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Foot-and-mouth disease (FMD), caused by FMD virus (FMDV; Aphthovirus,

Picornaviridae), is a highly contagious and economically important disease of cloven-

hoofed domestic livestock and wildlife species worldwide. Subsequent to the clinical

phase of FMD, a large proportion of FMDV-infected ruminants become persistently

infected carriers, defined by detection of FMDV in oropharyngeal fluid (OPF) samples

28 days or more post-infection. The goal of this prospective study was to characterize

the FMD carrier state in cattle subsequent to natural infection under typical husbandry

practices in Vietnam. Ten persistently infected cattle on eight farms in the Long An

province in southern Vietnam were monitored by monthly screening of serum and

oropharyngeal fluid samples for 12 months. To assess transmission from FMDV carriers,

16 naïve cattle were intentionally brought into direct contact with the persistently

infected animals for 6 months, and were monitored by clinical and laboratory methods.

The restricted mean duration of the FMD carrier state was 27.7 months, and the rate

of decrease of the proportion of carrier animals was 0.03 per month. There was no

evidence of transmission to naïve animals throughout the study period. Additionally,

there was no detection of FMDV infection or seroconversion in three calves born to

carrier animals during the study. The force of infection for carrier-to-contact transmission

was 0 per month, with upper 95% confidence limit of 0.064 per month. Phylogenetic

analysis of viral protein 1 (VP1) coding sequences obtained from carriers indicated

that all viruses recovered in this study belonged to the O/ME-SA/PanAsia lineage, and

grouped phylogenetically with temporally and geographically related viruses. Analysis of

within-host evolution of FMDV, based upon full-length open reading frame sequences

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2018.00174
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2018.00174&domain=pdf&date_stamp=2018-07-27
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Jonathan.Arzt@ars.usda.gov
http://orcid.org/0000-0002-7517-7893
http://orcid.org/0000-0003-3321-960X
http://orcid.org/0000-0001-6122-2596
http://orcid.org/0000-0002-2074-3886
http://orcid.org/0000-0001-9270-8900
https://doi.org/10.3389/fvets.2018.00174
https://www.frontiersin.org/articles/10.3389/fvets.2018.00174/full
http://loop.frontiersin.org/people/564693/overview
http://loop.frontiersin.org/people/249874/overview
http://loop.frontiersin.org/people/298200/overview
http://loop.frontiersin.org/people/355117/overview
http://loop.frontiersin.org/people/254628/overview
http://loop.frontiersin.org/people/575687/overview
http://loop.frontiersin.org/people/339120/overview


Bertram et al. Persistent Foot-and-Mouth Disease in Vietnam

recovered from consecutive samples from one animal, indicated that most of the non-

synonymous changes occurred in Lpro, VP2, and VP3 protein coding regions. This study

suggests that the duration of FMDV persistent infection in cattle may be longer than

previously recognized, but the risk of transmission is low. Additional novel insights are

provided into within-host viral evolution under natural conditions in an endemic setting.

Keywords: foot-and-mouth disease virus, FMD, carriers, sentinels, transmission, duration of carrier state, viral

evolution, phylogenetics

INTRODUCTION

Foot-and-mouth disease (FMD), caused by FMD virus (FMDV;
Aphthovirus, Picornaviridae), is a highly contagious and
economically important disease of cloven-hoofed domestic
livestock and wildlife species worldwide. Acute infection is
characterized by loss of appetite, fever, and formation of
characteristic vesicles on the feet, udders, and in the oral cavity
(1–3). Mortality is generally low, however high morbidity results
in economic losses due to decreased production in endemic
regions as well as imposed trade restrictions subsequent to
outbreaks (4–7).

A large proportion of FMDV-infected ruminants become
persistently infected carriers, which is defined by detection of
FMDV in oropharyngeal fluid (OPF) samples 28 days or more

post infection (8, 9). Prevalence of carriers has been reported to
be>50% in cattle (10–12), and 50–70% in African (Cape) buffalo
(Syncerus caffer) (13–15). African buffalo can be persistently
infected for up to 5 years (14), and cattle up to 2 years (16, 17),
although many carrier cattle have been reported to clear the
infection within 6 months (8, 16, 18–20). Vaccination using a

homologous strain is efficient in preventing clinical disease, but
does not protect against subclinical or persistent infection (10–

12); (18, 20–22). Carriers and non-carriers have similar levels
of virus shedding during the preceding acute stage of disease
(12, 22) and similar antibody responses in serum (23, 24). In

African buffalo, more virulent strains may be more likely to
establish persistent infections (15), and a small number of studies
have found genetic changes in viruses sampled from carrier

cattle compared to outbreak viruses. However, these findings
have not been consistent across studies (22, 25, 26). Factors
that lead to persistent infection have not been fully elucidated,

and it is likely that a combination of host and virus factors
contribute to establishment and maintenance of the FMD carrier

state.
The role of carrier animals in the epidemiology of FMD in

endemic areas remains unclear. The African buffalo is the only
species demonstrated to transmit FMDV to susceptible animals

during the carrier state, with transmission from carrier buffalo

to naïve buffalo taking place within 2 weeks of exposure (27–

29). Several studies have demonstrated clinical signs of FMD
in cattle exposed to persistently infected African buffalo under

experimental conditions, however transmission occurred only

after 5–10 months of continuous exposure (28, 30). There are
anecdotal reports of carrier cattle being the source of outbreaks in

