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Platelet-rich plasma (PRP) preparations are being used with moderate success to

treat osteoarthritis (OA) in humans and in veterinary species. Such preparations are

hindered, however, by being autologous in nature and subject to tremendous patient

and processing variability. For this reason, there has been increasing interest in the use

of platelet lysate preparations instead of traditional PRP. Platelet lysate preparations

are acellular, thereby reducing concerns over immunogenicity, and contain high

concentrations of growth factors and cytokines. In addition, platelet lysate preparations

can be stored frozen for readily available use. The purpose of this study was to evaluate

the effects of a pooled allogeneic platelet-rich plasma lysate (PRP-L) preparation on

equine synoviocytes and chondrocytes challenged with inflammatory mediators in-vitro

to mimic the OA joint environment. Our hypothesis was that PRP-L treatment of inflamed

synoviocytes would protect chondrocytes challenged with synoviocyte conditioned

media by reducing synoviocyte pro-inflammatory cytokine production while increasing

synoviocyte anti-inflammatory cytokine production. Synoviocytes were stimulated with

either interleukin-1β (IL-1β) or lipopolysaccharide (LPS) for 24 h followed by no treatment

or treatment with platelet-poor plasma lysate (PPP-L) or PRP-L for 48 h. Synoviocyte

growth was evaluated at the end of the treatment period and synoviocyte conditioned

media was assessed for concentrations of hyaluronic acid (HA), IL-1β, tumor necrosis

factor alpha (TNF-α), and interleukin-6 (IL-6). Chondrocytes were then challenged for

48 h with synoviocyte conditioned media from each stimulation and treatment group

and examined for gene expression of collagen types I (COL1A1), II (COL2A1), and III

(COL3A1), aggrecan (ACAN), lubricin (PRG4), and matrix metallopeptidase 3 (MMP-3)

and 13 (MMP-13). Treatment of inflamed synoviocytes with PRP-L resulted in increased

synoviocyte growth and increased synoviocyte HA and IL-6 production. Challenge of
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chondrocytes with conditioned media from PRP-L treated synoviocytes resulted in

increased collagen type II and aggrecan gene expression as well as decreased MMP-13

gene expression. The results of this study support continued investigation into the use

of pooled PRP-L for the treatment of osteoarthritis and warrant further in-vitro studies to

discern the mechanisms of action of PRP-L.

Keywords: platelet-rich plasma lysate, osteoarthritis, IL-1β, LPS, HA, collagen type II, aggrecan, MMP-13

INTRODUCTION

Intra-articular injections of autologous platelet-rich plasma
(PRP) are commonly used to treat osteoarthritis (OA) in humans
and veterinary species, including horses and dogs (1–16). There
is tremendous variability, however, in the composition of PRP
generated based on the systemic health and hydration status, sex,
and age of the patient, the quality of the venipuncture technique,
the system or processing methods used, and whether or not the
PRP is activated prior to injection (4, 17–21). The end result of
such variability is large differences in platelet concentration, and
therefore, growth factor and cytokine concentrations as well as
leukocyte concentration within the products being used (4, 17–
21). While classification systems have been put in place to define
leukocyte-poor and leukocyte-rich PRPs (22–25), there is still
controversy over which preparation is most efficacious for the
treatment of OA and other musculoskeletal diseases (1, 4, 26–30).
In addition, the optimal concentration of platelets within these
preparations has yet to be elucidated (4, 26).

There has been increasing interest in the use of platelet
lysate (PL) instead of PRP as PL is an acellular preparation
containing high concentrations of growth factors and cytokines
(31–48). The acellular nature of PL is important because it has
the potential to be used in an allogeneic manner with further
processing to remove immunoglobulins and also because it
can be quality tested and then stored frozen to have available
for immediate patient use (31–48). Furthermore, the use of
pooled PL, or PL generated from multiple healthy donors, is
being explored to capitalize on the natural variability that exists
between individuals and the growth factors and cytokines that are
released from their platelets upon lysis. This concept of optimal
pooled PL has been investigated both for the use of PL as a non-
immunogenic serum substitute for cell culture as well as for the
use of PL as a clinical treatment (34, 41, 49).

A recent study evaluating the ability of equine PL preparations
to modulate the innate immune responses of equine monocytes
found interesting results when comparing data obtained from six
individual PL preparations to data obtained from a pooled PL
preparation created from those same six PL preparations (41).
Notably, while none of the six individual PL preparations lead to
significantly reduced tumor necrosis alpha (TNF-α) production
from monocytes compared to fetal bovine serum (FBS), the
pooled PL preparation did. Similarly, the pooled PL preparation
dramatically reduced the variability observed in individual PL
preparations for monocyte production of interleukin-1β (IL-1β)
and interleukin-10 (IL-10). Lastly, the pooled PL preparation in
this study was found to significantly decrease the production of

both TNF-α and IL-1β by lipopolysaccharide (LPS) stimulated
monocytes compared to controls (41). These results suggest that
pooled PL preparations reduce variability and increase efficacy
compared to individual PL preparations and that pooled PL
preparations should be further examined as a means to suppress
inflammation (41).

