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Successful eradication schemes for bovine tuberculosis (bTB) have been implemented 
in a number of European and other countries over the last 50 years. However, the 
islands of Britain and Ireland remain a significant aberration to this trend, with the recent 
exception of Scotland. Why have eradication schemes failed within these countries, while 
apparently similar programs have been successful elsewhere? While significant socio-
economic and political factors have been discussed elsewhere as key determinants of 
disease eradication, here we review some of the potential ecological and epidemiological 
constraints that are present in these islands relative to other parts of Europe. We argue 
that the convergence of these potential factors may interact additively to diminish the 
potential of the present control programs to achieve eradication. Issues identified include 
heterogeneity of diagnostic testing approaches, the presence of an abundant wildlife 
reservoir of infection and the challenge of sustainably managing this risk effectively; 
the nature, size, density and network structure of cattle farming; potential effects of 
Mycobacterium bovis strain heterogeneity on disease transmission dynamics; possible 
impacts of concurrent endemic infections on the disclosure of truly infected animals; 
climatological differences and change coupled with environmental contamination. We 
further argue that control and eradication of this complex disease may benefit from an 
ecosystem level approach to management. We hope that this perspective can stimulate a 
new conversation about the many factors potentially impacting bTB eradication schemes 
in Britain and Ireland and possibly stimulate new research in the areas identified.
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introduCtion

Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a zoonotic disease, primarily affecting 
livestock, which is of economic importance to the European Union (EU) due to its impact on trade. 
Indeed, at the inception of the European project, as the European Economic Community (EEC), the 
first legal initiatives were taken to combat the disease in 1964 with the drafting of council directive 
64/432/EEC (1). The latter document foresaw that there was a requirement for animal health legislation 
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to underpin intra-community trade in livestock and introduced the 
concept / definition of being “officially tuberculosis free” (OTF), 
defined as the percentage of herds confirmed as bTB infected 
not exceeding 0.1% per year for six consecutive years (2). The 
legislation also defined the goal of the EEC to be disease eradication 
as opposed to control. Further legislation followed which enshrined 
the need for member states of the EEC to fund and facilitate test and 
slaughter schemes for the purposes of bTB eradication (3). In many 
member states, eradication programmes proceeded effectively, 
resulting in the granting of OTF status to Denmark in 1980, the 
Netherlands in 1995, Germany and Luxembourg in 1997, Austria 
in 1999, France in 2001 and Belgium in 2002 (2). Other states were 
granted OTF status upon joining the EU – Finland and Sweden 
1995 and Czech Republic 2004 (2). In 2009, Poland and Slovenia 
also attained OTF status, whilst non-member state Norway was 
recognised as meeting all EU standards around OTF status (4).

Against this backdrop of successful eradication is the 
contrasting situation observed in the islands at the western fringe 
of the European continent – Britain and Ireland. Despite dramatic 
initial success in controlling bTB, England, Wales and Northern 
Ireland have suffered increasing incidence since the late 1980s. 
The Republic of Ireland experienced a relatively less dramatic 
initial reduction in incidence and continues to exhibit an ongoing 
problem in eradicating bTB, however, recent figures suggest that 
the situation has stabilised. Scotland is the notable exception, 
having been granted OTF status in 2009 (4). Data from 2009 
indicated that 5–6% of herds from both islands tested positive for 
the presence of M. bovis (4). A contributing factor to the rise in herd 
incidence in England and Wales can be attributed to the suspension 
of bTB testing during the 2001 outbreak of foot and mouth disease 
(5, 6). However it has been recognised that even before the foot 
and mouth epidemic, bTB herd incidence was on the rise and 
foot and mouth disease merely exacerbated an already existing 
problem consistent with an upward trend in incidence since 1986 
(6). Indeed, data from the Department of the Environment Food 
and Rural Affairs (DEFRA) in Britain indicates that ‘since 2003 
the total number of new bTB breakdowns identified (every quarter) 
in GB has been doubling at a rate of every 10 years. Prior to the 
Foot and Mouth Disease epidemic of 2001, the doubling rate was 
every 5.2 years’ (7). More recently, England, Wales and Northern 
Ireland have exhibited a rise in herd incidence whilst the Republic 
of Ireland has experienced a fall (6). Whilst mainland Europe still 
has a substantial bTB problem in the Iberian peninsula (Spain herd 
incidence 1.4% in 2009), this pales in comparison to the problems 
observed in the UK and Republic of Ireland (4).

This begs the question – why, in comparison to continental 
neighbours, have the territories of the United Kingdom and Republic 
of Ireland struggled to eradicate bTB? In Europe, diagnostic testing 
using some variant of the tuberculin skin test methodologies is 
highly standardised (8–10) following international protocols laid 
down by EU Council Directive 64/432. Debate around the efficacy 
of the skin tests are an ongoing matter of concern, with traditional 
epidemiological approaches estimating wide ranges of sensitivity 
of 52–100% - median 80% (8). More recently, Bayesian non-gold 
standard methods applied to data from Ireland have suggested 
skin test sensitivity is in the region of 50–60% (11), which has been 
further supported by a Bayesian meta-analysis from studies in the 

literature from 1934 to 2009 (12). Such relatively poor diagnostic 
performance may explain a failure to eradicate disease since many 
truly infected animals will be mis-classified as disease free. However, 
similar testing schemes using standardised reagents, presumably 
with similar test performance characteristics, have been used 
across Western Europe and indeed other parts of the world such 
as Australasia (13, 14), resulting in disease freedom. Furthermore, 
the performance improves at the herd-level as a screening test to 
identify infection, depending on the herd-size (numbers tested) 
and true within-herd prevalence (15). Also, once infection is 
identified, supplemental testing with more sensitive tests can be 
used to clear the within-herd infection (16). One could come to 
the perhaps overly simplistic conclusion therefore, that even with a 
poor individual test sensitivity, eventual eradication can be attained. 
However if this is true, what is confounding progress in Britain 
and Ireland? Undoubtedly, despite widespread standardisation 
in the basic diagnostic approach of using injectable tuberculins, 
there are individual differences in the application of eradication 
programmes subject to the variations of differing national policies, 
politics, behaviours and country specific factors (6). Indeed some 
of these socio-political factors may be some of the most important 
factors to account for the difficulties encountered in Britain and 
Ireland (17). Even with such heterogeneity of approach across time 
and national boundaries, it remains startling that particularly in 
Britain, which came close to achieving eradication in the 1960 
and 1970s (8, 18), bovine TB is resurgent (as discussed above). 
Therefore, alongside issues of differing diagnostic test application 
protocols, we propose it is also timely to consider other potential 
additional factors whose current impact is unknown, but which 
may be additively preventing progress towards eradication.

Specifically, we hypothesise that there may exist a convergence 
of detrimental risk factors unique to GB and Ireland that is 
undermining the bTB eradication effort in these territories. If 
certain factors do contribute to this hypothesised “perfect storm” 
underpinning a failure to eradicate bTB, what are they likely to be? 
Below we discuss some of the likely ecological and epidemiological 
candidates given current knowledge. These proposed factors are 
not meant to be a definitive or exhaustive list; indeed we fully 
recognise that there may be many “unknown unknowns”. Rather 
our intention is to attempt to address the current impasse in bTB 
control in these islands by adopting a novel perspective which 
seeks to address the likely multi-factorial problems which afflict 
our national eradication programmes. We hope that in so doing, 
we can start a debate on how this perfect storm can be investigated 
and addressed through innovative approaches and methodologies.

tHe faCtors

Heterogeneity in btB diagnostic 
approaches and Control programmes
In the late nineteenth century, tuberculins, derived from the culture 
filtrate of TB causing bacilli (10), were initially produced as potential 
therapeutic agents by the discoverer of the tubercle bacllius, Robert 
Koch (10). Their lack of efficacy for this particular task, was superseded 
by the discovery they could be used in the diagnosis of tuberculosis 
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(8, 10). In the twentieth century it was discovered that intradermal 
injection and measurement before and after of skin thickness could 
be used to detect the delayed type hypersensitivity (DTH) reaction, 
indicative of bTB infection (8, 10). Since then, “repetitive use of 
tuberculin tests remains the basis of all bTB control programs to 
this day” in areas with endemic disease (10), following strict standards 
laid down by EU council directive 64/432.