Denmark in 1883–1894 and in the UK in 1922–1924 [reviewed in

(31)], as well as in Zimbabwe in 1989 and 1991 (32). Additionally,
phylogenetic analyses of carrier and outbreak viruses from
Vietnam in 2012–2014 suggested that a carrier strain may have
been the source of an FMD outbreak (25, 33, 34). However,
FMDV transmission from persistently infected cattle to naïve
cattle has not been convincingly demonstrated experimentally,
despite numerous attempts (10, 22, 35, 36). A meta-analysis of
experimental studies investigating transmission from persistently
infected animals within and between species (cattle, buffalo, pigs,
or sheep) found an overall transmission rate of 0.0256 infections
per carrier per month, with most instances of transmission
involving African buffalo carriers (37).

FMD is endemic in South-East Asia, and Vietnam plays
an important role in FMD epidemiology in the region due to
considerable domestic movements of livestock and through trade
with China, Cambodia, Laos, and Thailand (38). Cattle and
Asian (water) buffalo (Bubalus bubalis) are kept for meat and
milk production, and are used for draft to a limited extent.
Smallholder (subsistence) farms are common, although some
larger commercial operations exist (38). Within the smallholder
system, animals are often kept in simple pens or restrained
near the home, although grazing in communal pastures is
also common (39, 40). A recent targeted surveillance study
(33) reported that 22.3% of sampled cattle and Asian buffalo
in Vietnam had been infected with FMDV, and 2.4% of
sampled animals were persistently infected. Thus, carrier animals
are likely present throughout the country, and the extensive
movement of animals within Vietnam and between Vietnam and
neighboring countries suggests that FMDV carriers may pose a
risk as sources of new outbreaks (34). The duration of persistent
infection and the risk of transmission from carrier animals have
practical implications for animal movement, trade, and FMD
control. The primary purpose of this study was to investigate the
potential for transmission of FMDV from persistently infected
cattle to naïve cattle under typical husbandry conditions in
Vietnam. Ancillary goals included quantification of extinction
of the carrier state and characterization of within-host viral
evolution.

METHODS

Ethics Approval
The work described herein was performed by federal staff of
the Department of Animal Health, Ministry of Agriculture
and Rural Development, Government of Vietnam. The work
occurred and the animals were maintained within facilities
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that were owned, maintained, or overseen by this division
of the federal government; thus, no permits or approvals
were required. Additionally, approval was not required for the
questionnaire given to farmers per local legislation. All cases
described herein occurred spontaneously in domestic cattle with
no experimentation, inoculation, or treatment of live animals. No
animals were euthanized for the purpose of this study.

Transmission Study Design and Sample
Collection
The purpose of the transmission study was to investigate whether
FMDV could be transmitted from asymptomatic carrier cattle
to naïve sentinel cattle under typical Vietnamese husbandry
conditions. The Long An province is located in the Mekong
Delta region of southern Vietnam (Figure 1). From September
2012 to March 2013, the average daily temperature was 27.2
degrees Celsius with daily temperatures consistently above 25◦.
The average relative humidity during the study period was
75%, with relative humidity ranging from 59 to 91% (41). In
2012, ten persistently infected cattle on eight farms in the Long
An province were identified by confirmed seroreactivity against
FMDV non-structural proteins (NSP) and detection of FMDV
RNA in oropharyngeal fluid (OPF) as previously described (33).
By administering questionnaires to the animals’ owners, it was
determined that the most recent outbreaks of clinical FMD
had occurred on all farms in 2010 or 2011. For this study, an
outbreak was defined as the occurrence of clinical FMD in at
least one animal on a farm, as reported by the owner or regional
veterinary services. Sixteen FMDV-naïve cattle (demonstrated by
the absence of FMDV RNA in OPF and lack of FMDV antibodies
in serum) were acquired from local farms and paired with the
persistently infected animals to serve as sentinels (Table 1). All
naïve cattle were typical outbred Bos indicus steers endemic to
Vietnam. Naïve cattle were allocated to farms in accordance with
logistical limitations of space and resources. On two farms which
each had two FMDV carriers, one sentinel animal was paired with
each carrier. On the remaining six farms, two sentinel animals
were paired with each carrier. Sentinels were housed in direct
contact with carrier animals and were obligated to share food and
water sources. Additionally, three calves born to FMDV carriers
during the study period were kept with their dam and were
monitored for seroconversion and detection of FMDV in OPF
samples.