The aim of this study was to examine the effects of a pooled
allogeneic platelet-rich plasma lysate (PRP-L) preparation
on equine synoviocytes and chondrocytes challenged with
inflammatory mediators in-vitro to mimic the OA joint
environment. Our hypothesis was that PRP-L treatment
of inflamed synoviocytes would protect chondrocytes
challenged with synoviocyte conditioned media by reducing
synoviocyte pro-inflammatory cytokine production and
increasing synoviocyte anti-inflammatory cytokine production.
In particular, we expected chondrocytes challenged with
conditioned media from IL-1β or LPS stimulated synoviocytes
treated with PRP-L to have increased gene expression of
collagen type II and decreased gene expression of MMP-3 and
MMP-13 compared to conditioned media from non-treated or
platelet-poor plasma lysate (PPP-L) treated synoviocytes.

MATERIALS AND METHODS

Study Design
A schematic of the study design is shown in Figure 1. The
Institutional Animal Care and Use Committee of North Carolina
State University approved the use of horses in these studies.

Platelet-Poor Plasma Lysate and
Platelet-Rich Plasma Lysate Preparation
Whole blood was collected via jugular venipuncture from 6
healthy horses in our closed research herd into four 60mL
syringes containing 6mL of acid citrate dextrose (ACD) each
for a total volume of 240mL per horse. These horses included
3 geldings and 3 nonparous mares between the ages of
6 and 19 years. Routine automated complete blood counts
and platelet counts were performed on each whole blood
sample. Erythrocytes were allowed to settle for 30min in the
syringes and the layer above the erythrocytes containing the
leukocytes, platelets, and plasma (approximately 120mL) was
then transferred to a 50mL conical tube and centrifuged at
250 g for 15min. From each conical, the supernatant above
the leukocyte pellet containing the platelets and plasma was
then harvested and centrifuged at 1,500 g for 15min. From
this spin, the supernatant containing the platelet-poor plasma
(PPP) was removed and saved. The platelet pellet was then
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FIGURE 1 | Schematic of the study design.

resuspended in 12mL of PPP to generate platelet-rich plasma
(PRP) of approximately 10x the concentration of whole blood.
Platelet numbers in PPP and PRP samples were determined
by staining platelets with 1µM Calcein-AM (InvitrogeTM

Molecular ProbesTM, ThermoFisher Scientific, Waltham, MA,
USA), incubating for 20min, and then counting the number
of fluorescent cells using a Cellometer R© Auto 2000 (Nexcelom
Bioscience LLC, Lawrence, MA, USA). White blood cell (WBC)
counts in PPP and PRP samples were determined using a
Cellometer R© Auto 2000 and ViaStainTM AOPI Staining Solution
(Nexcelom Bioscience LLC, Lawrence, MA, USA). To generate
PPP and PRP lysate, (PPP-L and PRP-L, respectively), the
PPP and PRP then underwent five freeze/thaw cycles in liquid
nitrogen. The majority of cell debris was removed from all PPP-L
and PRP-L samples by centrifugation at 20,000 g for 20min. PPP-
L and PRP-L samples were then clarified by depth filtration using
the ZetaPlusTM BC25 Capsule Filter, Medi 90ZB (3MPurification
Inc., St Paul, MN, USA). The resultant PPP-L and PRP-L samples
were then pooled, respectively, from all 6 horses and frozen at
−80◦C until use.

Synoviocyte Isolation
Synovium was harvested from the femoropatellar joints of
5 systemically healthy horses (ages 2–14 years) euthanized
for reasons other than this study and free of femoropatellar
joint disease. The isolated synovium was weighed and digested
for 2 h at 37◦C under constant rotation with synoviocyte
media [high glucose (4.5 g/L) DMEM medium with 10% fetal
bovine serum (FBS), 2mM l-glutamine, 1mM sodium pyruvate,
25mM HEPES, penicillin (100 units/mL), and streptomycin
(100µg/ml)] added at 10 mL/g tissue and containing 1.5 mg/mL
Gibco R© collagenase type II (ThermoFisher Scientific, Waltham,
MA, USA) (50, 51). The resulting digest was passed through
a 100µm filter and centrifuged at 800 g for 10min. The cell
pellet was then washed twice with fresh synoviocyte media and

live synoviocyte count was determined using a Cellometer R©

Auto 2000 and ViaStainTM AOPI Staining Solution (Nexcelom
Bioscience LLC, Lawrence, MA, USA). Synoviocytes were frozen
in aliquots of 10× 106 cells/mL in liquid nitrogen until use.

