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Wildlife diseases have important implications for wildlife and human health, the preservation 
of biodiversity and the resilience of ecosystems. However, understanding disease dynamics 
and the impacts of pathogens in wild populations is challenging because these complex 
systems can rarely, if ever, be observed without error. Uncertainty in disease ecology studies 
is commonly defined in terms of either heterogeneity in detectability (due to variation in 
the probability of encountering, capturing, or detecting individuals in their natural habitat) 
or uncertainty in disease state assignment (due to misclassification errors or incomplete 
information). In reality, however, uncertainty in disease ecology studies extends beyond these 
components of observation error and can arise from multiple varied processes, each of which 
can lead to bias and a lack of precision in parameter estimates. Here, we present an inventory 
of the sources of potential uncertainty in studies that attempt to quantify disease-relevant 
parameters from wild populations (e.g., prevalence, incidence, transmission rates, force of 
infection, risk of infection, persistence times, and disease-induced impacts). We show that 
uncertainty can arise via processes pertaining to aspects of the disease system, the study 
design, the methods used to study the system, and the state of knowledge of the system, 
and that uncertainties generated via one process can propagate through to others because 
of interactions between the numerous biological, methodological and environmental factors 
at play. We show that many of these sources of uncertainty may not be immediately apparent 
to researchers (for example, unidentified crypticity among vectors, hosts or pathogens, a 
mismatch between the temporal scale of sampling and disease dynamics, demographic 
or social misclassification), and thus have received comparatively little consideration in the 
literature to date. Finally, we discuss the type of bias or imprecision introduced by these varied 
sources of uncertainty and briefly present appropriate sampling and analytical methods to 
account for, or minimise, their influence on estimates of disease-relevant parameters. This 
review should assist researchers and practitioners to navigate the pitfalls of uncertainty in 
wildlife disease ecology studies.
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inTRoDUCTion

Wildlife disease ecology is a burgeoning field of research with 
important implications for wildlife and human health, the 
preservation of biodiversity, and the resilience of ecosystems. 
Monitoring pathogens in wild populations is undertaken for a 
variety of reasons (see Table 1 for examples), all of which require 
accurate assessments of pathogen occurrence or its derivatives to 
ensure that models, theory, and management recommendations 
are robust. Detecting and quantifying pathogen presence and 
prevalence in wild populations is challenging, however, because it 
is rarely possible to observe these complex systems without error, 
leading to biased and imprecise measurements (see Glossary). 
This uncertainty can arise at multiple levels of the sampling or 
diagnostic processes employed, from the choice of which sites and 
individuals to survey, to the processing of tissue samples in the 
lab (4, 11–13). Previous studies have recognised this multilevel 
nature of uncertainty, and in many cases methodological and 
statistical frameworks capable of accounting for hierarchical 
levels of observation error have been developed [e.g., by repeated 
sampling at each level to parse out non-detection biases from 
true absences, see discussion below; (11, 14, 15)]. Nevertheless, 
a mechanistic overview of how uncertainty arises in disease 
ecology studies remains lacking.

Sources of uncertainty have previously been attributed 
either to heterogeneity in the detectability of hosts, vectors, or 
their pathogens (imperfect detection) or to errors in disease 
state assignment [disease-state misclassification; (11, 16)]. In 
reality, however, uncertainty due to imperfect detection and 
state misclassification can arise in a variety of ways in studies of 
disease in natural populations, while other sources of uncertainty 
(e.g., incomplete taxonomic knowledge, demographic 
misclassification; see below) do not readily fit into this traditional 
dichotomy. This highlights the need to consider the sources, 
processes involved and implications of uncertainty more broadly.

Here we present an inventory of sources of uncertainty that 
could potentially occur when attempting to quantify disease-
relevant parameters in wild populations (prevalence, incidence, 
transmission rates, force of infection, risk of infection, persistence 

times, and disease-induced impacts; see Glossary). Many of these 
(for example, unidentified crypticity among vectors, hosts or 
pathogens, a mismatch between the temporal scale of sampling 
and disease dynamics, demographic or social misclassification: 
see discussion below) may not be immediately apparent, even to 
seasoned investigators, or even identifiable without preliminary 
study. As such, the bias and lack of precision introduced by them 
cannot always be adequately accounted for by post-hoc statistical 
adjustment (11, 17). In such instances, detailed understanding of 
the host-pathogen system and the development of more nuanced 
methodological approaches may be required.

SoURCeS of UnCeRTainTy in DiSeaSe 
eCology STUDieS

Based on a structured literature review (Appendix 1,  Data 
Sheet S1), we classified sources of uncertainty into six broad 
(and potentially overlapping) categories. We found uncertainty 
could arise due to: (1) intrinsic biological factors associated with 
the interaction between hosts and pathogens; (2) demographic 
or state misclassification; (3) incomplete taxonomic knowledge 
of host-pathogen systems; (4) a mismatch of sampling scales; 
(5) imprecision of diagnostic methods; and (6) extrinsic 
environmental factors that may have additional modifying effects 
within each of the other categories. Details of these sources of 
uncertainty, the processes involved and an indication of the 
potential bias and imprecision in disease-relevant parameters 
are presented in Table 2.

a. intrinsic Biological factors
A.i. Variation in Detectability
It is widely recognized that detection of organisms in their natural 
environment is rarely perfect and that detectability (encounter, 
capture or sighting rate) can vary as a function of time and 
numerous biotic and abiotic factors (18). One of these factors 
can be infection status (Table 2,A.i.). Differential detectability 
between infected and uninfected individuals (hosts or vectors) can 

