident that convergence has been reached 

FIGURE 2  |   Distributions for sensitivity and specificity of diagnostic tests, alongside prevalence estimates from a constant model. Showing the vague prior 
distributions (red-dashed line), the posterior distribution (black-solid lines) and simulated mean value (grey-dashed line).
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(19). Consequently, posterior distributions were computed 
after a burn in of 5,000, followed by 50,000 iterations with a 
thinning interval of 10 iterations. WinBUGS code is provided 
as supplementary material.

Results

Simulation Summary
By simulating data, we determine whether prevalence is 
estimated accurately (i.e., the true value should lie within 95% 
bounds of credibility of the posterior estimate) and precisely 
(i.e., the 95% bounds of credibility are usefully tight around 
the posterior estimate), using (1) raw test outcomes assuming 
perfect sensitivity and specificity, (2) models with incorrect, 

precise priors, (3) models with accurate, precise priors and (4) 
models with imprecise (vague) priors.

Simulated Population
A constant Bayesian model (i.e., assuming no variation in 
epidemiological or diagnostic parameters through time; (9, 
11) with precise priors successfully estimated the diagnostic 
performance values and disease prevalence of the simulated 
population (Figure  1). The model also performed accurately 
with imprecise priors, although the posterior distributions were 
less precise, accounting for the additional uncertainty (Figures 2 
and 3, Table 2). However, we note that with imprecise priors, 
the chains required realistic initial values to ensure convergence. 
Parallel chains occurred in models that excluded informative 

FIGURE 3  |   The effect of incorrectly specifying priors on disease prevalence estimates, compared to mean prevalence (grey dashed line). Along with prevalence 
obtained by uninformative and informative priors for all parameters.
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priors and included randomly assigned initial values, indicating 
more than one area of high posterior probability. However, with 
realistic initial starting values for the chains all parameters were 
identifiable, despite vague priors (Figures 2 and 3).

Precise priors can aid identifiability, however with often 
limited information regarding the performance of diagnostic tests 
we explore how the accuracy of the prior information impacts 
conclusions regarding disease prevalence using four scenarios; 
(1) prior specifies lower test A sensitivity (µ = 0.292); (2) prior 
specifies higher test A sensitivity (µ = 0.692); (3) prior specifies 
lower test B specificity (µ = 0.736); (4) prior specifies higher test 
B specificity (µ = 0.999).

Incorrect specification of priors leads to inaccurate prevalence 
estimates (Figure  3). Prior information that reduces the 
sensitivity of a test leads to assumptions of more false negatives 
and consequently increased prevalence estimates (Figure  3). 
In contrast, prior information that increases the sensitivity of a 
test leads to assumptions of fewer false negatives and decreased 
prevalence estimates (Figure 3).

Incorrect priors on specificity values changes assumptions 
regarding false positives. Reduced test specificity, caused by badly 
specified priors, infers higher numbers of false-positives and 
therefore reduces estimates of disease prevalence (Figure 3). The 
flipside of this is that increased test specificity assumes lower 
rates of false positives and increases estimates of prevalence 
(Figure 3).

Raw values from diagnostic tests with low sensitivity produced 
inaccurate estimates of prevalence when perfect diagnoses were 
assumed (Table 2). We find that test B, which has high relative 
sensitivity and specificity, and therefore the lowest number of 
false negatives and low numbers of false positives, naturally 
provided the most accurate estimate of prevalence (Table 2).

Discussion

Methodological Guidance
Raw diagnostic outcomes should not be used to infer prevalence. In 
the absence of knowledge regarding sensitivity and specificity of 

the underlying tests, using the raw test results can provide highly 
inaccurate estimates of prevalence.

To be certain of convergence run multiple chains. From the 
simulations we have ascertained that parameters are identifiable 
despite vague priors. However, realistic starting values are required 
as chains can get stuck in different regions, indicating a bottleneck 
between two regions of high probability, or multiple posterior 
modes. The occurrence of multiple posterior modes would not be 
identified without running multiple chains. If realistic initial values 
are unknown, then inference of the “true” state should be made with 
caution.

Beware precise priors. Inaccurate, precise priors can bias 
parameter estimates and can lead to inaccurate conclusions 
regarding prevalence. This will be particularly true if priors are 
bounded above and/or below, for example if using Uniform prior 
distributions. Diagnosis of such inaccuracy might be possible if 
posterior distributions are clustered at either bound, however 
we recommend the avoidance of bounded priors unless prior 
knowledge is strong and accurate.

General Discussion
Disease prevalence is fundamental to our understanding of 
wildlife epidemiology and is often the focal parameter when 
it comes to deriving management recommendations. However, 
the accuracy of diagnostics used to live sample wild populations 
is often uncertain and has the potential to alter conclusions 
regarding the prevalence of disease. Indeed, we have shown 
the importance of accounting for bias in determining disease 
parameters within wild populations, with raw data usually 
providing a poor representation of the true prevalence. Using a 
simulated population, we demonstrated how Bayesian latent class 
analysis can provide accurate estimates of test performance and 
infection prevalence in the absence of a reference test. However, 
this method is not without its caveats as poorly specified priors 
can heavily influence the posterior, altering conclusions regarding 
prevalence of infection.