Chondrocyte Isolation
Cartilage was harvested from the femoral trochlear ridges
of a 2-year-old Thoroughbred gelding free of orthopedic
disease and euthanized for reasons other than this study. The
isolated cartilage was weighed and digested overnight (16–18 h)
at 37◦C under constant rotation with chondrocyte media
[Ham’s F12 medium with 10% FBS, 25mM HEPES, ascorbic
acid (50µg/mL), α-ketoglutarate (30µg/mL), L-glutamine
(300µg/mL), penicillin (100 units/mL), and streptomycin
(100µg/ml)] containing 0.75 mg/mL of Gibco R© collagenase
type II (ThermoFisher Scientific, Waltham, MA, USA) (52, 53).
The resulting digest was passed through a 100µm filter and
centrifuged at 800 g for 10min. The cell pellet was then washed
twice with fresh chondrocyte media. Cells were resuspended in
chondrocyte media and live chondrocyte count was determined
using a Cellometer R© Auto 2000 and ViaStainTM AOPI Staining
Solution. Chondrocytes were frozen in aliquots of 10 × 106

cells/mL in liquid nitrogen until use.

Synoviocyte Stimulation and Treatment
Cryopreserved synoviocytes were thawed, seeded onto a 12-
well plate at 4 × 105 cells/well in synoviocyte media (50), and
maintained at 5%CO2, 90% humidity, and 37◦C. Cells were
brought to confluency over 48 h before media exchange and
stimulated with either recombinant human IL-1β at 10 ng/mL
(R&D Systems, Minneapolis, MN, USA) (54) or E. Coli O55:B5
LPS at 100 ng/mL (Sigma-Aldrich, St. Louis, MO, USA) (55, 56).
Unstimulated control wells underwent media exchange only.
After 24 h of stimulation, the stimulation media was removed
and the cellular monolayer was washed twice with phosphate
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buffered saline (PBS). Fresh media was then added to the cells
either alone (no treatment controls) or with 25% PPP-L or 25%
PRP-L. Synoviocytes were treated for 48 h and the resultant
synoviocyte conditioned media was collected, centrifuged at
2,000 g for 15min, and divided into aliquots for cytokine analyses
and chondrocyte treatments. Aliquots for cytokine analyses
were frozen at −80◦C until use while aliquots for chondrocyte
treatments were used fresh.

Synoviocyte Quantification
After removal of the synoviocyte conditioned media as described
above, 1mL of PBS was added to each synoviocyte well.
Spectrophotometric quantification of synoviocyte cell numbers
in eachmonolayer was thenmeasured by density using amultiple
detection plate reader set at an absorbance of 800 nm (SynergyTM

2, BioTek Instruments Inc., Winooski, VT, USA) (57). Fold
change in cell density was determined as a change from the
unstimulated, non-treated synoviocytes.

Synoviocyte Conditioned Media Analyses
Hyaluronic acid (hyaluronan; HA) concentrations were
quantified in duplicate aliquots of all synoviocyte conditioned
media samples using the commercially available Hyaluronan
Quantikine ELISA kit (R&D Systems Minneapolis, MN, USA).
Standards in each kit were used to generate standard curves and
samples were analyzed for optical density on a multiple detection
plate reader (SynergyTM 2, BioTek Instruments Inc., Winooski
VT) at 450 nm with wavelength correction set at 540 nm.

Pro-inflammatory IL-1β and TNF-α and pro/anti-
inflammatory IL-6 concentrations in synoviocyte conditioned
media were determined using a truncated version of the
commercially available equine multiplex assay (MILLIPLEX
MAP Equine Cytokine/Chemokine Magnetic Bead Panel, EMD
Millipore, Burlington, MA, USA) on a MAGPIX R© System
(Luminex Corp., Austin, TX, USA). All samples were analyzed in
duplicate using a 96-well platform performed per manufacturer’s
instructions. A minimum bead count of 50 for each cytokine was
acquired for data analysis. Data were analyzed using Milliplex
Analyst 5.1 software (Luminex Corporation, Austin, TX, USA).

Chondrocyte Challenge With Synoviocyte
Conditioned Media
Cryopreserved chondrocytes were thawed, seeded onto a 24-
well plate at 2 × 105 cells/well in chondrocyte media (53) and
maintained at 5%CO2, 90% humidity, and 37◦C. Cells were
brought to confluency over 48 h before media exchange with an
equal volume of synoviocyte conditioned media to chondrocyte
media for each well. Challenge experiments were carried out for
48 h.