TaBle 1 | Summary table listing examples of the varied objectives of disease ecology studies, along with key examples of each.

objectives of disease ecology studies examples Key references

1. To quantify disease impacts in
  1. Species of conservation concern Tasmanian devils affected by Facial Tumour Disease (1)

Amphibians affected by chytridiomycosis (2)

  2. Populations destined for translocation European bison (3)

2. To map infection patterns

  1. To help manage disease risks in endangered species or agricultural 
species 

Batrachochytrium dendrobatidis in amphibians (4)

Tuberculosis in badgers (5)

  2. To track disease spread White nose syndrome in bats (6)

3. To understand host-pathogen dynamics and co-evolution

  1. Under different ecological or environmental conditions Mycoplasma in house finches (7)

  2. Under varying degrees of anthropogenic influence Echinococcus multilocularis in urbanised foxes (8)

4. To identify potential pathogens in animal hosts or vectors not yet circulating in 
human populations

Viral discovery efforts in wildlife (9)

5. To diagnose causes of unexplained illness or mortality events Peste des petits ruminants in Saiga antelope (10)
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occur either because the pathogen directly manipulates individual 
behaviour or because the behaviour of individuals changes due 
to deterioration in their physiological condition, which might 
further scale with infection intensity (16, 19–22). These processes 
can modify the movement patterns or conspicuousness of 
individuals, changing their trappability, visibility, or propensity 
to migrate out of the study site. For example, Brazilian treefrogs 
(Hypsiboas prasinus) with more intense helminth infections 
exhibit reduced mating call frequencies, which could make them 
less detectable during surveys (23; Figure 1A). Similarly, house 
finches infected with Mycoplasma gallisepticum infection suffer 
impaired vision and display reduced activity levels, resulting 

in lower recapture rates for infected compared to uninfected 
individuals (Figure 1B; 7, 24). When detectability is “imperfect” 
and differs as a function of infection status or intensity then 
unadjusted estimates of disease-relevant parameters may be  
biased (16, 20).

A further implication of differential detectability of infected 
vs uninfected individuals is that observed temporal patterns in 
disease dynamics may simply be spurious artefacts of temporal 
variation in the probability of detecting infected vs uninfected 
individuals (20, 25, 26). Using simulations,  Jenelle et al. (20) 
demonstrate how temporal variation in detection probabilities 
of infected individuals could suggest a cyclic pattern of disease 

TaBle 2 | Summary of key sources and processes that can generate bias or lack of precision in estimates of disease-relevant parameters obtained in disease ecology 
studies.

Potential sources of uncertainty Process Potential bias and imprecision in disease-relevant 
parameters

a. intrinsic biological factors
i. Variation in detectability Detectability of uninfected vs infected individuals may differ 

because the pathogen directly manipulates or impacts host 
behaviour or physiological condition.

If infected individuals are detected less frequently than uninfected 
individuals, estimates of prevalence and transmission will be 
underestimated, while estimates of disease impacts and recovery 
rates will be overestimated (and vice-versa). The direction and 
magnitude of bias and imprecision will depend on the extent of 
heterogeneity and temporal variation in detection rates.

ii. Variation in distribution and intensity 
of pathogens among hosts

Pathogen load and disease severity often exhibit 
aggregated distributions among hosts, which may result in 
misclassification of disease state in individuals with minor 
symptoms or low parasite burdens.

If individuals are misclassified as uninfected, estimates of 
prevalence and transmission will be underestimated and 
estimates of recovery rates overestimated.

B. Demographic or social 
misclassification

Error in assigning individuals to demographic or social classes 
(e.g., sex, age, social status).

Direction and magnitude of bias and degree of imprecision in 
estimates will depend on the direction and extent of assignment 
errors.

C. incomplete taxonomic 
knowledge
i. Taxonomic crypticity Multiple, cryptic host, vector or parasite species are present 

but may be overlooked due to lack of taxonomic resolution.
Direction and magnitude of bias and imprecision will depend on 
the proportion of cryptic or rare species present, the rarity of the 
rare entities, the complexity of the multi-host-pathogen species 
assemblage and the degree of sampling effort that is feasible to 
estimate or detect the assemblage(s) being catalogued.

ii. Rare or less detectable species Logistical constraints restrict sampling completeness and may 
preclude the detection of rarer or less detectable entities.

iii. Multi-host or multi-pathogen systemsCoinfections or variation in abundance, diversity or 
susceptibility among hosts may alter infection dynamics

D. Mismatch of sampling scale and 
process scale
i.Temporal Temporal scale of sampling does not match the 

temporal scale of disease dynamics, or sampling effort is 
disproportionate in time.

Missed infections will result in underestimates of survival of 
uninfected hosts, overestimates of survival of infected hosts, and 
underestimates of infection rates.

ii.Spatial Spatial extent of sampling does not match spatial scale of 
disease dynamics, or sampling effort is disproportionate in 
space.

Direction and magnitude of bias and imprecision will depend on 
the study system and the sampling regime adopted. Sampling 
biases (e.g., along roads) may inflate estimates of probability of 
occurrence.

e. Diagnostic Procedures
i. Imperfect sensitivity or specificity of 
the diagnostic assay

Diagnostic tests may either fail to detect pathogens when 
present (false negative) or produce positive diagnoses in the 
absence of infection (false positive), or both.