Serum and OPF samples were collected and screened as
previously described (33). Briefly, serum samples were screened
for the presence of antibodies against NSPs of FMDV using a
3ABC-ELISA kit (PrioCheck R, Prionics, Netherlands: Product
No 7610450) followingmanufacturer’s instructions. OPF samples
were collected using a probang cup (9) and screened for the
presence of FMDV RNA as described below. Persistently infected
animals were identified by serum and OPF samples collected in
April 2012. Two additional OPF samples were collected from
persistently infected animals in May and July 2012. Sentinel
animals were introduced in September 2012, and serum and OPF
samples were collected monthly from all animals for 6 months
through March 2013.

Questionnaire on Husbandry Practices
A questionnaire was distributed to farmers as previously
described (33). Briefly, farmers were queried about a series of
potential FMD risk factors, including number and type of animals
on the farm, type of animal housing (restraint or pasture),
animal purpose, source of new animals, history of FMD in the
herd (year of last outbreak), vaccination practices, and potential
contact with neighboring animals (Table 1). The purpose of this
questionnaire in the current study was to collect information
which would contribute to understanding of carrier-to-sentinel
transmission events, and rule-in or out potential confounding
factors such as exposure to other animals in the field.

Virus Isolation
Virus isolation (VI) from OPF samples was performed at the
Plum Island Animal Disease Center (PIADC), Greenport, NY, as
previously described (12, 42). Briefly, OPF samples were collected
and homogenized in minimal essential media containing 25mM
HEPES, and then treated with 1,1,2-trichlorotrifluoroethane
(TTE) to dissociate immune complexes. The aqueous phase of
the TTE-treated samples was processed through Spin-X filter
columns (Costar, Corning, NY, USA), and 250 µl of the filtrate
was inoculated into LFBK αVβ6 cell culture (43, 44) for VI as
previously described (45). FMDV-positive VI supernatants were
confirmed to contain FMDV RNA using quantitative reverse-
transcriptase polymerase chain reaction (qRT-PCR).

FMDV RNA Detection and Sequencing
All OPF samples were screened using qRT-PCR as previously
described (33). Briefly, a 50 µl aliquot was treated for 1 h at 37◦C
with an enzyme mix (33), after which RNA was extracted and
analyzed by qRT-PCR (45). Samples were considered positive
when Ct values were <40 (45).

The viral RNA from positive samples was further analyzed
by RT-PCR and Sanger sequencing as previously described
(33). Complete VP1 sequences were obtained using internal
sequencing primers specific to the Vietnamese isolates (33).
Complete open reading frame (ORF) sequences were obtained
from overlapping RT-PCR fragments and sequenced as
previously described (46).

VP1 Phylogenetic Analysis
FMDV VP1 sequences were obtained from probang samples
from 5 of the 10 persistently infected animals in this study.
Evolutionary modeling and visualization of the phylogenetic
relationship between the viruses was performed using the
BEAST v 1.8.4 software suite (47). For regional and temporal
context, 39 additional serotype O/ME-SA/PanAsia sequences
fromGenBank, as well as 3 newly generated sequences [GenBank:
MF143572-8] were included in the analysis. For carrier animals
with serial isolates (animals B177, A152, and A086), only the
earliest dated VP1 sequences were used for estimation of overall
substitution rate.

The VP1 tree was created using those clades most commonly
sampled amongst all trees after 10% burn-in, as inferred
by Bayesian Markov chain Monte Carlo (MCMC) analysis,
implemented in BEAST. The nucleotide substitution model used
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FIGURE 1 | Study sites (triangles) in An Ninh Ðông and Tân Mỹ commune within Long An province. Location information was not available for one farm (AND-14).

Inset: location of study sites within Vietnam.

was Tamura-Nei’93 with 4-bin gamma values (the model with
the lowest BIC (Bayesian information criterion) as determined
using MEGA v 7.0), with unlinked rates between codon positions
(48, 49). The molecular clock model was set as uncorrelated
(exponential dist.; initial annual rate of 0.01), the tree model set
as Bayesian skyline, and tip dates set as approximate or precise
(when known) (50, 51). Every 2500th iteration of a 2.5× 107-step
MCMC was sampled.

Within-Host Evolution of FMDV
Full ORF sequences were derived from seven sequential OPF
samples collected from animal B177 on: June 7, 2012; July 7, 2012;
September 4, 2012; October 5, 2012; January 3, 2013; February 4,
2013; and June 17, 2013. To understand the within-host evolution
of FMDV in this animal, the seven sequences were analyzed using
statistical parsimony, implemented in TCS software (52). The
output of the TCS analysis was depicted using PopART (http://
popart.otago.ac.nz). Full genome sequences used for this analysis
are available [GenBank: MF143579-81].