Despite such standardisation, there remain differences in 
application of skin tests and in the programs they support across 
the EU. We address an overview of these below:

Different Tuberculins and Divergent Potencies
Tuberculin potency for use in all skin tests used in Europe is tightly 
regulated by EU Council Directive 64/432. It is however recognised 
that changes in manufacturing and production procedures can 
result in batch to batch variation in potency (10). Indeed, even with 
strict regulation, tuberculins of lower potency have been released 
before (10). Such batch to batch variation and low potency would 
affect sensitivity of the skin test by reducing the DTH response / 
skin swelling that underpins diagnosis. Could such heterogeneity 
underpin the divergent outcomes in Britain and Ireland’s TB control 
programmes compared to mainland Europe? An understanding of 
the history of tuberculin production may help to partially address 
this issue. Prior to 1975, the UK produced tuberculin derived 
from three M. tuberculosis strains, which was used in both Britain 
and Ireland [(8), M. Good personal communication]. Use of this 
tuberculin, derived from the human pathogen, coincided with 
the lowest prevalence of bTB in GB suggesting that the testing 
scheme was very effective. In 1975, both the United Kingdom 
and Republic of Ireland switched from using an M. tuberculosis 
derived PPD to one derived from the GB AN5 strain of M. bovis 
(8) as this exhibited superior sensitivity and specificity to the M. 
tuberculosis PPD (8, 19, 20). During the period after the 1970s, 
England and Wales experienced the well documented rise in 
bTB prevalence despite using this apparently superior Weybridge 
tuberculin (6). In 1980 the Republic of Ireland switched to using 
tuberculin produced from the AN5 strain in Lelystad (M. Good 
personal communication) with the UK following suit in 2008 (21). 
Downs et al. (21) went on to compare Weybridge and Lelystad 
tuberculins for bTB breakdown data in GB between 2005 and 2009, 
finding that the Weybridge formulation exhibited a slightly higher 
sensitivity and lower specificity. Given this data, in the context of 
increasing prevalence of bTB in the UK, the Weybridge tuberculin 
could have resulted in the reduction of false negative animal / herd 
detection whilst increasing the false positive rate – a combination 
in conflict with the hypothesis that tuberculin differences underpin 
the prevalence rise in GB. Whilst it is impossible to know the quality 
of all Weybridge tuberculin batches produced between 1977 and 
2009, it is pertinent to note that batch to batch variation is not 
just a feature of GB production from the 1970s onwards (21, 22).

Differing Test Formats Across Europe
The most obvious difference is related to the exact test used. In 
Continental Europe, the single intradermal test (SIT) / cervical 
intradermal test (CIT) is used, involving the inoculation of M. bovis 
derived purified protein derivative (PPD) to detect skin thickness 

increases indicative of infection (8, 9). Conversely, in Britain and 
Ireland, owing to problems with environmental members of the 
Mycobacterium avium complex of bacilli cross reacting with M. 
bovis PPD and reducing specificity (increasing false positives), a 
comparative test is used (8). The single intradermal comparative 
cervical test (SICCT) injects both M. bovis and M. avium derived 
PPD into separate locations of an animal’s neck, and uses the 
resulting difference in skin thickness between both sites as a 
diagnostic metric (8). The SIT has been noted to have an increased 
sensitivity (fewer false negatives) compared to the SICCT (23): SIT 
sensitivity range 80.2–91.2%; SICCT sensitivity range 52–93.5% 
(8). It is possible that this difference in sensitivity in the test used 
in Britain and Ireland may contribute to the comparative difficulty 
in clearing infection these islands experience, compared to 
continental neighbours. However, if this were the sole cause of the 
latter stark difference, it fails to explain why the Republic of Ireland 
and the United Kingdom exhibit such divergent contemporary and 
historic herd prevalences (6) despite having used similar tuberculin 
preparations (see above).

Differing Approaches to bTB Programs Across Europe
In continental European countries, which do not have the same 
problem as Britain and Ireland, bTB testing programs can have 
radically different outcomes. For example herd de-population 
upon the detection of reactor animals was common in France 
(9) – effectively using skin test as a herd screening test (8). In 
the continental context however, there is now a move away from 
whole herd de-population measures because of the costs involved 
and also animal welfare concerns (9). Economic consequences 
of whole herd depopulation in Britain and Ireland are of even 
greater significance owing to the much higher infection prevalence 
in these regions, and consequently are generally rarely deployed 
(with notable exceptions: (24, 25). A movement towards more pre-
movement testing, to prevent spread of infection to new areas, 
has been proposed as an alternative to depopulation (9), Pre-
movement testing in the Republic of Ireland was a required part 
of the TB eradication scheme up until 1996 (20). Since then, an 
evaluation of reviving the practice in 2005 revealed no significant 
cost benefit, with the suggestion being that very few outbreaks were 
being caused by onward movement of animals (20). In Britain, 
pre and post movement testing was introduced in 2006 (APHA, 
2017) at direct cost to individual farmers. In Northern Ireland, 
pre-movement testing has been considered (26), but is currently 
not an active part of the eradication scheme.

Deployment of gamma interferon, as a higher sensitivity 
ancillary test, in Britain and Ireland is variable – in Northern 
Ireland, participation in testing has been voluntary, with no 
statutory powers in place to remove test positive animals (16). In 
the Republic of Ireland and in Britain gamma interferon is now 
conventionally used in problematic herds to increase sensitivity in 
an attempt to clear infection, but their application and the basis 
for animal removal has varied widely (6).

Other European countries such as Switzerland also use the 
practice of taking inconclusive reactors from skin test positive herds 
(9); however it should be noted, Switzerland who undertook biennial 
testing (1960–1980), now resort to passive abattoir surveillance 
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from 1980 onwards (9). Such inconclusive reactor animals have 
been shown to be at elevated risk of developing infection in the 
future (27) and could potentially lead to the retention on farm of 
high risk animals. The economic cost in removing all inconclusive 
reactor animals is an order of magnitude greater in countries like 
Britain and Ireland which have a higher disease prevalence.

Compartmentalisation of regions within European countries, 
based on relative prevalence has been used to contain infection 
and prioritise resources (2). However, the restrictions used to 
control spread of infection across these has not been implemented 
uniformly. Over a number of years, Italy compartmentalized some 
regions with higher prevalence (28), applying greater movement 
restrictions between regions on the basis of risk. In Britain, 
compartmentalization has only been implemented in recent years, 
and has does not completely prevent movement – relying on pre 
and post movement tests (29, 30). It is notable, this regionalization 
approach is not effective in places which have widespread infection 
without a single locus, such as the island of Ireland (31).

It is conceivable that the program differences discussed above have 
compounded the ongoing problem Britain and Ireland have with 
bTB, however it is currently difficult to quantify the magnitude of 
these impacts.

Summary
In summary, these differences in tuberculin potency, application 
of skin test formats and heterogeneity in downstream choices in 
program management could have had a divergent effect on the 
bTB outcomes observed in Britain and Ireland vs Continental 
Europe. However, it is extremely difficult to untangle their relative 
importance (as is the case for all of the hypothesised factors), 
especially against the background of such differing epidemiological 
(and ecological) contexts. Future research efforts, including 
“big data”, could assess differing interventions in settings with 
similar prevalence. Such approaches are predicated on better data 
harmonisation and sharing.