The presence of false negatives (or false positives) in a sample 
will negatively (or positively) bias estimates of pathogen 
prevalence, with errors propagating to other parameter 
estimates. Magnitude and direction of bias and imprecision will 
depend on the sensitivity and specificity of the diagnostic assay, 
degree of pathogen aggregation among hosts, threshold titre 
values chosen, and potential for cross-reactivity in serology 
studies.

ii. Variability between entities making 
the diagnosis

Sensitivity or specificity of a diagnostic assay can vary 
between laboratories, technicians or observers as a function 
of procedures, equipment, or expertise.

iii. Tissue type sampled Infection presence or detectability may vary by tissue type.

f. extrinsic environmental factors The proximal and distal effects of extrinsic environmental 
factors may influence a range of components of host-
pathogen systems, many of which are described above, and 
can be considered a cross-cutting source of potential bias/
uncertainty.

Overlooking potential effects of environmental factors on disease 
dynamics may produce biased and imprecise parameter 
estimates, poorly characterised disease dynamics, or erroneous 
inferences on the mechanisms driving them. Magnitude and 
direction of bias and imprecision will be highly variable and 
dependent on the specific study system.

https://www.frontiersin.org/journals/Veterinary_Science#articles
http://www.frontiersin.org/journals/Veterinary_Science
https://www.frontiersin.org


4 May  2018 | Volume 5 | Article 90Frontiers in Veterinary Science | www. frontiersin. org

Lachish and Murray Uncertainty in Disease Ecology Studies

prevalence, even when the true prevalence is constant over time. 
Equally, real seasonality in disease dynamics (see below and 
Table 2,F) may be masked by contrasting temporal patterns of 
detection of hosts, vectors, or pathogens (20).

A.ii. Variation in Distribution and Intensity of Pathogens 
Among Hosts
Pathogen infections in natural populations are often characterised 
by aggregated or over-dispersed distributions among individuals 
within populations (27; Table   2, A. ii.). That is, most infected 
individuals harbour low parasite burdens, while relatively few 
harbour high parasite burdens. Although typical of macroparasite 
infections (e.g., helminths), microparasites can also exhibit over-
dispersed distributions in terms of variable patterns of infection 
intensity among hosts (12, 28, 29). For example, Grogan et al (29) 
showed that the distribution of Batrachochytrium dendrobatidis 
(Bd) load between amphibian hosts is highly over-dispersed. 
Despite its long-recognised importance for disease transmission 
rates and host-pathogen population dynamics (30), the effect 
of pathogen aggregation and variation in disease intensity 
on the detection and estimation of disease occurrence and 

impacts has only recently been established. For example, Shin 
et al. (31) showed that detection of Bd infection is unreliable 
in individuals with low Bd loads. Similarly, the probability of 
detecting Plasmodium infections in avian blood increases with 
pathogen load (12; Figure  2A). Thus, pathogen aggregation 
can generate bias in disease-relevant parameters via increasing 
the likelihood of errors in disease state assignment (i.e., state 
misclassification) and will be particularly relevant when the 
sensitivity of diagnostic tests is low (see discussion below and 
Table 2E). Pathogen aggregation can also generate imprecision 
and bias in estimates of the magnitude of disease impacts on 
individuals when the magnitude of disease-induced impacts 
varies with parasite burden or the intensity of infection (12, 
29, 31, 32). For example, Grogan et al. (29) demonstrated that 
survival of the common mist frog (Litoria rheocola) was related 
to the burden of infection with Bd, and that accurate knowledge 
on infection dynamics in their system necessitated accounting 
for pathogen overdispersion (Figure 2B).

B. Demographic or Social Misclassification
Just as there can be uncertainty in the assignment of disease-state 
for individuals in natural populations, there can also be uncertainty 

figURe 1 |  (a) Calling rate of treefrogs (Hypsiboas prasinus) versus total 
number of helminth parasites. Corrected calling rate and total number of 
parasites are the residuals of a regression of body mass; the line is illustrative 
(Adapted from Madelaire et al. (23), with permission from the Journal of 
Herpetology); (B) Encounter rate of house finches that were infected with 
Mycoplasma gallisepticum (black triangles) or not infected (white triangles) 
[Adapted from Faustino et al. (7), with the permission of John Wiley and 
Sons].

figURe 2 |  (a) Relationship between parasite load (DNA copy number) and 
the probability of detecting Plasmodium infection by qPCR in blue tits 
(Cyanistes caeruleus). Dotted lines are 95% confidence intervals (Adapted 
from (12), with the permission of John Wiley and Sons); (B) relationship 
between infection with Bd and survival probability of male Litoria rheocola as 
a function of pathogen load: uninfected (○), 1–4 zoospores (●) and >4 
zoospores ( ) [Adapted from (29), with the permission of John Wiley and 
Sons].
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in assigning individuals to demographic or social classes (i.e., age, 
sex, social status: Table 2B). For example, imperfect methods of 
ageing individuals will produce biased and imprecise estimates of 
age prevalence curves or of demographic impacts (33). An inability 
to accurately sex individuals (e.g., in juveniles or where sexual 
dimorphism is absent) or to accurately infer social groups or social 
hierarchies could introduce further biases, as sex differences and 
social structure can strongly influence disease transmission and 
dynamics (34). For example, in badger (Meles meles) populations 
individuals that are more socially isolated from their group are at 
greater risk of tuberculosis (Tb) infection (35), while in meerkat 
(Suricata suricatta) populations highly connected group members 
(those that groom more) and roving males are more likely to be 
infected with Tb (36; Figure 3A,B). The effect of social status on 
infection risk can also differ between demographic classes, as 
was recently shown for spotted hyenas (Crocuta crocuta) infected 
with canine distemper: high social rank increased infection risk 
for adults and subadults (as they had higher contact rates and 
disease exposure) but decreased infection risk for cubs (as they 
were in better physiological and immunological condition; (37). 
Furthermore, if infection is demographically biased (i.e., when 
infection varies with age, sex, or social status) then encounter 
rates could also vary between those classes, resulting in additional 
uncertainty in estimates of age prevalence curves, demographic 
impacts, or disease dynamics (38).