Tissue Distribution of FMDV
Two carrier animals that had FMDV RNA in OPF samples
for the duration of the transmission study were euthanized
in June 2013, after the conclusion of this study, for routine
human consumption, and tissues were harvested through a
limited necropsy procedure at the slaughter facility in order to
investigate the anatomic sites of persistent infection. Serum and
OPF samples were collected immediately prior to euthanasia.
Necropsies were performed immediately after euthanasia and
tissue samples were collected from the dorsal soft palate,

dorsal nasopharynx (rostral and caudal sub-compartments of
both specimens), ventral epiglottis, larynx, palatine tonsil,
retropharyngeal lymph node, submandibular lymph node, and
popliteal lymph node (Table 2) as previously described (45, 53).
Briefly, two 30mg samples from each tissue were aliquoted
into separate screw-cap 1.5ml tubes and stored at −70◦C until
processing. Necropsies were performed in Vietnam and samples
were shipped to PIADC for analysis.

Tissue samples were macerated using a TissueLyser bead
beater (Qiagen, Valencia, CA), after which 50µl of each macerate
was subjected to RNA extraction followed by qRT-PCR, and the
remaining macerate was subjected to virus isolation as described
above and previously (45, 53).

Statistical Analysis
Carrier animals were assumed to have been infected during
the most recent outbreak of clinical FMD in the herd, and the
duration of persistent infection was calculated as the time from
the most recent outbreak to the time when the animal stopped
shedding viral RNA in OPF (defined as the midpoint between the
last positive sample and the third consecutive negative sample).
Only the year of the most recent FMD outbreak affecting each
herd was provided, and the analysis of carrier state duration was
performed using a lagged start date to account for the inherent
uncertainty in the date of the most recent outbreak. The duration
of persistent infectionwas calculated using three distinct assumed
dates of the most recent FMD infection: January 1st (beginning),
July 1st (midpoint), or December 31st (end) of the reported year
(Table 2). The values reported are based upon the most recent
FMD infection occurring at the midpoint of the year unless
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TABLE 1 | Farm-level animal husbandry practices of premises with confirmed FMDV carrier cattle in Long An province, Vietnam. All farms are in Long An province.

Farm Total

cattle

Carrier

ID

No.

Sentinels

Breed† Housing

system

Purpose Source of

cattle

Pasture

contact

Nearby

cattle

vaccinated

Last FMD

vaccine

Last FMD

outbreak

AND-05 23 A051

A056

2 H-F

B.

indicus

Pasture,

Restraint

Dairy,

Beef

Neighboring

province

Cattle Yes Oct-2011 2010

AND-13 1 A084 3* B.

indicus

Restraint Beef Local NA Yes Oct-2011 2010

AND-14 1 A085 2 B.

indicus

Restraint Beef NA Cattle,

Buffalo

Yes None 2011

AND-15 4 A086 2 B.

indicus

Pasture,

Restraint

Dairy,

Beef

Local Cattle Yes None 2010

AND-19 7 A124 3* H-F Pasture Dairy Local None NA Sep-2011 2010

AND-22 2 A151

A152

3* B.

indicus

B.

indicus

Restraint Beef NA Cattle NA NA 2010

TM-07 9 B078 2 H-F Pasture,

Restraint

Dairy,

Beef

Local Cattle,

Buffalo

No Jan-2011 2010

TM-31 7 B177 2 B.

indicus

Restraint Beef NA None No Unk 2010

AND, An Ninh Ðông commune; TM, Tân Mỹ commune.

*Denotes a calf was also included in the study as an additional sentinel.
†
Dairy cattle were Holstein-Friesian (HF) crosses; beef cattle were typical outbred Bos indicus endemic to Vietnam. All sentinel cattle were also B. indicus endemic to Vietnam.

otherwise stated. Animals that were still shedding virus at the end
of the study period were treated as right censored in the analysis
(54). The Kaplan-Meier test was used to estimate the median and
restricted mean duration of persistent infection. The log-rank
test was used to investigate relationships between the duration
of persistent infection and farm size (small or intermediate),
primary animal purpose (beef or dairy), and pasture contact
with other animals (yes or no). Sentinel animal time-at-risk was
calculated as the time from the introduction of the sentinel until
extinction of the carrier state of the paired donor animal or
the end of the study if the donor remained persistently infected
throughout the study. Calf time-at-risk was calculated as the time
from when the calf was 3 months old until extinction of the
carrier state of the dam or the end of the study. The rationale
for this definition was based upon the assumption that maternal
antibody protection against FMDV wanes by 3–4 months in
calves (55, 56). The incidence rate of infection (number of new
infections per sentinel-month at risk) was determined for sentinel
animals, including calves. The force of infection [per capita
rate at which sentinels become infected (54)] was estimated by
maximum likelihood. Assuming a constant force of infection
for the duration of the study, the probability of a naïve sentinel
animal becoming infected is given by:

Prob (transmission) = 1− e−λT , (1)

where λ is the force of infection and T is the duration of contact
between the carrier and the sentinel (57). Data analysis was
carried out using R version 3.3.2 (R Core Team, 2016) with the
SURVIVAL, EPITOOLS, and BBMLE packages.