Wildlife

Wildlife Hosts are a significant 
impediment to eradication
The presence of wildlife hosts of bTB has been found to be a major 
impediment to eradication in a number of countries worldwide 
[e.g., Michigan, USA, New Zealand, UK and Ireland; (32)]. Spill-
back infection from wildlife to cattle can seed infection into cattle 
herds (33). In Michigan the wildlife host is the white tailed deer 
[Odocoileus virginianus; (34)], while in New Zealand there is a 
multi-host problem with the most significant reservoir being 
the non-native brushtail possum [Trichosurus vulpecula; (14)]. 
In continental Europe, recent research has suggested that wild 
boar may act as a reservoir of infection, causing increased risk 
to cattle herds in parts of France and Spain (35–37). Deer may 
be a widespread, but relatively localised, problem in a number of 
countries across Europe (38). It has been suggested that European 
badgers may also play a role in the epidemiology of bTB in cattle in 
Spain and France (39, 40), however, it is only in Britain and Ireland 

where there is strong evidence of their impact on the control of 
bTB in cattle (41–44).

evidence that Badgers are implicated in 
the epidemiology of btB in Cattle - Culling
Badgers are a host species for M. bovis, and have been implicated 
in the epidemiology of cattle bTB in UK and Ireland (41, 42, 44)]. 
Culling trials have demonstrated significant reduction in risk to 
cattle herds in areas where badger densities were significantly 
reduced  (41–44). The magnitude of this effect has been shown 
to be larger in the ROI than in (Randomised badger cull) trials in 
GB [compare (43, 45) with (41, 42)]. In GB, badger culling was 
associated with a temporarily increased risk also to herds found 
at the periphery of cull sites (41). This was hypothesised (the 
“perturbation effect” hypothesis) to be as a result of increasing 
frequency-dependent transmission amongst badger populations, 
causing increased spill back infection to cattle herds (41). This 
suggests that badgers can play a significant role in spilling back 
infection to cattle over short duration. However, this peripheral 
increased risk was transient [<2 years post-cull (46)]; and was not 
demonstrated during badger cull trials or government-led culling 
operations in ROI (43, 44, 47, 48). The apparent beneficial effects 
of proactive culling to farms in cull areas have been maintained 
for up to 5–11 years after GB cull trials (49–52), and up to 10 years 
post-cull trial in ROI (53).

Cattle and Badgers share btB pathogen 
strains Which Cluster in time and space 
- strain typing and Whole Genome 
sequencing
Strain typing of M. bovis has demonstrated that both badgers and 
cattle share similar strains with geographic clustering across hosts 
indicative of interspecific transmission at local scales (48, 54–56). The 
best evidence for this ongoing transmission has been demonstrated 
at the genomic level (57, 58). Biek et al. (57) demonstrated that at 
the farm level, badgers and cattle shared the same or highly similar 
pathogen sequence type consistent with frequent and recent 
transmission events – however, the direction of transmission could 
not be established during that study. It is likely that transmission 
occurs in both directions (53, 59, 60); however, the force of infection 
may be greater from badgers-to-cattle than cattle-to-badgers owing 
to the continual removal of infected cattle through test-and-slaughter 
(61–63). It is conceivable there may be regional variation in the latter 
as a result of animal and wildlife densities. Furthermore, culling 
experiments (see above) have demonstrated that the cycling of 
infection can be interrupted with beneficial effects for reducing bTB 
prevalence in the target host population.

Britain and ireland Have Higher average 
Badger densities than elsewhere in 
europe
The islands of Britain and Ireland have the highest average 
recorded density of badgers compared to any other country 
in Europe (64). Median badger densities across badger study 
sites suggest a median density of 4.3–5.4 badger km−2 for the 
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British Isles, while studies from across Europe suggest that 
median badger densities are 0.29–0.55 badger km−2 [(64, 65), 
Byrne, unpublished]. Furthermore, in England and Wales 
there has been a significant increase in badger social group and 
population densities in recent decades (66, 67). These figures 
mask the wide variation in density at lower spatial scales (66, 
68–70) – for example, badger densities in Spain can vary from 
<0.3 to 3.4 badgers km−2 across habitat types (71). Similarly, 
badger densities in Ireland can vary from 0.7 badgers km−2 
in poor upland habitat (72); in ideal conditions on a wooded 
island, densities up to 37 badgers km−2 have been recorded (64). 
However, what is important is that badgers benefit from a benign 
temperate climate in the British Isles (73, 74), and have thrived 
in areas where woodland and pasture abound (66, 68–70). These 
habitats can maintain badgers at mean densities of 3–5 badgers 
km−2 in Britain and Ireland (64, 75) and are also the contact point 
for potential direct and indirect interaction between badgers and 
grazing cattle (76). While badger density per se may not be related 
directly to risk in a linear fashion, large-scale epidemiological 
studies in the Republic of Ireland (53), Northern Ireland (77) 
and in Great Britain (78) have found significant and positive 
associations between metrics of badger density and increased 
bTB herd breakdown risk.

There is considerable variation in the societal attitudes 
to the management of wildlife across Europe [e.g., see (65, 
79–84)], and this results in significant variation in the actual 
management practices implemented across Europe. This may 
relate to the apparent conflict between conservation, animal 
welfare, and management goals, as well as cultural differences 
in the acceptability of pursuits such as hunting. Hunting is 
more common, and arguably more socially acceptable in 
many continental European countries [e.g., (82, 83)] than it 
is in the UK and Ireland. Badger hunting is widespread and 
relatively intense in a number of countries across continental 
Europe (65), despite the badger being listed under the Bern 
convention. In Germany, the annual recorded hunting bag for 
badgers has been between 50–70,000 per annum, within an 
increasing trend in the hunt bag in recent years – for example, 
the bag for 2016 was 71,168, a 11.98% increase from 2015 (85). 
Similarly, in Finland 8,600–14,000 badgers have been reported 
in the national hunting records per annum (86, 87) and an 
increasing trend is reported in Poland where recent game bags 
are in excess of 4,000 badgers (88). Badger hunting is common 
and widespread in France, though there are limited available 
data on the national badger status (89), but hunters have been 
used recently in bTB outbreaks to sample badgers (39, 90). In 
Britain and Ireland, the badger has been protected by legislation 
since the 1970’s. It is likely that this protection status has had 
beneficial effects on population size (68, 70, 91, 92) and may 
have influenced the considerable variation in the estimated 
densities of badgers across European countries, and between the 
British Isles and continental Europe. Furthermore, this broader 
issue of the “palatability” of wildlife management within society, 
and the relationship between this effect and the interventions 
undertaken may have been a significant factor in the bTB epi-
system within the UK and Ireland (93).

Badgers exhibit significant tB prevalence
Prevalence of M. bovis infection in badger populations may be 
sought as base-line data, although it is likely to vary by region 
and over time and is recognised as being difficult to quantify 
accurately (94–96). Standard pathology investigations have 
limited sensitivity (42, 97, 98) with the result that prevalence is 
likely to be underestimated.

Recent investigations indicate that more detailed post-mortem 
examinations result in the detection of microscopic lesions that 
would otherwise evade detection by standard procedures (97–
99). Badgers killed in road traffic accidents (RTA) have proven to 
be a useful source of data in attempting to determine badger TB 
prevalence at a county-wide scale (42, 56, 100). The ISG reported 
that standard post mortem examination revealed that 15% of GB 
RTA badgers had TB (42). The ISG cautioned, however, that at a 
localised level below county size, owing to reduced availability of 
RTA badgers, this method may not be sufficient for surveillance 
(42). Similar RTA data collected in NI indicated that ~15% of 
badgers were infected (101). In GB, the ISG reported that in 
proactive cull regions, 16.6% of badgers were tuberculous (42) 
whilst in reactive cull regions this figure was 14.9% (102).