C. incomplete Taxonomic Knowledge
C.i. Taxonomic Crypticity
Erroneous or biased inferences on disease dynamics may arise 
when multiple, phenotypically indistinguishable but genetically 
distinct host, vector or parasite species are present but are cryptic, 
and therefore, overlooked (21, 39), (Table 2,C.i.). Virulence can 
vary among parasite species (40). Different parasite species or 
morphotypes can differ in the nature of their impacts on hosts (21), 
or in their detectability within hosts (41). For example, compared to 
uninfected individuals, blue tits (Cyanistes caeruleus) infected with 
Plasmodium circumflexum experience lower survival, while those 
infected with Plasmodium relictum experience lower reproductive 
success (21; Figure  4A). These contrasting impacts on blue tit 
fitness were obscured when the identity of the two cryptic malaria 
species was ignored (21). Cryptic vector species can vary in their 
contribution to local infection dynamics, while the detectability of 
parasites in vectors can also vary among vector species (39). For 
example, Gomez et al., (39) showed that infection intensity with 
Borrelia spp varied strongly among cryptic tick races (Figure 4B), 
leading to variable detection rates and vector-specific biases 

figURe 3 | Probability of individual meerkats testing positive for tuberculosis 
as a function of (a) the extent to which they groom others (grooming 
outdegree) and (B) the extent of intergroup excursions by males (roving male 
outdegree). [Adapted from (36), with the permission of The Royal Society]. figURe 4 | (a) Survival rates (±95% CI) of blue tits infected with two strains 

of avian malaria (Plasmodium relictum ◆ R-clade; P. circumflexum ▲ 
C-clade). (Adapted from Lachish et al. (21), with the permission of John Wiley 
and Sons); (B) Intensity of infection of Lyme borreliosis bacteria (mean 
spirochetes ± SE) in three morphologically cryptic avian tick races associated 
with puffins, murres, and kittiwakes. [Adapted from (39), with 
the permission of John Wiley and Sons].
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of between 4 and 30% when raw counts were used to calculate 
prevalence.

Crypticity among host species can also influence disease 
processes and may bias estimates of the distributions of hosts 
or disease, or provide previously unidentified explanations 
for observed disease distributions (42). For example, spatial 
heterogeneity in Lassa fever outbreaks in humans was resolved only 
when the cryptic phylogeography of its reservoir host species, the 
rodent Mastomys natalensis, was recognised (42). These examples 
show that crypticity can generate uncertainty in disease-relevant 
parameters via “imperfect detection” (e.g., when detection rates vary 
among cryptic morphotypes (21, 39), via “state misclassification” 
(e.g., when diagnosis varies with virulence or severity which 
differ among the cryptic morphotypes (39), via both processes 
concurrently, or via other means (e.g., when morphotypes impact 
hosts differently; (21) or when incomplete knowledge limits the 
phylogeographic range of investigation; (42).

C.ii. Rare or Less Detectable Species
Another form of uncertainty may emerge from the incomplete 
characterisation of biological assemblages due to the non-detection 
of rare or low detectability species (Table  2, C. ii.), which constitutes 
an extreme form of “imperfect detection”. For example, when 
characterising the diversity of micro-organisms within a host (e.g., the 
microbiome) or when undertaking pathogen discovery campaigns 
in wildlife hosts, there will typically be diminishing returns in terms 
of new species detections with increasing sampling effort. This arises 

because more common or easily detectable species in an assemblage 
are catalogued early while rarer or less detectable species require 
greater effort (9, 43). For both hosts and pathogens, sampling 
campaigns will rarely census entire communities due to logistical 
constraints and as such there will be uncertainty when estimating 
host breadth, pathogen species richness or other diversity metrics. For 
example, when characterising the viral diversity of the wild megabat 
Pteropus giganteus, Anthony et al., (9), detected 44 viruses from 
1092 samples. However, methods to account for imperfect detection 
suggested that a further 14 viruses remained undetected in this host, 
with the amount of testing required to detect them all estimated to 
be nearly seven-fold the number actually tested (9; Figure 5). This 
example illustrates how observations of host-pathogen systems can 
be directly biased by sampling completeness, which will always be 
constrained by logistical considerations.

C.iii. Multi-Host or Multi-Pathogen Systems
Alongside unacknowledged taxonomic crypticity, and the 
presence of rare species, potential uncertainty in disease-relevant 
parameters can arise when multi-pathogen or multi-host dynamics 
are present but ignored (Table  2, C. iii). Coinfections can involve 
both antagonistic and synergistic interactions between pathogens 
within hosts, which can alter the outcome of infection (positively 
or negatively) and thus influence disease dynamics and host fitness 
(44–46). For example, Budischak et al., (45) showed that body 
condition was lower in buffalo coinfected with two gastrointestinal 
macroparasite species (Cooperia and Haemonchus) compared to 