TABLE 2 | Carrier state duration (months) based upon three assumed timepoints

in the reported year of most recent FMD outbreak.

Assumed date of

infection*

Median Restricted

mean (SE)

Upper limit

of restriction

January 1 (Beginning) 34.1 33.6 (1.7) 38.4

July 1 (Midpoint) 28.1 27.7 (1.7) 32.4

December 31 (End) 22.2 21.7 (1.7) 26.5

The first sampling date for carriers was April 13, 2012, and the last sampling date was

March 15, 2013.

*For each animal, the year of most recent outbreak was known (2010 or 2011), however

the month of the outbreak was undetermined.

RESULTS

Husbandry Practices
Ten persistently infected cattle on eight farms were monitored
for seroreactivity and detection of FMDV RNA in OPF for 12
months, April 2012–March 2013. The eight farms included in
the study were all in the Long An province (Figure 1). Two
were in Tân Mỹ commune, and six were in An Ninh Ðông
commune. Two sentinel animals were provided to each farm for
this study, and three farms each had one calf that was included in
the study (Table 1). The median herd size was 5.5 (range 1–23),
with four small herds (1–5 animals), three intermediate herds (6–
12 animals), and one large herd (>13 animals). The large herd
was included with the intermediate herds for analyses. Half were
beef herds, and half were dairy or dairy and beef, with housing
systems corresponding to animal purpose (Table 1). During the
data collection survey conducted in 2012, the year of the most
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recent FMD outbreak was recorded. The most recent outbreak in
one herdwas reported to have occurred in 2011, whereas themost
recent outbreaks were reported to have occurred in 2010 in the
other seven herds. This data is consistent with the records of the
Epidemiology Division, Department of Animal Health (DAH),
Vietnam.

Duration of Persistent Infection and
Transmission to Sentinel Cattle
Of the ten persistently infected cattle included in the study, nine
became infected with FMD in 2010 and one became infected
in 2011. Based upon the assumption that animals were infected
at the midpoint of the reported outbreak year, the study ended
32.4 months after infection for animals infected in 2010 (Table 2;
Figure 2). During the study, the mean duration of anti-FMDV
non-structural protein (NSP) antibodies in the serum was 29.2
± 1.7 (SE) months, and seven cattle remained NSP-seropositive
at the end of the study, precluding calculation of the median

duration. The median duration of FMDV RNA detection in
OPF was 28.1 months, the mean duration was 27.7 ± 1.7 (SE)
months, and four cattle remained OPF-positive at the end of
the study (Figure 2). Because extinction of the carrier state was
not detected in all animals, it is likely that the calculated mean
duration of seropositivity and carrier state are underestimated.
The rate of decrease in the proportion of persistently infected
animals was 0.03 ± 0.005 (SE) per month. The duration of
persistent infection was not different between farm size (log-rank
p= 0.32), animal purpose (log-rank p= 0.32), or pasture contact
with other animals (log-rank p = 0.84), although small sample

size limited the ability to detect significant differences.

Sixteen intentionally introduced sentinel cattle and three

calves born to persistently infected dams were included in the
study as contact exposure sentinels. Based upon the assumption

that carrier animals were infected at the midpoint of the

reported outbreak year, sentinel cattle were introduced 26.1
months after infection for carriers infected in 2010. One calf

FIGURE 2 | Carrier state extinction curves for 10 cattle persistently infected with FMDV in Long An, Vietnam. Elapsed time (x-axis) is from the midpoint of the reported

year of FMD outbreak in each animal’s resident herd (9 or 21 months prior to the start of sample collection). Dashed lines represent 95% confidence intervals. (A)

Probang (OPF) samples. Extinction curve is based upon detection of FMDV RNA in oropharyngeal fluid. Stars represent detection of infectious virus (one star = one

positive sample). (B) Serum samples screened by anti-FMDV non-structural protein competitive ELISA.
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was seropositive upon entry into the study at 3 months of
age, but was seronegative at all subsequent sampling times, and
there was no detection of FMDV in any OPF samples from
this calf. The sixteen sentinel cattle and remaining two calves
all remained seronegative and there was no detection of FMDV
in OPF from any of these animals through the duration of
the study. The sentinels and calves contributed a cumulative
(combined) total of 54.6 animal-months at risk. The incidence
rate for FMDV infection in sentinels and calves was 0 per animal-
month at risk, with an upper 95% confidence limit of 0.068
per animal-month at risk. FMDV RNA was isolated from OPF
samples from persistently infected animals for a cumulative total
of 29.9 months (summed across all carriers) while the carriers
were in contact with sentinel animals during the study. The
maximum likelihood estimate for the force of infection was 0 per
month, with an upper 95% confidence limit of 0.064 per month
(0.0021/day).