Similarly, studies in the ROI indicated that, by the standard 
protocol, culled badger TB prevalence was 12.1% (98) and 
largely in agreement with RTA figures. More thorough post 
mortem examination of culled badgers led to the detection of 
an increased number of infected animals. Cranshaw et al. (97) 
demonstrated that, in GB, proactively culled RBCT badgers 
had a true prevalence of TB infection of 24.2%. Similarly, in 
the ROI, more detailed post-mortem examination of culled 
badgers from across the country revealed a prevalence of 
36.3% (98). However, other studies found higher prevalence 
up to 43%, indicating the variation in estimates depending on 
sampling and laboratory methods (103). Using cage trapping, 
anaesthesia and live sampling of badgers Drewe et al. (104) 
used latent class analysis to estimate the outcome of multiple 
tests on live badgers (culture, gamma interferon and Stat-Pak 
ELISA), in the absence of a perfect gold standard diagnosis. 
Sensitivity of diagnostic testing was estimated at ~93% and 
badger TB prevalence was estimated subsequently as 20.8% 
in Woodchester Park, Gloucester (104). Intra-regional, inter-
regional and temporal differences in badger TB prevalence are 
to be expected owing to the potential differences in ecology 
and population dynamics of both cattle and badgers in different 
areas as illustrated recently in the ROI (105). Indeed, Byrne et 
al. (74) demonstrated large spatial variation in badger infection 
risk based on a sample of over 5,000 badgers across the Republic 
of Ireland. Using standard PM techniques and bacteriological 
culture confirmation, there was an order of magnitude difference 
in the worst infected counties to the lowest prevalence counties. 
Furthermore, there was a significant decrease in prevalence 
from 26 to 11% positive, at a period where TB was declining in 
the local cattle populations.

Regardless of “true” prevalence, these studies indicate that a 
significant component of the badger population across the UK 
and Republic of Ireland is infected with M. bovis, where bTB is 
also prevalent in cattle.

https://www.frontiersin.org/journals/Veterinary_Science#articles
http://www.frontiersin.org/journals/Veterinary_Science
https://www.frontiersin.org


6 June  2018 | Volume 5 | Article 109Frontiers in Veterinary Science | www. frontiersin. org

Allen et al. Bovine Tuberculosis – A Perfect Storm?

Cattle and HusBandry

Britain and ireland Have some of the 
Highest national Cattle densities in 
europe
As has been described above for the European badger, the density of 
host organism available for infection by the TB causing bacilli seems 
to be of critical importance to ongoing transmission of disease and 
persistence. By analogy to bTB, Human tuberculosis, caused by M. 
bovis’ close relative, Mycobacterium tuberculosis, is typically associated 
with overcrowding in confined spaces (106, 107). It is not surprising 
therefore that as with badgers, cattle densities will probably have an 
influence on bTB transmission dynamics. The countries that make 
up the islands of Britain and Ireland have notably high cattle densities 
in comparison with other European countries. In 2010, out of 27 
countries within the EU, Northern Ireland had the highest mean 
cattle density of any country at 112 cattle per km2 (108, 109). The 
Republic of Ireland was third (84 cattle per km2), with Wales and 
England ranking 6 and 7th respectively (54 and 40 cattle per km2). 
Scotland, who are now officially bTB free, are ranked 13th with a mean 
density of 22 cattle per km2. To illustrate the differences amongst 
countries, the national herds are large relative to their area in Britain 
and Ireland, for example, both the Republic of Ireland and Spain 
have approximately 6 million cattle (109), yet Spain is 7.2 times the 
size of ROI (504,645 Spain/70,273 ROI km2). Research suggests 
that both the size of herds [e.g., (53)] and the intensity of farming 
(110) can be associated with increased risk of bTB breakdown in 
endemic countries [for reviews see (54, 111, 112)]. Larger herds may 
constitute greater risk as it may be more difficult to clear infection, 
once identified within the herd, due to the poor sensitivity of skin tests 
(113). The density of cattle within farms can be a proxy measure for 
the intensity of agricultural production, and has been associated with 
increased risk of bTB (110). At a macro-scale the risk of bTB increases 
with increasing intensity (111), primarily due to closer proximity 
between animals and potential infectious contacts (110, 112). In 
Britain and Ireland there has been a move towards intensification, 
with a trend towards larger farm sizes, yet a decline in the absolute 
number of farms (113, 114). Recent changes in dairy production 
at the EU level may exacerbate this pattern in the future. However, 
interestingly, Acevedo et al. (115) did not find a relationship between 
host density and bTB prevalence when investigating European island 
as discrete bTB ecosystems.

Britain and ireland Have farming 
Characteristics that May Cause 
difficulties in Managing infectious disease
Trade is a significant characteristic of cattle farming in the UK 
and Ireland, with significant patterns of movement that transcend 
national boundaries (116, 117). Indeed, for example, in 2015 there 
were 55,285 live animal exports from ROI to Northern Ireland (118). 
Gilbert et al. (116) showed that, at a GB level, there were significant 
flows of animals traded over long distances, and also showed that 
movement metrics were a significant risk factor for bovine TB. Ashe 
et al. (117) visualised the movement of a cohort of animals from one 
county in one year in Ireland; a remarkable pattern of movement 
that encompassed all regions of the island was apparent. However, 

cattle movement and trade is a scale dependent phenomenon. While 
long distance movements occur and can potentially link disparate 
areas epidemiologically, the majority of trade moves are local (119) 
– the movement kernel is long tailed (120). Recent analysis of trade 
networks in Northern Ireland has demonstrated that farms are 
extremely well connected, forming a robust network that is resistant to 
random and targeted node removal. Essentially, this indicates that the 
interconnectedness of this herd network makes it difficult to manage 
spread on an individual basis.

Small movement networks can contribute to the local risk of 
bTB (121), however they also may explain the strong clustering 
of pathogen genotype patterns at a local level in Northern Ireland 
(54). Furthermore, there is a phenomenon of farm fragmentation, 
whereby herds are made up of a number of spatial fragments. 
These fragments can have large footprints (122), relative to the 
home premises, allowing for increased exposure to neighbours 
or environmental reservoir risk. The long-established practice of 
seasonal rented grazing, known in Northern Ireland as “conacre,” 
adds to the potential impacts of fragmentation. Furthermore, there 
are little data available to assess within herd movements of animals 
– a potential for dispersal of infection both to neighbouring herds, 
but also spread of infection into the environment, including wildlife 
hosts. The movement of animals, the spreading of slurry and the 
sharing of farm equipment could all increase the likelihood of 
maintenance of TB (92), furthermore the constituent nodes within 
these networks (e.g., specific farms, marts, auctions) can have 
disproportionate effects on diseases spread (120, 123). On the other 
hand, the fact that islands are disconnected to the continent, raises 
the perspective that this insularity could prove beneficial towards 
the longer term control of the pathogen (115). Currently, there is 
a lack of harmonisation of data pertaining to animal movements 
within Western Europe, to allow direct comparisons between EU 
member states in terms of network structure and connectivity. 
Attaining this harmonisation should be a major research goal going 
forward. Anecdotally, the very dense within and between herd 
movement networks in Ireland and the UK, are different compared 
to the rest of Europe. However, without detailed comparative data, 
this makes direct comparisons challenging.

tHe patHoGen: M. BoviS

M. Bovis strain Heterogeneity
The population genetics of the M. bovis bacillus in these islands 
is relevant to investigate the current epidemic and is an ongoing 
source of interest for many researchers. From a phylo-geographic 
point of view, such research can inform on the population history 
and can potentially inform on probable routes of entry into Britain 
and Ireland in the distant past (124). From a more practical and 
less academic point of view, phylo-geographic differences in 
pathogen demographics and evolution may have an outcome that 
is of importance to disease control and epidemiology. Such region-
specific evolution and adaptation can result in differing pathogen 
phenotypes that result in differing disease outcomes and dynamics 
as has been well-documented for M. tuberculosis infection in 
humans (125–128). For example, in Vietnamese populations, 
specific strains of a Beijing lineage of M. tuberculosis have been 
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observed in a number of cases to result in a meningeal form of 
the disease, rather than the expected pulmonary disease pattern 
(129). Indeed the Beijing lineage of M. tuberculosis is recognised 
as exhibiting a hypervirulent phenotype distinct from other phylo-
geographically distinct lineages (130). The latter evidence indicates 
that certain lineages of a tuberculosis-causing bacillus can vary 
in their phenotype in epidemiologically meaningful ways. So, the 
obvious question arises, could something similar happen with 
bovine tuberculosis caused by M. bovis?