figURe 5 | Viral discovery curves for pathogens of the Indian Flying Fox (Pteropus giganteus) using PCR estimated from observed detections using three 
statistical models. The horizontal line shows the total estimated diversity (58 viruses) corrected for detectability and the effort required to discover 100% of the 
estimated diversity (7,079 samples). Black line, the rarefaction curve; red line, accumulation of novel viruses over samples tested; blue line, Chao2 estimator with 
arrow = 95% CI; gray lines, ICE and Jackknife estimators; [Adapted from (9), under creative commons licence].
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uninfected or singly-infected individuals (Figure 6). Likewise, for 
pathogens capable of infecting multiple host species, the diversity 
and abundance of alternative reservoir hosts and their relative 
susceptibility or competence, can alter the impact of disease on 
the focal hosts and disease dynamics within the host’s population 
(28, 47–49). For example, Kilpatrick et al., (47) showed that 
variability in host competence and mosquito feeding patterns 
results in extreme heterogeneity in the transmission of West Nile 
virus among communities of avian hosts. Such processes broadly 
related to the epidemiological complexity of a disease can have 
follow-on effects that may also introduce other forms of bias and 
uncertainty; for example, mapping efforts for increasingly complex 
human diseases, as crudely measured by the presence and number 
of transmission sources (e.g., environmental, reservoir hosts, 
vectors, human-human) tend to be of lower quality than for simpler 
diseases (50). Although both multi-pathogen coinfections and 
multi-host pathogens are common, their effects and dynamics in 
wild host populations in natural settings remain poorly described.

D. Mismatch of Sampling Scale and 
Process Scale
D.i. Temporal Scales
Uncertainty in estimates of disease-relevant parameters can arise 
when the temporal or spatial sampling scales do not match those 
at which the disease dynamics operate (Table 2,D). For example, 
in many disease ecology studies the frequency of data collection 
occurs on a longer time scale than the disease dynamics (1, 2, 51). If 
hosts are only monitored seasonally or annually but the progression 
from infection to death, or from infection to recovery, occurs over 
weeks or months, then individuals can acquire infection and die, 
or acquire and lose infections, without these events appearing in 
the data (16, 17, 21).

D.ii. Spatial Scales
Inferences regarding disease dynamics may also vary as a function 
of the spatial extent of sampling relative to the area that determines 
pathogen dynamics (Table   2, D. ii.  ; 52, 53). For example, the 
relationship between biodiversity and infection risk often depends 

strongly on the spatial scale of sampling (53). Studies of tick-borne 
Lyme disease conducted at small (within-forest) spatial scales 
reveal positive associations between disease risk (to humans) 
and host biodiversity (the so-called “amplification effect”), 
whereas those conducted at larger scales reveal the opposite (i.e., 
a “dilution effect”; (54). Similar conflicting inferences regarding 
the relationship between host biodiversity and the risk of infection 
with West Nile Virus have been demonstrated in studies conducted 
at small (48) and large spatial scales (55). A mismatch of spatial 
sampling scale is most likely to occur for zoonotic or vector-
borne pathogens or those with complex life cycles, because the 
production of infective-stages may be decoupled spatially from 
the dynamics of the infection within the target host species (48, 
54–56). The uncertainty generated by a mismatch of sampling 
scales cannot readily be classified as either ‘imperfect detection’ 
or “state misclassification”.

Disproportionate sampling effort in both space and time 
can be considered further examples of potential mismatches in 
scale that can introduce uncertainty in disease ecology studies 
(Table 2,D). For example, many datasets on disease occurrence 
are compiled from non-random “convenience” samples of 
individuals or locations, such as from passive surveillance of sick 
and dead wildlife. Thus, the sample units are not selected according 
to defined rules from the pool of all possible sample units that 
conceptually represent the population of interest (52). This can 
preclude calculating true probabilities of occurrence from a sample, 
resulting in biased and imprecise estimates of disease prevalence or 
other population parameters (52). This issue extends to the use of 
species distribution models (SDMs; also known as ecological niche 
models) developed from “presence-only” occurrence datasets. This 
approach is increasingly being applied in disease studies to map 
infection risk since robust records of disease absence are usually 
unavailable (e.g., in analysis of museum specimens) or cannot be 
accurately verified (due to sampling limitations; (57). In these cases, 
the distribution of reported occurrences are often tightly correlated 
with the distribution of reporting or observation effort, potentially 
resulting in misleading representations of disease distributions in 
model outputs (58, 59).

e. Diagnostic Procedures
E.i. Imperfect Sensitivity or Specificity of the 
Diagnostic Assay
It is well recognised that most pathogen detection methods 
are imperfect, resulting in errors in disease state assignment 
(Table 2,E). This is true both for diagnoses made via laboratory 
analyses of field-collected tissue samples and those made via 
observational assessments of host symptoms in the field (11, 
12, 15). Diagnostic tests with <100% sensitivity will produce 
negative diagnoses when a pathogen is present but not detected 
(false negatives), while tests with <100% specificity will produce 
positive diagnoses in the absence of infection (false positives; 
Table 2E.i). Less well recognised is how these properties interact 
with other potential sources of uncertainty. For example, 
the accuracy of diagnostic tests can vary with the intensity 
of infection in hosts, meaning they can be inconsistent when 
pathogen distributions are aggregated [see section above and 

figURe 6 | Buffalo coinfected with two gastrointestinal parasites 
(Cooperia-Haemonchus) exhibit lower body condition compared to uninfected 
and Cooperia-only singly-infected buffalo (means ± SE are shown). [Adapted 
from (45), under creative commons licence].
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(12, 15, 29)]. Quantitative PCR-based assays can fail to detect 
infections with low DNA copy number (low parasite load), as 
has been demonstrated for the detection of Bd (15) and avian 
malaria (12; Figure  2A). Meanwhile, observational diagnoses 
may fail to detect asymptomatic individuals or those with minor 
symptoms (1, 7). Accounting for uncertainty due to diagnostic 
test accuracy will be especially necessary in studies of pathogens 
with over-dispersed distributions among hosts (29).