VP1 Phylogenetic Analysis
VP1 sequences were obtained from infectious FMDV isolated
from 12 OPF samples from four different individuals collected
throughout the study, as well as from FMDV RNA obtained
directly from two OPF samples from one additional individual.
All sequences belonged to the O/ME-SA/PanAsia lineage.
GenBank BLAST search as well as Bayesian phylogenetic

analysis (Figure 3) indicated that the viruses sampled in the
current study were genetically most similar to contemporary
FMDV isolates originating from Vietnam, Cambodia, and Laos
(33, 34). Furthermore, with the exception of one sample
(KT153143), viruses were reliably predicted to segregate into
clades according to commune of origin, and viruses obtained
from serial samples collected from the same individual formed
a monophyletic group (Figure 3; Table 1). BEAST analysis
estimated the average rate of VP1 nucleotide substitution to be
5.8× 10−3 substitutions/site/year.

Within-Host Evolution of FMDV
The evolution of FMDV within one persistently infected
cow (B177) over the course of one year was investigated
through analyses of full open reading frame (ORF) sequences
of 7 serial OPF samples. For this animal, the samples from
which virus sequences were obtained were estimated to span
23–35 months post infection. Evolutionary reconstruction of
the serial virus sequences by the algorithm implemented in
Templeton-Crandall-Sing analysis (TCS) (52) indicated that
several nucleotide changes had occurred throughout the genome
(Figure 4). In total, 25 sites had non-synonymous mutations,
specifically in Lpro (8 sites), VP4(1), VP2(6), VP3(3), VP1(1),
2C(2), 3A(2), 3B(1), and 3D(1).Most of these changes occurred at
one point throughout the study period, and were fixed (evidenced

FIGURE 3 | VP1 phylogenetic tree as inferred by Bayesian analysis (BEAST). The tree represents the relationship between the FMDV viruses isolated from five animals

in the current study in the context of previously published O/ME-SA/PanAsia VP1 sequences. Three new sequences are also included, labeled “new.” Blue: isolates

from Vietnam. Red: isolates from countries neighboring Vietnam (Laos, Cambodia and China). X-axis indicates years before most recent sample.
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FIGURE 4 | TCS parsimony reconstruction of FMDV ORF sequences from sequential samples of one carrier animal, B177. Ticks in branches and number in

parentheses indicate the total number of nucleotide changes inferred by TCS. Boxes indicate non-synonymous changes and their specific aa sites within the protein

coding region indicated by color. Boxes are located at the specific branches for changes common to all descendants. (*) indicate identical non-synonymous changes

that occurred in more than one descendant in intermediate samples. The table shows the amino acid changes at specific nucleotide and amino acid sites within

protein coding regions. Amino acids that were present in the first sample are indicated by gray shading, amino acid mutations which became fixed in subsequent

samples are shaded orange, and amino acid mutations that were present transiently, but reverted are indicated in red shading.

by the presence of the changes in all following samples), however
all segments except VP2 and VP3 had changes that were present
transiently, but reverted to the ancestral state in subsequent
samples (Figure 4). Pairwise comparison between the first virus
collected (07-Jun-2012; estimated 23 months post-outbreak) and
each of the subsequent samples indicated increasing quantities of
nucleotide and amino acid changes as the time between samples
increased (Table 3). Most of the nucleotide changes (n = 133)
observed between the first and the last samples occurred in Lpro
(n= 19), VP2 (n= 18), VP3 (n= 12), VP1 (n= 16), 2C (n= 18),
3C (n= 12) and 3D (n= 26), whereas non-synonymous changes
(all samples combined compared to the first sample) were found
mostly in Lpro (n = 18), VP4 (n = 1), VP2 (n = 26), VP3 (n =

12), and less frequently in VP1 (n = 2), 2C (n = 2), 3A (n = 2),
3B (n= 2), and 3D (n= 3).

Tissue Distribution of FMDV
The tissue-specific distribution of FMDV and viral RNA was
investigated in two carriers from which FMDV RNA and
infectious virus could still be recovered in OPF samples at the
conclusion of the study (Table 4). Of 10 tissues that were screened
from each animal, FMDV RNA was detected by qRT-PCR in the
laryngeal mucosa in both animals, as well as in the caudal dorsal
soft palate in one animal (Table 4). However, infectious virus was
not retrieved from any tissue specimen sampled.

DISCUSSION

The existence of persistently infected FMDV carriers and the
potential risk for transmission these animals represent have led
authorities to develop policies aimed at restricting international
trade of animals and animal products from FMD endemic
regions and regions where FMDV vaccination is practiced, as
well as to recommend euthanasia of all infected animals when
outbreaks occur in FMD-free regions (58). The perceived risk
posed by FMDV carriers is one of the reasons that FMD-
free countries typically control outbreaks using depopulation
of affected and vaccinated herds as a first-line response.
In FMD-endemic regions, FMD-outbreak premises are often
quarantined, but the appropriate duration of quarantine has
not been empirically established since the risk posed by carrier
ruminants is not well-defined. Depopulation, quarantine, and
trade restrictions have a high economic impact on FMD-affected
areas without a guarantee of preventing spread to FMD-free areas
(4, 7, 59). Thus, an improved understanding regarding the risk of
transmission from carriers and the duration of the carrier state
is needed to inform FMD control and animal health strategies
worldwide.