Consequently, it is pertinent to attempt to understand the 
population structure and history of M. bovis in Britain and Ireland. 
The extant M. bovis population is almost exclusively dominated 
by a single clonal complex – the Eu1 clonal complex (124). This 
is indicative of a genetic bottleneck occurring at some point in 
the pathogen’s history on these islands, an event which led to a 
contraction in diversity, resulting in greater homogeneity. Such 
bottlenecks are features of clonal pathogens like M. bovis (131). 
Whether this bottleneck occurred at the time of colonisation or 
subsequently is unknown. While this Eu1 lineage is present on 
other parts of Western Europe it is nowhere near as dominant as it 
is on these islands (124). Eu1 is also found globally among former 
trading partners and members of the British Empire, suggesting 
wider dissemination during colonial times (124). It has been shown 
that this Eu1 lineage spread throughout Britain and Ireland, leading 
to a homogenised M bovis population potentially brought about 
by the free movement of infected animals between territories 
(132). More recent cattle movement controls as part of national 
TB eradication schemes may have subsequently isolated regions 
one from another and driven more local evolution of specific strain 
types (132). Previously, Smith et al. (133) had sought evidence to 
support a hypothesis that a test and slaughter bottleneck of the 
M. bovis population in the 1950 and 1960s may have constituted 
selection pressure for the evolution and clonal expansion of a 
“fitter” clone that exhibited some form of advantage with respect 
to evading the test and slaughter scheme. Quite what the latter 
advantage could be, if it existed, is still a matter of debate. An 
ability to evade diagnostic testing is one possibility whilst invasion 
of / adaptation to a new host / niche such as a wildlife reservoir is 
another possibility (133).

The host range of the TB- causing bacilli is an intriguing puzzle 
(134). The human pathogen, M. tuberculosis, disseminates in 
human populations but appears not to be transmissible between 
non-human animals (134–136). Conversely, M. bovis appears to be 
able to disseminate among many non-human animal species, but 
humans are generally a dead end host (134–136). However, there 
is an interesting exception. Recently, Gonzalo Ascenzio et al. (137) 
demonstrated that a subtle mutation in the virulence genes of M. 
bovis can cause it to freely disseminate in humans. This is evidence 
that a small genetic change in a pathogen can radically expand 
maintenance host range. Could the Eu1 lineage of M. bovis have 
undergone a similar transition to become a better host generalist? 
It is noticeable that wherever Eu1 strains are found around the 
globe, there is a wildlife reservoir problem (124, 134). However, 
some caution is required here. This may just be an effect of recent 
demography and trade (124). The Eu1 lineage may just be a “lucky 
clone”, dispersed by chance events. Additionally, the countries 
which inherited its diaspora are mostly developed world nations 

likely to have good disease surveillance infrastructure. Therefore, 
perhaps apparent increased propensity for wildlife adaptation is 
purely confirmation bias? The fact that many of these countries 
have had much greater success in bovine TB eradication than 
Britain and Ireland is also perhaps indicative that there is nothing 
obviously fitter about the Eu1 clonal complex, and that the wide 
dissemination of this lineage may purely be a matter of demography 
and international trade (124). Additionally, other European lineages 
of M. bovis, distinct from Eu1, have been observed to infect cattle and 
wildlife populations in Spain (138), Portugal (139) and France (140). 
However, in the absence of empirical comparisons between multiple 
M. bovis lineages, the pathology they induce across multiple hosts 
and their epidemiological characteristics, it is perhaps premature to 
rule out the hypothesis of the Eu1 lineage being in some way fitter. 
This bears further investigation (134). It is not inconceivable that 
whilst multiple M. bovis lineages have similar host ranges, the relative 
efficacy and virulence within similar hosts may be different owing 
to genotypic and phenotypic divergence as has been seen with M. 
tuberculosis lineages (127). Similarly, whilst the global diaspora of 
Eu1 M. bovis strains arising from historical trade and colonialism 
(124) are undoubtedly genetically similar, there remains the potential 
for region specific evolution since introduction. Different ecological 
contexts and applications of control schemes could have resulted 
in phenotypic divergence from a similar ancestral stock of bacilli.

Further work looking for an M. bovis strain phenotype in 
Northern Ireland has yielded limited evidence of an advantageous 
adaptation with regard to ability to evade detection. Wright et al. 
(141) demonstrated that field isolates of differing strain type exhibited 
no significant difference in response to the tuberculin skin test at 
the animal level. Allen et al. (132) raise the caveat that Wright et 
al’s study was confined solely to Northern Ireland which contains 
strains from only the Eu1 lineage, and a geographically distinct sub 
population of Eu1 at that. Given the likely genetic homogeneity, would 
one reasonably expect to find stark differences in disease outcome 
/ pathogen phenotype in such a setting (132)? Ideally, comparison 
of the epidemiological characteristics of strains extant in the recent 
past, predating test and slaughter schemes, within Britain and Ireland 
would also have been very interesting. However these strains are 
unavailable as their presence predates molecular characterisation and 
sample storage. Indeed, our knowledge of the M. bovis population 
in these islands is currently limited to that which is extant, and we 
have no definitive way of knowing whether Eu1 strains have always 
predominated or supplanted another lineage(s) of the bacillus. The 
fact that Eu1 strains were exported during the time of Empire suggests 
this lineage may have been at the very least, common for a considerable 
period of time in Britain and Ireland. Therefore any speculation on 
a fitter phenotype evolving within Britain and Ireland may be moot. 
Allen et al. (132) suggest that casting the net wider and comparing 
Eu1 to non Eu1 lineages in Western Europe or further afield may 
yield more fruit in this endeavour. In line with this hypothesis, it is 
perhaps telling that differences in disease outcome in M. tuberculosis 
have been observed at the level of major lineages – see previous. It is of 
note however that in a study, again confined to Northern Ireland and 
Eu1 only strains, Wright et al. (142) did find evidence for a difference 
in strain virulence, and Milne et al. (143) have observed that certain 
strains are associated with chronic, ongoing infections in certain herds 
over many years.
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Given the contrasting views and evidence discussed above, the 
null hypothesis, in which there is nothing inherently “special” about 
M. bovis strains in Britain and Ireland, remains inherently plausible, 
but worthy of greater study. Much of the argument that Eu1 is not 
special seems to hinge on anecdote in the absence of data. Where 
empirical evidence is available, there are limitations in our ability to 
infer wider trends from geographically restricted findings as discussed 
previously. It would therefore in our view, be pertinent to attempt to 
address issues of pathogen lineage and its potential effects on bovine 
TB diagnosis and host range with well-designed studies and analyses. 
Regarding effects on TB diagnosis, we have already suggested above 
that intra lineage comparison across a wider geographic area is a better 
way to definitively settle this question. Overall then, it is our opinion 
that it would be better to empirically affirm or reject these hypotheses 
around evasion of diagnosis and host adaptation rather than dismiss 
them on the basis of gut feeling in the absence of hard evidence. 
If either or both hypotheses proved to be have some grounding in 
fact, then this could have implications for the application of control 
schemes in Britain and Ireland.