Issues of low sensitivity and specificity are particularly 
problematic in studies that use serological data to infer infection 
status because state assignment is based on arbitrary threshold 
values, which can increase the likelihood of false negatives and 
consequently bias estimates of disease-relevant parameters (60). 
In addition, cross-reactivity in serology can occur in the presence 
of unidentified pathogen diversity, increasing the likelihood of 
false positives (60, 61). Indeed, the presence of cryptic pathogen 
species (as discussed above) could lower the specificity of many 
diagnostic tests (60). There can be additional uncertainty in 
inferences obtained from studies that use serology-derived 
measures of disease when knowledge of the serological outcomes 
following infection is lacking (e.g., the probability that an infected 
individual will seroconvert; how pathogen dose and route of 
inoculation affect the induction of a host antibody response; the 
duration of the antibody response to infection; and relationship 
between antibody status and resistance to pathogen infection; 
(61, 62).

E.ii. Variability Between Entities Making the Diagnosis
Another potentially common, but rarely considered, source of 
uncertainty in the diagnosis of infection is the variability in diagnostic 
accuracy that can exist between different laboratories, technicians 
or observers because of differences in expertise, equipment or 
procedures (63; Table  2, E. ii.). Such variation in diagnostic accuracy 
may lead to erroneous inference when comparing prevalence and 
disease dynamics across studies and regions (18, 41).

E.iii. Tissue Type Sampled
Finally, the choice of which tissues to sample within hosts can also 
induce uncertainty in parameter estimates because infection or the 
composition of pathogen assemblages may vary among tissue types 
(64; Table  2, E. iii). For example, avian plasmodium is less detectable 
in blood than in other tissues [via PCR; (65)]. As most studies 
of avian malaria infections in wild birds diagnose infection in 
blood, researchers must acknowledge the likelihood that parameter 
estimates are biased because of “missed” infections (65).

f. extrinsic environmental Sources of 
Uncertainty
External factors related to the environment often have pervasive 
effects, both proximal and distal, on the components of host-
pathogen systems, and as such, environmental covariates can be 
considered a crosscutting source of potential uncertainty in disease 
ecology studies (Table 2,F). For example, seasonal changes in the 
incidence of infectious diseases is common. Seasonal forcing of 
disease dynamics occurs for a variety of ecological reasons, 
including seasonal pulses of births and deaths, seasonal changes 
in host immunity or parasite vigour, or because of seasonal 
changes in host behaviours (e.g., hibernation, migration, mating) 
that result in temporal changes in host contact rates, or variation 
in encounters with or proliferation of infective stages in the 
environment (25, 66–69). For instance, seasonal transmission of the 
fungus Pseudogymnoascus destructans, the cause of bat white nose 
syndrome, is primarily driven by changes in host physiology related 
to hibernation, which facilitates fungal growth in North American 
caves during winter (70; Figure 7). Less regular or longer-term 
environmental influences can similarly affect disease dynamics: for 
instance, if outbreaks are related to unusual weather events (flood, 
drought) or transmission varies by longer term cycles or changes 
in climate (ENSO, climate change). For example, outbreaks of the 
coral disease, atramentous necrosis, are associated with increased 

figURe 7 | Model results showing that the peak predicted prevalence (mean ± SE) of white nose virus (Pseudogymnoascus destructans) for six species of bats 
coincides with onset of hibernation. [Adapted from (12), with the permission of The Royal Society].
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rainfall, greater particulate runoff, and higher water temperatures, 
all of which are predicted to increase under future climate change 
(69). Disease ecology surveys that overlook the effects of seasonality 
and other environmental factors on disease transmission may 
thus produce biased and imprecise estimates of disease-relevant 
parameters, poorly characterised disease dynamics, or fail to 
identify important mechanisms driving them (20, 26, 52). At worst, 
such studies may entirely fail to detect pathogens; for example, by 
only sampling annually or in a temporally ad-hoc manner (see also 
mismatch in scale section above; (52).

Spatial variation in environmental covariates can similarly 
introduce uncertainty in wildlife disease studies. For example, 
host species may utilise different habitat types. This could lead 
to differences in host detectability during disease surveys (52) or 
could directly affect the host-pathogen relationship. For example, 
the dynamics of chytridiomycosis in amphibians vary according 
to microclimate, which itself varies by habitat type, resulting in 
fine scale “environmental refugia” from disease [e.g., open vs 
closed canopy tropical stream habitats, (71)]. Because the impact 
of disease is lower in refugia (due to limited fungal growth and/or 
enhanced frog immunity), ignoring the presence and variability 
of favourable or unfavourable habitats in a landscape can bias 
inferences and compromise efforts to map disease risk or plan 

conservation actions (e.g., translocation of critically endangered 
species; (71).

aCCoUnTing foR UnCeRTainTy in 
DiSeaSe eCology STUDieS

Our review demonstrates that uncertainty in disease ecology 
studies arises because of the sampling and diagnostic procedures 
used and due to factors inherent to the biology and ecology 
of host-pathogen systems. Accordingly, the first step of any 
disease ecology study should be to identify potential sources 
of uncertainty and their likely magnitude (Figure 8). This will 
involve consulting prior information (previous studies, similar 
studies, historical literature) and, if resources permit, conducting 
a pilot study or power analysis to help determine optimal or 
efficient sampling strategies. Several aspects of a well-designed 
sampling strategy can a priori reduce the extent to which 
uncertainty plagues parameter estimates (72, 73). For example, 
minimising stochastic variation among samples (e.g., by ensuring 
that sampled individuals are representative of the population), 
controlling for known covariates of detection probability (26, 

figURe 8 | Schematic representation of the process of accounting for sources of uncertainty in disease ecology studies, including examples of ideal and 
alternative methods that can be used to address each step of the process.
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52, 74, 75), verifying the taxonomic resolution of the system, 
and evaluating the potential influence of non-detection of rare, 
hard to detect or cryptic species.