Chondrocyte RNA Extraction and qPCR
Total cellular RNA was extracted from chondrocytes using
the RNeasy Mini Kit (Qiagen Inc., Germantown, MD, USA)
according to the manufacturer’s instructions. The RNA purity
and quantity were evaluated using UV microspectrophotometry
(NanoDrop 2000 Spectrophptometer, ThermoFisher Scientific,
Waltham, MA, USA). RNA was stored at −80◦C until

cDNA construction by RT-PCR using the QuantiTect Reverse
Transciption Kit (Qiagen Inc., Germantown, MD, USA)
according to the manufacturer’s instructions.

Previously published equine primers were used to amplify
collagen types I (COL1A1), II (COL2A1), and III (COL3A1),
aggrecan (ACAN), lubricin (PRG4), andmatrix metallopeptidase
3 (MMP-3) and 13 (MMP-13) with 18S used as a housekeeping
gene (Table 1). Quantitative real time RT-PCR (qPCR) was
performed using the QuantiFast R©SYBR R©Green PCR Kit
(Qiagen Inc., Germantown, MD, USA) according to the
manufacturer’s instructions with the QuantStudio R©6 Flex
System (applied biosystems R©, ThermoFisher Scientific,
Waltham, MA, USA). Relative gene expression, 2−11Ct,
was generated using Real-Time PCR Software v1.2 (applied
biosystems R©, ThermoFisher Scientific, Waltham, MA, USA).
Chondrocytes cultured with the unstimulated, non-treated
synoviocyte conditioned media were used as controls.

Statistical Analyses
All results were assessed for normality by means of Shapiro-Wilk
test. Normally distributed data was analyzed by the analysis of
covariance (ANCOVA) with horse as covariate, followed by the
Tukey’s test for multiple comparisons. Non-normally distributed
data was analyzed by the non-parametric Wilcoxon rank sum
test. Statistical analyses were performed within the non-treated
group across stimulations to assess the effects of stimulation and
then within each stimulation group to assess for treatment effects.
Analyses were performed using JMP R© Pro11 (SAS Institute Inc.,
Cary, NC, USA) and significance set at p < 0.05. All graphs
were generated with GraphPad Prism 7 (GraphPad, La Jolla, CA,
USA).

RESULTS

Verification of Platelet-Poor Plasma and
Platelet-Rich Plasma Lysate Preparations
White blood cell (WBC) and platelet counts verified the
generation of leukocyte-reduced PPP and PRP. The mean ±

standard deviation (n = 6) WBC count in whole blood was 5.60
× 103/µL ± 0.62 × 103/µL compared to 0.05 × 103/µL ± 0.02
× 103/µL in PPP and 1.39 × 103/µL ± 0.26 × 103/µL in PRP.
The mean ± standard deviation (n = 6) platelet count in whole
blood was 134.50 × 103/µL ± 35.67 × 103/µL compared to 9.38
× 103/µL ± 3.46 × 103/µL in PPP and 1226.38 ×103/µL ±

55.32 × 103/µL in PRP. As such, the platelet concentration in
each PRP sample was very close to our target of 10x the platelet
concentration of whole blood.

Effects of Il-1β or LPS Stimulation on
Synoviocytes and Chondrocytes
Challenged With Synoviocyte Conditioned
Media
Decreased synoviocyte growth compared to unstimulated
controls was observed following 24 h of stimulation with either
IL-1β (p < 0.002) or LPS (p < 0.001; Figure 2A). Synoviocytes
stimulated with either IL-1β (p < 0.03) or LPS (p < 0.03) also
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TABLE 1 | Equine primer sequences used for gene expression analyses.

Gene Primer sequences

COL1A1, Collagen type I (58) Forward, 5′-AAGGACAAGAGGCACGTCTG-3′ Reverse, 5′-GCAGGAAAGTCAGCTGGATG−3′

COL2A1, Collagen type II (53) Forward, 5′-GCTACACTCAAGTCCCTCAAC-3′ Reverse, 5′-ATCCAGTAGTCTCCGCTCTT-3′

COL3A1, Collagen type III (58) Forward, 5′-GGGTATAGCTGGTCCTCGTG-3′ Reverse, 5′-GCGCCTCTTTCTCCTTTAGC−3′

ACAN, Aggrecan (59) Forward, 5′-CAACAACAATGCCCAAGACTAC-3′ Reverse, 5′-AGTTCTCAAATTGCAAGGAGTG−3′

PRG4, Proteoglycan 4 (Lubricin) (60) Forward, 5′-TGCGGTGCTTCCCCATAC-3′ Reverse, 5′-AAACAGGAACCCATCAGAAAGTG−3′

MMP-3, Matrix metallopeptidase 3 (53) Forward, 5′-ATGGACCTTCTTCAGGACTACC-3′ Reverse, 5′-GACCGACATCAGGAACTCCG-3′