Co-infeCtion – effeCts on BtB 
diaGnosis

Co-infection dynamics are increasingly being recognised as a 
driver of the heterogeneous response of hosts to infection, and for 
persistence of diseases over time (144, 145). Mycobacterium bovis 
infection may be modulated by the presence of other infections 
(146–148), especially where severe infections immunocompromise 
the host. There is some evidence that Mycobacterium bovis infection 
progression can be impacted by viral infections such as Bovine Viral 
Diarrhoea (BVD), with the immunological response compromising 
tests used to disclose infected animals (149, 150), but see (151). 
Similarly, exposure to other infectious Mycobacterium species 
such as M. avium paratuberculosis (MAP or Johne’s disease) can 
confound the immunological diagnosis of bTB through cross-
reactivity (151–153). Furthermore, environmental mycobacteria 
can also affect the performance of bTB immunological tests, for 
example M. hiberniae (154, 155). Some of these environmental 
mycobacteria have been closely associated with bogs and peaty 
soils and subsoils (156), which is a significant habitat type within 
the British Isles (157), and could potentially impact on tuberculin 
skin test performance. Indeed, the potential for cross reaction is 
one of the reason why in Britain and Ireland the comparative skin 
test is used (bovine and avian tuberculin), which is not the case in 
other jurisdictions where such cross-reactions are rare (8).

MAP is now endemic in Ireland and Britain (158, 159), and 
suffers from similar diagnostic problems to bTB. Recent research 
from Ireland has highlighted the potential nexus between MAP 
and bTB (151, 160, 161). MAP exposure can affect the correct 
diagnosis of bTB, hindering the disclosure of truly-infected 
animals. However, it should be noted that MAP is now widely 
distributed in Western Europe, and similar problems have been 
described there [e.g., Spain; (162)]. Britain and Ireland may be 
particularly vulnerable to interference owing to the fact both 
territories use the comparative tuberculin test.

Recently, liver fluke (Fasciola hepatica) infection has been 
associated with a negative impact on the disclosure of bTB using 
the experimentally-infected cattle model and SCIT testing (146–148, 
163). The prevalence of fluke infection in GB has also been associated 
negatively with the probability of dairy herds breaking down for bTB 
after whole herd tests. The size effect was large, with an estimated 
under-ascertainment of 33% (148). Co-infection, therefore, represents 
a mask potentially hiding the true infection status of both animals 
and herds, making clearance and ultimately eradication very difficult.

Liver fluke is endemic in Britain and Ireland, with high 
prevalence of infection (148, 164–166). At farm level, prevalence 
has been estimated as 86% in Wales, 83% in Ireland and 48% in 
England (164, 165). At the animal level, >60% animals exhibit some 
evidence of fluke damage in the livers of slaughtered cattle in Ireland 
(167). Using surveillance data, Byrne et al. (166) showed that >60% 
of herds had some infected animals in Northern Ireland, while 
herd prevalence approached 100% where at least 100 animals were 
sampled over a three year period. Given the results of Claridge et al. 
(148), these levels of infection may have a significant impact on the 
disclosure of bTB-exposed animals using immunological tests like 
SCITT. However, recent research from Northern Ireland failed to 
show a large size effect of co-infection on tuberculin reactions from 
field data (161), but did find associations between fluke co-infection 
and TB pathology mirroring other studies (146, 161, 168). But 
how different are the British Isles than other countries in Europe 
in terms of fluke exposure?

Recent spatial analyses and comparative studies across Europe 
have suggested that there are significantly lower levels of infection 
in continental Europe than in the British Isles (169–171), with 
particularly high levels of infection in cattle throughout the island 
of Ireland (170).

The distribution and abundance of liver fluke in the environment 
is strongly affected by climate and habitat types, through exposure 
and survival of intermediate hosts (164). This is in part due to the wet, 
temperate climate within the north-western Europe (169, 170). The 
exposure of livestock in the British Isles is also affected by farming 
practice (field based grazing), soil type, high soil moisture level and 
the abundant access to fresh water sources (172, 173).

While recent research has found equivocal evidence for the 
mechanism (168), there has been no comparative analysis of data 
derived from low and high fluke prevalence areas (i.e., international 
comparisons). One suggested hypothesis in Ireland is that such 
a high proportion of animals are exposed that there is a general 
depression of tuberculin reaction sizes (161).

CliMate and environMent

Climate adaptation and Change - effects 
on fluke
Future forecasts of fluke infection risk paint a depressing picture 
for parts of Europe, with especially significant predicted increases 
in risk for Britain and Ireland (169, 174). These forecasts have been 
primarily derived from climate projections, which for the most 
part are suggesting that Britain and Ireland will become warmer 
and wetter on average, but also more climatologically variable. Fox 
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et al. (174) forecast significant increases in fluke in all regions of 
the United Kingdom, with a projected epidemic for parts of Wales 
by 2050. Similarly, Caminade et al. (169) also forecast significant 
future risk for increasing fluke in Ireland and Britain up to the year 
2080, but also increasing risk for north-western parts of continental 
Europe. This increasing parasitic risk, coinciding with the troubling 
emergence of fluckicide resistance, indicates that screening tests 
such as the SCITT and surveillance data based on post-mortem 
pathology for bTB, may become even less robust for disclosure of 
infected animals.

environmental Contamination with M.bovis
Despite recent advances in epidemiological analyses, molecular 
typing and whole genome sequencing of M. bovis (54, 57, 
60), surprisingly little is known about the exact transmission 
mechanisms that spread infection within and between cattle 
and wildlife populations. Previously, owing to the work of UK 
government appointed ISG, who administered the Randomised 
Badger Culling Trial (RBCT) in Britain, it was assumed that 
direct contact between animals was required to facilitate disease 
transmission by aerosolised M. bovis bacilli leaving the respiratory 
tract   (42).The cited evidence for the primacy of this suspected 
transmission route was the preponderance of tuberculous lesions 
observed in the upper respiratory tracts of both badgers and cattle 
that underwent post mortem examination (42, 175). However, 
more recently, studies which made use of proximity logger collars 
fitted to sympatric (42) cattle and badgers in Northern Ireland and 
England, failed to detect very close contact between species that 
would facilitate direct respiratory transmission (176–179). These 
findings do not preclude the hypothesised existence of super-
spreaders in cattle and badgers. The ISG however were sceptical 
that many such super spreader badgers existed (42). The latter may 
however be controversial, with some evidence of badger super-
shedding in a high density English badger population (96), and 
indeed the precedent of super shedding in other wildlife species 
(180). The latter opinion, in concert with the apparent lack of 
meaningful direct contact between species, has raised the possibility 
that a contaminated environment may potentially be playing some 
indirect role in disease transmission between species (42, 177, 179, 
181, 182). This hypothesis has been raised before, with studies in 
the past focusing on the potential role badger urine and faeces may 
play in contaminating soil, pasture and feed (76). Renal lesions have 
been observed to be the second most common type of tuberculous 
pathology in infected badgers in some earlier localised studies (183, 
184). More recently, 13–14% of culled badgers exhibited such 
lesions in GB (185), with a similar 15% lesion presentation rate 
seen in Northern Ireland (101). Badger urine has been observed 
on occasion to contain 250,000–300,000 bacilli per millilitre 
(186, 187). Badger faeces deposited at latrines close to territorial 
boundaries have also been observed to be potential sources of M. 
bovis in the environment (188). These bacilli are believed to enter 
the GI tract via ingestion of respiratory mucus (51). In one gram of 
badgers faeces, 75 colony forming units have been observed (187). 
It is conceivable that badgers and cattle inspecting urine trails or 
faecal latrines left for territorial marking (75, 188) could aerosolise 
bacilli from these sources and seed a respiratory tract infection. 