Subsequently, researchers should employ a sampling strategy 
that enables the application of statistical tools that can help 
adjust parameter estimates to account for uncertainty arising via 
imperfect detection (including incomplete sampling) and state 
misclassification (11, 15, 76; Figure 8). The statistical tools most 
commonly used fall under two broad frameworks. Occupancy 
models use repeated spatio-temporal sampling to estimate 
detection probabilities at multiple hierarchical levels and are 
a flexible means of obtaining estimates of disease parameters 
adjusted for multiple levels of uncertainty (11, 12, 15). For 
example, DiRenzo et al., (77) developed a novel hierarchical 
occupancy model to obtain estimates of the prevalence and 
infection intensity of Bd in a community of frogs, adjusting for 
detection errors arising both from field sampling and subsequent 
diagnostic testing procedures. Hidden Markov models (also 
termed multi-event mark-recapture models), meanwhile, model 
both individual detection probabilities and uncertainty in state 
assignment (16, 78), and are a powerful means of linking disease 
dynamics (estimates of transmission and recovery rates) to 
impacts on hosts and populations [via estimates of vital rates; 
(21, 79)]. Moreover, multi-event models can also provide a robust 
framework for improving diagnostic accuracy when diagnosis is 
imperfect, by enabling a probability-based, rather than a binary, 
classification of infection status. For example, Buzdugan et al., 
(51) used multi-event models to integrate multiple diagnostic 
test data alongside ecological and epidemiological information, 
while accounting for multiple sources of uncertainty (imperfect 
detection and false positive and false negative diagnoses) to 
generate an infection probability value for each individual in 
their study.

For studies that evaluate hosts or pathogen communities, existing 
tools stemming from biodiversity studies, such as non-parametric 
richness estimators, can be readily applied to estimate or account 
for the non-detection of species within species assemblages (80). 
Several previous studies provide comprehensive guidance to the 
design and application of these models in disease ecology and 
other studies (11, 15, 52, 75, 80–82), and we refer the interested 
reader to the more detailed discussions therein to develop further 
applications in disease systems.

Despite being widely advocated and employed in disease 
ecology studies, the application of analytical tools to obtain 
unbiased and more precise parameter estimates may not 
always be possible. Multi-event models require long-term, and 
often large, datasets on marked individuals (21, 51, 83), while 
occupancy models demand repeated sampling at every level 
of inference: from conducting multiple surveys at monitoring 
sites, to obtaining replicate tissue samples from sampled hosts, 
to performing multiple diagnostic assays of those replicate 
samples (11, 84). Numerous financial, logistic and even biological 
constraints can prevent such rigorous hierarchical sampling from 
being undertaken. Paradoxically, these methods also require 
reasonable detection probabilities (of hosts and pathogens) to 
estimate parameters of interest (11, 78). Logistic or financial 
constraints that limit the scale or frequency of sampling or 

the type or quality of data collected, or the presence of rare 
species, will therefore preclude the use of statistical adjustment 
to account for uncertainty in many cases. When such constraints 
preclude the use of such models to adjust parameter estimates 
for heterogeneous detectability or state misclassification, it may 
be possible to use prior information on detectability or state 
uncertainty from other studies or similar systems to adjust 
parameter estimates via Bayesian methods, or to use simulations 
and sensitivity analyses to assess the influence of a range of 
detectabilities or misclassification bias on parameter estimates 
and inferences (74, 75; Figure 8).

Ultimately, statistical tools can only adjust for uncertainty 
due to measured and identified sources of observation error (i.e., 
imperfect detection and state misclassification). A post-hoc statistical 
adjustment of infection rates will remain biased when infection is 
caused by multiple unidentified pathogen species, if the time span 
between sampling periods is greater than the average infection time 
for hosts, or if important species interactions within a multi-host 
disease system are overlooked. Thus, to truly account for multiple 
sources of uncertainty in disease ecology studies researchers must 
(i) have an intimate knowledge of the host-pathogen dynamics, the 
aetiology of the disease and the ecology of the system, (ii) employ a 
rigorous, biologically sound, replicated survey design, (iii) statistically 
adjust parameter estimates for known sources of uncertainty (or 
assess its influence on parameters otherwise), and (iv) acknowledge 
remaining sources of uncertainty (Figure 8). Where possible, the 
influence of remaining potential sources of uncertainty should be 
evaluated via simulation or sensitivity analyses (e.g., as discussed 
above), and if necessary, inferences on disease dynamics, impacts, 
distributions, and trends should be tempered accordingly (Figure 8). 
Somewhat ironically, the four steps listed above might be exactly 
what a study is trying to ascertain in the first place, paving the way 
for studies and methods that scale with, or incrementally improve, 
knowledge of a system utilising an adaptive or iterative approach. As 
such, depending on the state of knowledge of a particular system, each 
of the steps in this hierarchy of actions (Figure 8) represent potential 
future directions or avenues of enquiry for the system at hand.