MMP-13, Matrix metallopeptidase 13 (53) Forward, 5′-ACAAGCAGTTCCAAAGGCTAC-3′ Reverse, 5′-CTCGAAGACTGGTGATGGCA-3′

18S, 18 small ribonucleic acid (53) Forward, 5′-GCCGCTAGAGGTGAAATTCT-3′ Reverse, 5′-TCGGAACTACGACGGTATCT-3′

had increased production of IL-1β compared to unstimulated
synoviocytes (Figure 3A). Increased production of TNF-α,
however, was only observed following stimulation with LPS
(p < 0.02; Figure 3B), and increased production of IL-6 was only
observed following stimulation with IL-1β (p < 0.03; Figure 3C).
Chondrocytes challenged with synoviocyte conditioned media
stimulated with either IL-1β (p < 0.03) or LPS (p < 0.03) had
increased gene expression of MMP-13 (Figure 6B), while only
those challenged with synoviocyte conditioned media stimulated
with LPS (p < 0.03) had increased gene expression of MMP-3
(Figure 6A) compared to control chondrocytes challenged with
unstimulated synoviocyte conditioned media.

PRP-L Increases Growth and Hyaluronic
Acid Production in Naïve and Inflamed
Synoviocytes
Both PRP-L and PPP-L treatment increased the growth
of unstimulated synoviocytes (p < 0.0003 and p < 0.05,
respectively), but only PRP-L treatment was able to rescue the
growth of synoviocytes stimulated with either IL-1β (p < 0.0001)
or LPS (p < 0.0001; Figure 2A). Furthermore, only PRP-L
treatment was able to increase total synoviocyte HA production
in unstimulated synoviocytes (p < 0.005), synoviocytes
stimulated with IL-1β (p < 0.0001) and synoviocytes stimulated
with LPS (p < 0.009; Figure 2B). These results indicate that
PRP-L treatment has powerful proliferative effects and is able
to increase total synoviocyte HA production both under naïve
conditions and in the face of inflammatory stimulation.

PRP-L Increases Anti-inflammatory IL-6
Production in Naïve and Inflamed
Synoviocytes
PRP-L treatment increased the production of IL-1β from
unstimulated synoviocytes (p < 0.05) but did not cause any
further increase in IL-1β following stimulation either IL-1β
or LPS compared to non-treated synoviocytes (Figure 3A).
Similarly, both PRP-L and PPP-L treatments increased the
production of TNF-α from unstimulated synoviocytes (p < 0.05)
compared to non-treated synoviocytes (Figure 3B), but neither
caused any further increase in TNF-α following stimulation
with IL-1β and only PPP-L treatment caused a further increase

in TNF-α following LPS stimulation (p < 0.02). Only PRP-
L treatment was able to further increase production of IL-
6 from synoviocytes under all conditions compared to non-
treated synoviocytes (p < 0.005) and compared to PPP-L treated
synoviocytes (p < 0.05; Figure 3C). These results indicate that
PRP-L treatment does not reduce pro-inflammatory cytokine
production from stimulated synoviocytes but does increase anti-
inflammatory IL-6 production from both unstimulated and
stimulated synoviocytes compared to both non-treated and PPP-
L treated synoviocytes.

Conditioned Media From PRP-L Treated
Synoviocytes Increases Anabolic Gene
Expression in Cultured Chondrocytes
The anabolic effects of PPP-L treated, PRP-L treated, or non-
treated synoviocytes either unstimulated or stimulated with
IL-1β or LPS on cultured chondrocytes were assessed by
measuring relative chondrocyte gene expression of collagen type
I (Figure 4A), collagen type II (Figure 4B), collagen type III
(Figure 4C), aggrecan (Figure 5A), and lubricin (Figure 5B).
Chondrocytes challenged with conditioned media from PRP-L
treated synoviocytes had increased collagen type II expression
compared to chondrocytes challenged with conditioned media
from non-treated synoviocytes when the synoviocytes where
unstimulated (p < 0.03), IL-1β stimulated (p < 0.003), or LPS
stimulated (p< 0.001) and compared to chondrocytes challenged
with conditioned media from PPP-L treated synoviocytes when
the synoviocytes where either IL-1β stimulated (p < 0.01)
or LPS stimulated (p < 0.01; Figure 4B). No significant
differences in chondrocyte gene expression of either collagen
type I and collagen type III were found for any stimulation or
treatment group of synoviocyte cultured media (Figures 4A,C).
Chondrocytes challenged with conditioned media from PRP-
L treated synoviocytes had increased aggrecan expression
compared to chondrocytes challenged with conditioned media
from either non-treated or PPP-L treated synoviocytes when the
synoviocytes were unstimulated (p < 0.02), IL-1β stimulated
(p < 0.01), or LPS stimulated (p < 0.02) (Figure 5A). Lubricin
(proteoglycan 4) gene expression was largely unaffected apart
from increased gene expression in chondrocytes challenged with
PRP-L treated, IL-1β stimulated synoviocyte conditioned media
(p < 0.05) compared to those challenged with non-treated, IL-
1β stimulated synoviocyte conditioned media (Figure 5B). These
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FIGURE 2 | PRP-L but not PPP-L treatment increases synoviocyte growth and production of hyaluronic acid regardless of synoviocyte stimulation. Equine