Other prominent veterinary pathogens have been observed to be 
aerosolizable from an environmental source - Coxiella burnetii, 
which causes of Q Fever, has been observed to infect animals and 
humans exposed to contaminated wool (189) and Mycobacterium 
avium paratuberculosis, the causative agent in Johne’s Disease has 
been observed to be aerosolised in dust particles derived from 
bovine faecal material in animal housing (190). An intriguing 
recent study demonstrated that M. canettii, a pathogen predicted 
to be a common ancestor for the M. tuberculosis Complex, could 
produce pulmonary infection, indistinguishable from aerosol-
mediated pulmonary infection, in mice fed spiked material (191).

A crucial question for the viability of this hypothesis is how 
long can M. bovis persist in the environment? Previously, bacilli 
in badger urine were observed to survive on pasture for ~3 days 
in the summer and ~14 days in the winter (186) potentially due 
to the differing intensity of solar UV radiation, which can kill the 
bacilli. A number of studies in different countries indicate that the 
survival of M. bovis in environmental matrices is variable (192). M. 
bovis in faeces or faeces-contaminated soil appears to remain viable 
for up to ~6 months in some studies (193, 194). More recently, 
Barbier et al. (195) have undertaken in vitro experiments in which 
differing soil types were seeded with M. bovis and incubated at 
4 and 22˚C. Their findings indicated that M. bovis persisted for 
longer (up to 150 days) at the cooler temperature, whilst results for 
differing soil types were inconclusive (195). It may also be worth 
investigating whether M. bovis strain variation may have a role to 
play in adaptation to environmental persistence. Within the Eu1 
major lineage that dominates the UK and Ireland (as discussed 
above), it has been noted that there is considerable heterogeneity 
in cell wall content as detected by Fourier Transform Infra-Red 
Spectroscopy (196). Indeed, the major genetic deletion which 
is a hallmark of the Eu1 lineage removes a gene responsible for 
trehalose biosynthesis – an important component of the glycolipid 
rich hydrophobic cell wall (124). Recently it has been observed 
that hydrophobic cell wall components, which are a feature of the 
pathogenic bacilli in the Mycobacterium tuberculosis complex, aid 
aerosolisation and pathogenicity (197). Conversely, environmental 
mycobacteria appear to have more hydrophilic cell wall components 
(197). Could the Eu1 lineage, or some of its descendants have 
evolved a phenotype that retained pathogenicity but permitted 
environmental persistence? Comparison to other lineages in the 
type of experiments Barbier et al. (195) have performed may be a 
useful way of addressing this hypothesis.

Current and future Climate effects on M. 
Bovis persistence in the environment
Also pertinent to this debate is the climate of the UK and Ireland 
compared to continental Europe. Britain and Ireland inhabit a 
zone of the globe whose predominant weather tends to be mild 
and wet without experiencing extremes in temperature – classified 
under the Köppen system as a Cfb climate; temperate with no dry 
season and 10 or more months of the year exhibiting temperatures 
above 10 ˚C (198). Much of Western Europe, including northern 
Spain, most of France, Germany, Belgium and Holland are also 
categorised as belonging to this Köppen climate category (198). 
However, it is noted that whilst the Köppen system is useful for 
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broad inferences of year on year regional climate (199), it can 
miss intra-regional variation, particularly in European locales 
(198). Britain and Ireland are a case in point. Both territories are 
islands, surrounded on all sides by the Atlantic Ocean and various 
seas. Indeed, the North Atlantic Oscillation is the primary driver 
of the maritime climate niche within the broader Cfb category 
that Britain and Ireland occupy (200). Whilst there is variation 
across Britain and Ireland in climate - a general west to east cline 
in temperature, precipitation and sunlight is observed (200) - the 
general trend (even for south east Britain, which is most like the 
continent) is that both islands exhibit milder winters and cooler 
summers than continental neighbours (201). Indeed, records show 
that these islands receive less sunshine (202) and more precipitation 
(203) than other Western European countries. Given what we 
have discussed above about the factors effecting viability of M. 
bovis in the environment, could these contemporary conditions 
influence M. bovis survival in the environment of these islands, 
or specific regions of them, compared to continental nations? 
The obvious counterpoint to this is that Britain in particular 
came close to eradicating bTB through the 1950 and 1960s (18). 
So, if a contaminated environment was important for regional 
persistence, shouldn’t that have prevented the scale of decline in 
prevalence during that period? It depends on the likely scale of 
importance an environmental reservoir would constitute, and 
whether that importance has changed with time. Perhaps the 
changing circumstances in wildlife abundance, farming practices, 
strain effects etc since the 1970s could have conspired to make a 
contaminated environment more of a contemporary problem in 
contrast to the past? Alternatively, if the role of environmental 
contamination is relatively small regardless of the point in time 
it occurs in, then it could still be an important factor in regional 
persistence. For instance, Britain did not completely eradicate bTB 
after initial success in reducing prevalence throughout the 1950 
and 1960 s. Low level infection in cattle remained a problem with 
eventual recrudescence through the 1970–2000 s leading to the 
current impasse (18). It is plausible that an environmental reservoir 
may have played a role, alongside other factors, in preventing that 
final push to complete eradication.

With changing climate in the future, the UK and Ireland are 
predicted to see even milder, wetter weather (204, 205), with 
intra-regional variation in exact outcomes. Predicted general 
trends are for drier, hotter summers (205, 206), potentially with 
less cloud cover in southern Britain (205), and milder, wetter 
winters with increased probability of extreme precipitation events 
[Sweeney et al, 2001; (205)]. It would be pertinent therefore to 
begin to address whether contemporary climate effects and 
predicted future effects are likely to have any impact on the 
survivability of M. bovis in the British and Irish environment. 
These questions could perhaps be addressed in the future using 
field data and in vitro experimentation. The effect of weather 
conditions have been correlated with variation in M. bovis risk in 
cattle (116, 207–209), and such weather variation has significant 
impact on the population dynamics of wild reservoirs also (74, 
210) potentially impacting patterns of infection (95), adding to 
the complexity.

emerging environmental Hosts
Alongside general environmental contamination with M. bovis, and 
potentially contributing to it, is the role that soil based organisms may 
play in dissemination of bacilli and their persistence. Specifically, 
protozoa have been implicated as potential reservoirs of M. bovis. 
It has in the past been hypothesised that the benign environmental 
bacteria that went on to become virulent, intracellular pathogens, 
may have evolved many of their intracellular persistence apparatus 
within the “nurseries” of environmental protozoa (211–214). 
Initially, Mardare et al. (215) had suggested that amoeba predation 
of bacilli was more likely to result in inactivated bacilli and reduced 
persistence in environmental samples. However, more recently it 
has been shown that protozoa containing TB causing bacilli, when 
fed to mice can result in active tuberculous infection (216).

Earthworms have also recently been observed to ingest M. bovis 
from cattle faeces and disseminate bacilli in castings across the 
wider landscape (217). From regional sampling and regression 
of soil content data, predicted earthworm abundance and species 
diversity across Europe have recently been determined (218). 
These data demonstrate that earthworm abundance is greatest 
in Denmark, Holland, Britain and Ireland compared to other 
Western European countries and that Ireland and Britain display 
one of the highest diversities of species across the continent (218). 
Earthworms have also been noted as a major component of the 
diet of badgers, particularly in Britain (219) and to a lesser extent 
in Ireland (220). Greater investigation of the potential role these 
ecosystem engineer species play in the epidemiology of bTB 
may shed light on environmental persistence and transmission 
dynamics.