ConClUSion

Reliable, unbiased and precise estimates of disease-relevant 
parameters are critical for disease monitoring and risk analysis; 
for predicting disease spread and dynamics; for understanding 
the ecological and evolutionary implications of pathogens in 
host populations; and for ensuring the success of conservation 
interventions and management actions (11, 15, 20, 85; Table 1). 
Over the last decade, disease ecologists have begun to acknowledge 
the importance of accounting for uncertainty when making 
inferences on natural disease systems (9, 11, 12, 14, 15, 20, 26, 52, 
53, 76). To date, however, uncertainty in disease ecology studies 
has been considered primarily in terms of imperfect detection 
(of hosts or pathogens) or disease-state misclassification. In this 
review, we show that uncertainty in disease ecology studies extends 
beyond these components of observation error and can arise from 
multiple varied processes that pertain to aspects of the disease 
system, the study design, the methods used to study the system, and 
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the state of knowledge of the system. Some of these processes, such 
as unidentified crypticity among vectors, hosts or pathogens, or a 
mismatch of sampling scales, may not be immediately apparent, 
and may not be adequately accounted for via statistical adjustments 
(11, 14). In this review, we have discussed the processes by which 
these varied sources of uncertainty can reduce the precision of, 
and introduce bias in, estimates of disease-relevant parameters. 
Importantly, we show that uncertainties in parameter estimates 
generated via one process may propagate through to others because 
of interactions between the numerous biological, methodological 
and environmental factors at play. Understanding how these 
interactions among sources of uncertainty affect the degree and 
direction of bias in disease-relevant parameters is a key challenge 
for this field, and we present a hierarchy of needs that could be 
tailored to individual study contexts in order to reveal next steps 
and future directions towards improving estimates of disease-
relevant parameters.

Given the diverse set of factors that can contribute to uncertainty 
in disease ecology studies (Table 2), the extent of ecological variation 
in host-pathogen systems (e.g., Table  1), and the possibility of 
interactions among elements, assessments of the degree of potential 
bias and lack of precision in disease-relevant parameter estimates 
must be undertaken on a system-specific level. Nevertheless, some 
general guidelines are possible. The degree of uncertainty in disease 
ecology studies will be higher when the biology, ecology and 
dynamics of the system are complex or unresolved, when sampling 
effort is low, when sampling strategies are poorly designed (e.g., 
spatially or temporally biased) or undertaken at inappropriate 
spatial or temporal scales relative to disease dynamics, when 
diagnostic tools suffer from low or varying sensitivity or specificity, 
and when environmental covariates are complex or poorly resolved. 
Moreover, studies of endemic, invasive, or novel diseases may be 
at higher risk of uncertainty because the detectability of pathogens 
is often lower where disease prevalence and infection intensity are 
low or patchily distributed such as at invasion fronts.

Uncertainty in disease ecology studies is a certainty. In this 
review, we have identified a myriad of ways in which uncertainty 
can manifest when attempting to monitor pathogens and 

characterise disease dynamics in natural populations and have 
discussed appropriate sampling and analytical methods to account 
for or minimise their influence on estimates of disease-relevant 
parameters and identify future research priorities. We acknowledge 
that our list is not exhaustive, and that studies, particularly in novel 
systems, or that apply novel methodologies and technologies, will 
continue to encounter additional considerations. Nevertheless, this 
review should assist researchers and practitioners to navigate the 
pitfalls of uncertainty and strive towards more robust parameter 
estimates from which to make sound inferences and predictions 
in disease ecology.
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gloSSaRy of TeRMS

Accuracy: the degree of closeness of a measurement of a quantity 
to its true value. It is a description of both systematic and random 
errors, such that high accuracy requires both high precision and 
low bias.
Bias: the tendency of measurements of a quantity to shift 
systematically in one direction from the true value. It is a description 
of systematic errors.
Detectability: probability that an organism will be encountered 
(captured or seen) in its natural habitat during a survey.
Disease-induced impacts: changes in host fitness, behaviour, or 
physiological performance caused by pathogen infection.
Disease state uncertainty: occurs when disease state assignment 
is subject to error (disease state misclassification) or not known 
for a portion of the sampled individuals.
Force of infection: the instantaneous rate at which susceptible 
individuals acquire infection.
Heterogeneity in detectability: occurs when there is variation in 
the probability of detecting organisms in their natural habitat.
Imperfect detection: occurs when the probability of detecting an 
organism in its natural habitat is less than one.
Incidence: the rate at which new infections occur in a population 
during a specified period.
Macroparasite: a pathogen that does not multiply within its host 
(e.g., helminths).

Microparasite: a pathogen that does multiply within its host (e.g., 
viruses).
Pathogen load: is a measure of the number of parasites that a host 
organism harbours. Also referred to as the intensity of infection.
Persistence time: length of time an infectious agent persists in the 
environment.
Precision: the degree of agreement in a series of measurements 
of a quantity. It is a description of random errors; a measure of 
statistical variability.
Prevalence: the proportion of a population that are infected at a 
point in time.
Risk of infection: the probability of becoming infected given that 
exposure to an infectious pathogen has occurred.
Sensitivity: the ability of a test to identify correctly those with the 
disease (true positive rate).
Specificity: the ability of the test to identify correctly those without 
the disease (true negative rate).
Taxonomic crypticity: occurs when individuals are phenotypically 
indistinguishable but genetically distinct.
Transmission rate: the rate at which pathogens pass from infected 
hosts to other individuals in a population, or the rate at which hosts 
contact infectious agents in the environment, during a specified 
period.
Uncertainty: occurs when incomplete knowledge of a system, 
or irreducible naturally occurring noise, prevents ascertainment 
of the truth. Uncertainty leads to a lack of precision and bias in 
measurements obtained.
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