In the current study, seroreactivity and detection of FMDV
RNA in OPF in 10 persistently infected cattle on eight farms
were monitored over 12 months, April 2012–March 2013. It
was assumed that persistently infected FMDV carriers had been
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TABLE 3 | Number of nucleotide (nt) and amino acid (aa) substitutions in FMDV ORF protein coding segments obtained from sequential samples of persistently infected

cow B177.

Segment (nucleotide length)

Date Lpro VP4 VP2 VP3 VP1 2A 2B 2C 3A 3B 3C 3D FLS

(603) (255) (654) (660) (633) (54) (462) (954) (459) (213) (639) (1410) (6996)

7-Jul-12 nt 6 6 9 3 1 0 0 4 5 0 5 11 50

aa 3 0 1 0 0 0 0 0 0 0 0 1 5

4-Sep-12 nt 12 1 9 6 6 0 3 3 1 1 6 8 56

aa 2 0 2 2 1 0 0 0 0 0 0 1 8

5-Oct-12 nt 16 5 16 8 13 0 5 14 5 3 11 20 116

aa 3 1 5 2 1 0 0 1 2 1 0 0 16

3-Jan-13 nt 19 2 19 15 8 0 6 13 4 2 16 25 129

aa 3 0 6 2 0 0 0 0 0 1 0 1 13

4-Feb-13 nt 19 2 17 11 16 0 6 19 3 1 13 26 133

aa 4 0 6 3 0 0 0 1 0 0 0 0 14

17-Jun-13 nt 19 4 18 12 16 0 4 18 3 1 12 26 133

aa 3 0 6 3 0 0 0 0 0 0 0 0 12

Numbers of substitutions are relative to the first virus isolated from this animal on Jun-06-2012.

TABLE 4 | Results of FMDV qRT-PCR and virus isolation on tissues from two

persistently infected cattle.

Animal

Tissue B177 A152

NASOPHARYNX/LARYNX

Dorsal soft palate (rostral) Neg Neg

Dorsal soft palate (caudal) POS Neg

Dorsal nasopharynx (rostral) Neg Neg

Dorsal nasopharynx (caudal) Neg Neg

Epiglottis (ventral) Neg Neg

Larynx POS POS

TONSILS AND LYMPH NODES

Palatine tonsil Neg Neg

Retropharyngeal LN Neg Neg

Submandibular LN Neg Neg

Right popliteal LN Neg Neg

OPF POS POS

NSP ELISA POS POS

OPF and serum samples were collected on the day of necropsy. Italics indicate samples

positive for virus isolation.

infected during the most recent FMD outbreak in the herd.
However, only the year of the most recent outbreak was available,
and therefore our results must be interpreted as approximations.
We have determined an average duration of persistent infection
of 27.7 months, with estimates ranging between 21.7 and 33.6
months based on assumptions about the date of infection.
In contrast, previous studies have reported shorter maximum
durations, between 10 and 24 months in cattle (10, 16, 17, 19),
and many cattle cleared the infection within 6 months (8, 16,
18, 20). In the current study, carrier cattle that cleared the
infection within 6 months would have been excluded due to the

timing of initiation of sampling, which would have biased the
estimate of the average duration of persistent infection, but not
the maximum duration, toward a longer duration.

This study suggests that a subset of FMDV carrier cattle may
maintain persistent infection longer than has previously been
reported. Based upon the owner-reported dates of the last FMDV
outbreaks amongst the cattle in this study, 9 of 10 cattle had
already been persistently infected for at least 12 months at the
start of the study. We have documented that 6 of 10 cattle
maintained persistent infection for 14–28 months post-infection,
and 4 of 10 animals had not terminated infection at 32 months.
Previous reports indicate only a small fraction of persistently
infected cattle maintain the infection longer than 12 months.
For example, Hedger (21) found a 38% prevalence of carriers 6
months after a serotype SAT1 FMDV outbreak, but only 5.4%
prevalence 12 months after the outbreak. Similarly, a modeling-
based approach to FMDV persistence, using cross-sectional data
from an area where serotypes A, O, and SAT2 are endemic,
estimated a 0.7% probability of recovering virus from cattle more
than 12 months after an outbreak (60). However, these reports
do not document the duration of persistent infection in the
fraction of animals that maintain persistent infection beyond
12 months. In contrast, Hayer et al. (17) reported an average
carrier state duration of 13.1 months with complete herd-level
termination at 15–19 months in cattle naturally infected with
serotype O/ME-SA/Ind-2001d strain of FMDV.

The longer duration of persistent infection in this study
compared to previous reports may reflect differences in
virus (serotype, strain or virulence), host (genetic differences,
nutritional or immunological status), environment (climate,
mineral intake), and differences between field and experimental
conditions. Environmental conditions are important for FMDV
survival outside the host and may affect transmission under
natural conditions. In one study, low-lying areas in Vietnam had
a higher economic impact from FMD, compared to midland
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and highland regions (61), suggesting differences in ecology may
favor FMDV survival, resulting in a higher incidence of FMD in
lowland areas.