What about scotland? is it the exception 
that proves the rule?
Scotland poses an apparent challenge to the paradigm we have 
attempted to develop within this manuscript as an Officially TB 
Free (OTF) territory within Britain – it is part of the British isles, 
badgers reside there (there are also other potential wildlife hosts, 
with relatively large deer populations) especially in the lowlands, 
there is a significant cattle industry, and similar tests and testing 
regimes have been employed as in the rest of the British Isles. 
However, the relative magnitude of these characteristics is worth 
dwelling upon.

Badger density is significantly lower than in the rest of the 
British Isles (66, 67, 69, 70, 221). Badger abundance can be 
estimated using the density of main setts, representing the number 
of social groups within an area, allowing for reasonable estimation 
of abundance at large national scales (222). Comparing the mean 
social group density across countries of the British Isles, Scotland 
has the lowest mean density of 0.11 social groups km−2 (to the 
nearest thousand, 9,000 social groups (221), whereas in England 
and Wales the average value is 0.49 km−2 [72,000 social groups 
(66)], the Republic of Ireland has 0.25 km−2 [(19,000 social groups 
(69)]; and Northern Ireland, with the highest estimated density, of 
0.58 km−2 [8,000 social groups (70)]. While there is debate as to 
the linearity of the relationship between social group density and 
abundance [(223); but see (222)] the magnitude of the difference 
would suggest a significant difference in average badger population 
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density between the countries (69). This is most likely related to 
the low proportion of the most suitable badger habitat in Scotland 
(much of Scotland is exposed, and/or upland).

Similarly, Scotland’s cattle density is significantly lower than 
other countries within the British Isles [see above (6)]. However, 
the cattle industry is concentrated in the lowlands, meaning that 
similar intensity of farming may be occurring at local scales, with 
large herd sizes being reported (6). Scotland has a lower proportion 
of dairy farms, relative to the rest of the UK and ROI, and dairy 
herds can represents an increased risk relative to other farming 
types [(6, 224); but see (225)].

Furthermore, there are significant trade links between Scotland 
and the rest of the UK and ROI, including from relatively high 
TB risk areas (225, 226). This trade represents a risk for Scottish 
farmers who trade in from high incidence areas (225, 226), but 
the relative risk has been diminished significantly through the 
introduction of pre- and post-movement testing of traded animals 
(226). These restrictions have reduced the amount of international 
trade and also reduced the risk to infection (re)introduction (226).

In terms of liver fluke, recent spatial models would suggest 
that much of Scotland (especially the highlands) is high risk and 
future climate changes may exacerbate this problem (174). The 
confounding effects of co-infection in low prevalence situations 
seem not to mitigate against the maintenance of disease freedom.

Scotland is on a quadrennial testing regime, with herds tested 
at least once every four years (225), therefore, the testing regime is 
at a lower frequency than much of the rest of the UK and Ireland.

An argument could be made that Scotland reduced historic 
bTB levels to a low enough level to allow cattle measures alone 
to achieve freedom. Perhaps then, the historical reduced wildlife 
and cattle densities were then sufficient to act as a bulwark against 
recrudescence and the establishment of endemic disease? In 
fact, GB was very close to eradication in the 1980s before bTB 
re-emerged significantly in the 30 years since (18). During this 
period high bTB levels were largely confined to the south and 
south east of Britain, from where the epidemic has slowly expanded 
(227). In the intervening period badger population density has 
increased significantly (66–68), the intensity of cattle farming may 
also have increased, coinciding with policy changes, and there may 
be potential interactive effects of concurrent infections, all of which 
would have been exacerbated by the 2001 foot and mouth crisis (6).

ConClusions

In this article we have attempted to propose potential reasons why 
the British and Irish experience in eradicating bovine tuberculosis 
has been so fraught compared to that of other jurisdictions in recent 
times. Our suggestions have arisen from a broad comparative 
approach which contrasts landscape, ecological, animal husbandry 
and molecular epidemiological characteristics within Britain 
and Ireland to those primarily observed on the wider European 
Continent. We note, with caution, that correlation is not causation. 
However for all proposed factors, we have endeavoured to present 
a coherent narrative, supported by published evidence, which links 
each to pertinent aspects of bTB epidemiology. We do not propose 
that these potential factors are exhaustive, merely that they may 

be worthy of further investigation, and individually or collectively 
may constitute novel hypotheses that go some way to explaining the 
comparative lack of progress in bTB eradication in these islands.

Our hypothesis is that owing to their history, ecology and 
geography, Britain and Ireland may occupy a “goldilocks zone” 
for bovine TB. Factors highlighted in this review include the 
presence of a sufficient wildlife reservoir, a potentially amenable 
environment for M. bovis maintenance, a number of endemic 
infections that could impact on the diagnosis and transmission of 
bTB, an evolutionary lineage of the pathogen unique to Western 
Europe and a large, highly connected, dense network of farms where 
the movement of infected animals could be facilitated, partially due 
to the limitations of the statutory test at the individual level.

As regards further investigation, we propose a wider scale 
comparison of all listed factors across Britain and Ireland, and 
their association with risk of bTB persistence and other pertinent 
epidemiological outcomes, contrasted to territories / regions with 
lower bTB prevalence. The latter may help to ascertain if any of 
the factors have a significant impact on bTB eradication efforts 
and also to quantify their relative importance. The latter type of 
investigation could be achieved in two ways:

1. Aggregating all retrospective information for the listed factors 
across multiple patches of interest across Britain and Ireland into 
a single data resource that could contrast intra-regional differences 
and find potential associations and effects – in effect a meta-
analysis.

2. Prospectively, across Britain, Ireland and Western European 
countries, identify regions with varying burdens of disease and 
actively measure / catalogue the stated factors for statistical 
analyses.

A caveat is that both strategies would bring their own inherent 
problems. Both would require harmonisation of retrospectively 
and prospectively collected data, to control for differences in bTB 
eradication scheme administration and data collection methods.

However, efforts to survey broader vistas of the bTB landscape 
may make these efforts more worthwhile, identifying novel 
mechanisms amenable to control. There may have been a tendency to 
restrict one’s horizons when investigating bTB persistence in Britain 
and Ireland – a parochial approach, that whilst understandable with 
a complex disease affecting many herds and animals on a national 
scale – may miss some important epidemiological drivers. Owing 
to potential intra-national homogeneity in the characteristics 
of risk factors, their relative importance at a wider scale could 
be masked – for example: since the lineage of M. bovis found in 
Britain and Ireland lacks diversity, intra-national comparison of 
potential effects of strain variation would be difficult to detect, 
since everything seems so genetically similar.

A potential criticism of our focus on some of these factors, is 
that even if they did have a significant effect on bTB epidemiology, 
that effect may be very small and therefore, any intervention would 
potentially not be practical or cost efficient. However, in the absence 
of firm evidence either way, this criticism could appear to be 
somewhat pessimistic. The reproductive index (R0) for bovine TB 
between cattle in Britain has been estimated to be low – 1.1 (228). 
Between badgers, R0 has also been observed to be low – ranging 
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from 1.03 to 1.19 (223). Between species R0 has recently been 
estimated to be in the region of 0.05 (60). These results suggest  

to extinction. It may well be that targeted intervention on 
multiple factors of small effect, when combined with the larger 
effects of the nationally managed eradication schemes, could help 
achieve this goal. In effect, we are suggesting that addressing some 
of the potential factors identified here, may result in an aggregation 
of marginal gains that takes the standard eradication scheme 
protocol as its base line, and applies an ecosystem management 
approach to drive down remaining infection.
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