Prevalence only provides a reliable surveillance indicator if 
issues of diagnostic uncertainty are accounted for. As our study 
shows, tests that have low sensitivities can vastly underestimate 
prevalence, due to the inclusion of high numbers of false negative 
individuals. Further, inaccuracies in prior information on 
specificity can yield inaccurate inference of credible ranges of 
prevalence, due to poor inference of false positive diagnoses. In 
the absence of knowledge regarding specificity and sensitivity, 
some ecological studies attempt to minimise the risk of 
misclassification by focusing on individuals that are diseased 
rather than infected, because disease tends to be accompanied 
by visible symptoms (2, 20). While this approach minimises false 
positives, it accepts that false negatives can occur and risks the 
underestimation of true prevalence. We also note that estimates 
of prevalence based on raw outcomes of diagnostic tests can also 
be useful for longitudinal studies of “relative” prevalence, or for 
comparisons among populations [e.g., (6)].

Latent class analysis provides a solution, and has been used 
extensively to estimate both sensitivities and specificities of 
diagnostic tests in the absence of a reference test across a range 

TABLE 2  |   Prevalence estimates derived from raw outcomes of each test 
(assuming perfect sensitivity and specificity), and inferred using latent class 
analysis, along with 95% credible intervals.

Method to estimate prevalence Prevalence

Assume perfect diagnostics
Test A 0.170
Test B 0.242
Test C 0.025
Modelling diagnostic uncertainty Mean (95% Credible Interval)
Precise priors 0.248 (0.194, 0.308)
Vague priors 0.209 (0.129, 0.311)
Incorrect prior specification
Reduced sensitivity test A 0.274 (0.226, 0.327)
Increased sensitivity test A 0.196 (0.152, 0.249)
Reduced specificity test B 0.206 (0.161, 0.259)
Increased specificity test B 0.289 (0.247, 0.338)

The true value of prevalence in our simulation is 0.24.
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of diseases (9–11, 21). A prerequisite of Bayesian analysis is the 
combination of information from data and prior information. 
Commonly, when there is a lack of information surrounding 
parameters, vague priors are used to ensure the posterior 
distributions are driven by the data alone. This is advisable given 
we find posteriors to be sensitive to the selection of priors, similar 
to findings from previous studies (12). However, when a model 
is not identifiable, for example when there are more parameters 
than degrees of freedom, constraints or/and informative prior 
distributions are required to obtain a computational solution 
(8). When required for identifiability issues, informative priors 
should be used cautiously and only on parameters with a 
strong knowledge base. In these scenarios multiple chains are 
recommended to check for prior sensitivity. Additionally, in 
our simulated example (7 parameters, 7 degrees of freedom), 
we find parameters are identifiable but suffer from convergence 
issues if initial values are randomly assigned. This indicates more 
than one area of high posterior probability. Using precise initial 
values enables convergence in one area of parameter space, but 
accuracy can only be assumed if the initial values are themselves 
accurate. However, when there is a complete lack of knowledge 
then application of different starting values to explore differing 
areas of high posterior probability will be required.

Heterogeneity in test performance across tests and populations 
are commonly incorporated within the Bayesian approach 
presented here (11). The modelling we have performed did 
not consider variation in test performance and prevalence of 
infection through time. We recommend further development 
of latent class analysis to incorporate variation or trends in 
sensitivity, specificity and prevalence through time. Similar to 
the benefits of extending data input across populations (11), 
an advantage of incorporating time-varying data on diagnostic 
outcomes is an increase in the degrees of freedom provided 
by decomposition of diagnostic outcomes into timesteps. 
The cost of such a decomposition will be a reduction in the 
sample size of individuals diagnosed per timestep. As well as 
variation through space and time, diagnostic outcomes will vary 
according to the circumstances of the individual being tested. 
Detecting the clinical status of the host may depend on a range 
of additional factors such as their age, sex, coinfections, disease 
severity or stress. For example, pathogen detection may vary as 
a function of pathogen load, with seropositivity associated with 
advanced stages of disease (22). Reconciling links between both 
individual and population level test performance in an integrated 
framework is an important area of future research.

The choice of latent class model, for the estimation of 
diagnostic test performance and infection prevalence, will always 
depend on the purpose of the study. Latent class analysis, or 
“diagnosis without gold standard” relies on the use of multiple 
diagnostic tests to infer sensitivity, specificity and prevalence. 
If the performance of diagnostic tests is the reason for study, 
then it makes sense to study multiple populations that vary in 
prevalence, or a single population that varies through time, 
with one reliable test to use as a standard. If tests cannot be 
assumed to be independent, then covariance must be modelled 

and more tests or replicate populations are required to cope with 
the demand on degrees of freedom. Mostly, in studies of wild 
host populations, there is no gold standard and little knowledge 
of test dependencies, and the simple approach we expound 
here is a good starting point. We have only simulated a single 
population to make our point about precision and accuracy, 
but the supplementary code (Data Sheet S1) we provide allows 
interested readers to explore various scenarios. A benefit of 
BUGS code is that it can be used as a building block for more 
complex modelling scenarios.

Conclusion

Understanding links between diagnostic uncertainty and 
prevalence provides a key to explaining and predicting the 
population dynamics of infected hosts, and ultimately informs 
the development, and tests the efficacy, of management for 
disease control. We demonstrate the utility of Bayesian latent 
class analysis, developed to assess diagnostic sensitivity and 
specificity in the absence of gold standard tests. Analysis revealed 
complexities underpinning misclassification bias, including 
inaccuracy and imprecision of priors, which fundamentally 
influence our understanding of disease dynamics within wildlife-
host systems. Increasingly epidemiological data is available at 
population and temporal scales necessary to estimate diagnostic 
parameters. We therefore recommend further model development 
and ultimately application of this approach to surveys in other 
populations and species.
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