synoviocytes were left unstimulated or stimulated with 10 ng/mL of IL-1β or 100 ng/mL of LPS for 24 h before being non-treated (NT) or treated with platelet-poor

plasma lysate (PPP-L) or platelet-rich plasma lysate (PRP-L) for 48 h. (A) Synoviocyte growth was measured via optical density and displayed as a fold change from

the unstimulated, non-treated group. (B) Production of hyaluronic acid (hyaluronan; HA) was measured in the media using a commercial ELISA kit. Data is shown as

the mean ± standard deviation of n = 5. Differing letters indicate significant differences between groups (p < 0.05); statistical analysis was performed within each

stimulation and not between stimulation groups. Asterisks (*) denote significant differences, when present, in stimulated NT groups from the unstimulated NT control.

Blue bars = unstimulated synoviocytes, red bars = 10 ng/mL IL-1β stimulated synoviocytes, and green bars = 100 ng/mL LPS stimulated synoviocytes.

FIGURE 3 | PRP-L treated synoviocytes produce more anti-inflammatory IL-6 under all stimulations conditions and less pro-inflammatory TNF-α in response to LPS

stimulation compared to PPP-L treated synoviocytes. Conditioned media from cultured equine synoviocytes was collected after stimulation with 10 ng/mL of IL-1β or

100 ng/mL of LPS for 24 h and subsequent non-treatment (NT) or treatment with platelet-poor plasma lysate (PPP-L) or platelet-rich plasma lysate (PRP-L) for 48 h.

Media concentrations (pg/mL) of (A) IL-1β, (B) TNF-α, and (C) IL-6 were measured using a commercial equine multiplex assay. Data is shown as the mean ±

standard deviation of n = 5. Differing letters indicate significant differences between groups (p < 0.05); statistical analysis was performed within each stimulation and

not between stimulation groups. Asterisks (*) denote significant differences, when present, in stimulated NT groups from the unstimulated NT control. Blue

bars = unstimulated synoviocytes, red bars = 10 ng/mL IL-1β stimulated synoviocytes, and green bars = 100 ng/mL LPS stimulated synoviocytes.

results indicate that PRP-L treatment increases the production of
normal collagen type II found in mature articular cartilage rather
than inferior collagen type I found in fibrocartilage or collagen
type III found in cartilage undergoing repair. In addition, PRP-
L treatment increases the production of aggrecan, the major
structural proteoglycan of cartilage extracellular matrix.

Conditioned Media From Both PRP-L and
PPP-L Treated Inflamed Synoviocytes
Decreases Catabolic Gene Expression in
Cultured Chondrocytes
The catabolic effects of PPP-L treated, PRP-L treated, or non-
treated synoviocytes either unstimulated or stimulated with
IL-1β or LPS on cultured chondrocytes were assessed by
measuring relative chondrocyte gene expression of MMP-3
(Figure 6A) and MMP-13 (Figure 6B). Although no significant
differences in chondrocyte gene expression of MMP-3 were

found for conditioned media from PRP-L or PPP-L treated
synoviocytes stimulated with either IL-1β or LPS compared to
non-treated synoviocytes, there was a trend toward reduced
MMP-3 gene expression under LPS stimulation conditions
(p = 0.09) and in particular the PRP-L treated group decreased
back down to the same level of MMP-3 gene expression observed
in control chondrocytes challenged with conditioned media
from unstimulated synoviocytes (Figure 6A). Chondrocytes
challenged with conditioned media from both PRP-L and PPP-
L treated synoviocytes had decreased MMP-13 gene expression
compared to chondrocytes challenged with conditioned media
from non-treated synoviocytes when the synoviocytes were
unstimulated (p < 0.03) and also when the synoviocytes where
stimulated with IL-1β (p < 0.05) or LPS (p < 0.02; Figure 6B).
Similar to the trend observed for chondrocyte gene expression
of MMP-3 under LPS stimulation conditions, there was a trend
toward chondrocytes challenged with conditioned media from
PRP-L treated synoviocytes that were stimulated with LPS to
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FIGURE 4 | Conditioned media from synoviocytes treated with PRP-L under all stimulation conditions increases collagen type II but not collagen type I or type I in

cultured chondrocytes. Equine chondrocytes were challenged for 48 h with conditioned media from synoviocytes stimulated with IL-1β or LPS and either non-treated

(NT) or treated with platelet-poor plasma lysate (PPP-L) or platelet-rich plasma lysate (PRP-L). Relative gene expression is represented as the 2−11Ct of (A) collagen

type I (COL1A1), (B) collagen type II (COL2A1), and (C) collagen type III (COL3A1). Data is shown as the mean ± standard deviation of n=5. Differing letters indicate

significant differences between groups (p < 0.05); statistical analysis was performed within each stimulation and not between stimulation groups. Asterisks (*) denote

significant differences, when present, in stimulated NT groups from the unstimulated NT control. Blue bars = unstimulated synoviocytes, red bars = 10 ng/mL IL-1β

stimulated synoviocytes, and green bars = 100 ng/mL LPS stimulated synoviocytes.

FIGURE 5 | Conditioned media from synoviocytes treated with PRP-L under all stimulation conditions increases aggrecan expression in cultured chondrocytes.

Equine chondrocytes were challenged for 48 h with conditioned media from synoviocytes stimulated with IL-1β or LPS and either non-treated (NT) or treated with

platelet-poor plasma lysate (PPP-L) or platelet-rich plasma lysate (PRP-L). Relative gene expression represented at the 2−11Ct of (A) aggrecan (ACAN), and (B)

lubricin (PRG4) was measured in cDNA made from extracted chondrocyte RNA. Fold changes were generated from the chondrocytes cultured with unstimulated,

non-treated synoviocyte conditioned media. Data is shown as the mean ± standard deviation of n = 5. Differing letters indicate significant differences between groups

(p < 0.05); statistical analysis was performed within each stimulation and not between stimulation groups. Asterisks (*) denote significant differences, when present, in

stimulated NT groups from the unstimulated NT control. Blue bars = unstimulated synoviocytes, red bars = 10 ng/mL IL-1β stimulated synoviocytes, and green

bars = 100 ng/mL LPS stimulated synoviocytes.

have further reduced MMP-13 gene expression compared to
chondrocytes challenged with conditioned media from PPP-L
treated synoviocytes that were stimulated with LPS (Figure 6B).
These results indicate that both PRP-L and PPP-L treatments are
able to downregulateMMP-13 production in chondrocytes under
LPS stimulation conditions, but with PRP-L treatment trending
toward a closer return to unstimulated control levels of MMP-13.

DISCUSSION

The aim of this study was to examine the effects of a pooled
allogeneic platelet-rich plasma lysate (PRP-L) preparation
on equine synoviocytes and chondrocytes challenged with
inflammatory mediators in-vitro to mimic the OA joint
environment. The findings of this study support our overall
hypothesis that PRP-L treatment of inflamed synoviocytes
protects chondrocytes challenged with synoviocyte conditioned

media. The protective effect of PRP-L, however, appears to
be more through increase of synoviocyte anti-inflammatory
cytokine production rather than through reduction of
synoviocyte pro-inflammatory mediators. Such findings
are consistent with those of previous studies on the anti-
inflammatory effects of PL on other cell types (35, 41, 61) and
are also consistent with previous studies on the anabolic and
anti-catabolic effects of PRP preparations on chondrocytes
(62–65). A particularly interesting, and unexpected finding of
this study, however, was that treatment with PRP-L stimulated
the growth of synoviocytes and the production of HA from
synoviocytes even when challenged with IL-1β or LPS.

Numerous studies evaluating the efficacy of PL as a
serum replacement for FBS in cell culture media have
supported the proliferative effect of PL preparations on
different cell types including bone marrow-derived stromal cells,
adipose-derived stromal cells, synovial fluid stromal cells, and
corneal endothelium cells (31, 38–40, 42, 45, 47). It is therefore
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FIGURE 6 | Conditioned media from synoviocytes treated with PRP-L or PPP-L under all stimulation conditions decreases MMP-13 but not MMP-3 gene expression

in cultured chondrocytes. Equine chondrocytes were challenged for 48 h with conditioned media from synoviocytes stimulated with IL-1β or LPS and either

non-treated (NT) or treated with platelet-poor plasma lysate (PPP-L) or platelet-rich plasma lysate (PRP-L). Relative gene expression, 2−11Ct, was generated using

the unstimulated, non-treated conditioned media cultured chondrocytes as the control for (A) MMP-3 and (B) MMP-13. Data is shown as the mean ± standard

deviation of n = 5. Differing letters indicate significant differences between groups (p < 0.05); statistical analysis was performed within each stimulation and not

between stimulation groups. Asterisks (*) denote significant differences, when present, in stimulated NT groups from the unstimulated NT control. Blue

bars = unstimulated synoviocytes, red bars = 10 ng/mL IL-1β stimulated synoviocytes, and green bars = 100 ng/mL LPS stimulated synoviocytes.

not surprising that the PRP-L used in this study would lead
to enhanced cell growth of naïve synoviocytes under normal
tissue culture conditions. It is surprising, though, that very
similar fold changes in synoviocyte growth were observed for
synoviocytes stimulated with either IL-1β or LPS and treated
with PRP-L. The dramatic increases in synoviocyte growth
observed under naïve and stimulated conditions when treated
with PRP-L were consistent with the dramatic increases observed
in HA production by synoviocytes under naïve and stimulated
conditions when treated with PRP-L. PRP preparations have been
previously reported to increase protein production of HA and to
increase gene expression of Hyaluronan synthase-2 (HAS-2) in
synoviocytes isolated from OA patients (63, 66). There is also
a report of two different platelet gel supernatants isolated from
a single horse that were able to increase HA production from
synoviocytes under LPS stimulation compared to controls, but
not to the same extent as observed in this current study (67). It
is possible that the pooled nature of the PRP-L used in this study
may have been in part responsible for the differences observed
in HA production compared to previous studies evaluating a
platelet preparation from a single donor. As discussed earlier,
there is existing evidence in the literature to support increased
efficacy of pooled PL preparations compared to individual donor
preparations, as pooled preparations are able to capitalize on the
natural cytokine variability that occurs in donors (31, 41). In
this current study, we were unable to discern whether or not
the dramatic increases in total HA concentration were due solely
to the increases in synoviocyte cell numbers caused by PRP-L
treatment or due in part to upregulation of HA production by
synoviocytes treated with PRP-L. Future studies examining HAS-
2 gene expression in synoviocytes following treatment with PRP-
L are certainly warranted to determine all mechanisms involved.

The contribution of such a remarkable increase in synoviocyte
HA production following PRP-L treatment on chondrocyte gene
expression is unknown and also warrants further exploration.
In our current study design, it is not possible to discern if the

increases in collagen type II and aggrecan gene expression and
the decrease in MMP-13 gene expression that were observed
are due primarily to the high concentration of HA in the
conditioned media of synoviocytes treated with PRP-L or due
to other variables such as the high concentrations of platelet-
derived growth factors found in PRP-L, the significant increase
in synoviocyte IL-6 production caused by PRP-L treatment, or
other factors that were not examined for. HA is known to bind
to the cluster of differentiation 44 (CD44) receptors and thereby
inhibit IL-1β expression resulting in decreased MMP production
(68, 69). HA has also been shown to increase the proliferation
of chondrocytes in tissue culture as well as to stimulate them to
produce more collagen type II and aggrecan (70). Although IL-6
can be pro-inflammatory under certain conditions, it is known to
induce the production of IL-1 and TNF antagonists by a variety of
cell types including macrophages (71) and has been highlighted
as a critical cytokine for the repair of other musculoskeletal
tissues such as tendon (72, 73).

Another factor to consider that was not examined in this
current study is the role of hypoxia-inducible factor (HIF) in
PRP-L mediated chondroprotection and cartilage repair (37, 74–
76). Several studies have previously demonstrated the critical
role of HIF-1α in cartilage and in the nucleus pulposus for
maintaining proper cellular function, including synthesis of
extracellular matrix proteins, in a hypoxic environment (76–
79). Both articular cartilage and the nucleus pulposus are highly
avascular tissues with low intrinsic healing capacity and low
oxygen tensions. This unique environment requires mechanisms
adapted to support the survival of the tissue’s resident cells, and
HIF-1α is considered to be one of the main elements in such
mechanisms. A recent study evaluating the effect of a pooled
human PL preparation on growth-arrested progenitor cartilage
cells found that PL induced the re-entry of such cells into the
cell cycle (37). The cell activation and proliferation observed in
this study was shown to correspond to induction of HIF-1 by PL
(37). Consequently, we would speculate that PRP-L treatment of
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inflamed or damaged cartilage may activate the HIF-1 pathway to
increase cell proliferation and matrix synthesis, but this remains
to be investigated.

In conclusion, treatment of inflamed synoviocytes with
PRP-L in-vitro resulted in increased synoviocyte growth and
increased total synoviocyte HA and IL-6 production. Challenge
of chondrocytes with conditioned media from PRP-L treated
synoviocytes then resulted in increased collagen type II and
aggrecan gene expression as well as decreased MMP-13
gene expression. The results of this study support continued
investigation into the use of pooled PRP-L for the treatment of
osteoarthritis and warrant further in-vitro studies to discern the
mechanisms of action of PRP-L.
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