In contrast to field studies, environmental conditions are
controlled in many experimental studies, reducing variation
in FMDV survival and transmission due to environmental
differences. Many reports of cattle clearing the infection within
6 months were experimental studies (8, 18, 20), which utilize
challenge viruses and transmission routes that are distinct from
natural infections under field conditions. However, the longer
duration reported in the current study may also be due in
part to the uncertainty in the reported date of the most recent
FMD outbreak in the herd. To account for this uncertainty, we
performed the analysis with lagged start dates to provide the
minimum and maximum possible duration given the year of the
outbreak.

An important potential confounding factor in this study is
the possibility that the carrier cattle had become subclinically
infected with a new FMDV during the study. Subclinical
infections may be important in FMDV epidemiology in endemic
regions (62), and subclinical infections in our study would have
gone unnoticed by the owners. This would have had the effect
of biasing toward longer apparent duration of the carrier state.
However, serology and OPF analyses confirmed there was no
FMDV infection in any of the naïve sentinel cattle, indicating
no incursion of a novel FMDV during the study. Additionally, if
novel FMDVs had been introduced into the herd during the study
period, clinical cases would have been expected amongst some
of the vaccinated carriers and most or all of the naïve sentinel
animals. No such clinical cases occurred.

To our knowledge, this is the first report of an experimental
investigation of transmission from carrier to naïve cattle under
typical husbandry conditions. During the study, FMDV was
not detected in any OPF samples from sentinel animals or
calves, and none of the sentinels seroconverted. Transmission
to sentinels did not occur despite repeated isolation of FMDV
and viral RNA from OPF samples from persistently infected
carriers. Our finding of lack of transmission is consistent with
previous studies investigating transmission from carrier cattle to
sentinel cattle [reviewed in Tenzin et al. (37)]. In the current
study, the upper 95% confidence limit for the force of infection
was 0.064 per month, which is consistent with two previous
studies (22, 37), and indicates that at most, one transmission
event would be expected to occur in 15.6 months of contact
time. This study supports previous findings of a low (or absent)
risk of transmission from carrier to naïve cattle. One calf was
seropositive upon entry into the study (at 3 months of age), but
was seronegative on subsequent samples for the duration of the
study, and FMDV RNA was never recovered from OPF samples
from this individual. The initial positive result for this calf was
likely due to the presence ofmaternal antibodies. The limited data
reported herein suggests that transmission from carrier cattle
to calves does not appear to be important in the epidemiology
of FMDV in cattle. This is in contrast to African buffalo, in
which transmission from carrier animals to calves after maternal
antibodies have waned is reported to be an important mechanism
of virus maintenance in this species (14, 28, 63).

Sentinel cattle were introduced approximately 26months after
infection of the carriers, based on estimating carrier infection at
the midpoint of the reported year; therefore this study reflects the
potential for transmission after prolonged persistent infection.
The current study suggests a very low risk of transmission to
naïve animals introduced onto farms more than 2 years after an
outbreak, despite the presence of persistently infected cattle from
which FMDV could still be recovered. However, our study design
could not address the potential of transmission during the early
portion of the carrier phase. Previous studies have suggested that
transmission potential is low during that period as well (22, 37).

Phylogenetic analysis of VP1 coding sequences indicated
the viruses obtained in this study were most closely related
to contemporary viruses collected in Vietnam, suggesting the
O/ME-SA/PanAsia lineage was circulating endemically in the
region during the study period. For individuals from which serial
isolates were obtained, phylogenetic analysis also supported the
owner-reported timing of infection in 2010. For example, the
most recent common ancestor of the isolates collected from
animal B177 was estimated to occur approximately 5 years prior
to the most recent isolates in the analysis (collected in 2015). The
phylogenetic inferences and genome-wide substitution analysis
support the interpretation that the multiple isolates from that
animal represent within-host evolution of an earlier infection
rather than serial superinfections. This phenomenon is consistent
with similar findings of FMDV within-host evolution under
natural conditions in Pakistan (64).

We recovered FMDV and acquired full ORF sequences of
samples serially collected over a 1-year period from one of
the FMDV-persistently infected animals. Serial ORF sequences
collected from a persistently infected animal in the field are
unprecedented to our knowledge. Analysis of the evolution of
FMDVwithin this animal during the study demonstrated that the
proteins that underwent themost non-synonymous changes were
the leader proteinase Lpro and capsid proteins VP2 and VP3. Lpro
is a well-characterized determinant of virulence (65–67). Similar
to our findings in one animal, a previous study analyzing full
ORF sequences of viruses from groups of experimentally infected,
vaccinated and unvaccinated carrier animals found amino acid
changes within Lpro, VP3, VP2, VP1, 2C, 3A, 3B, and 3D (22).
Additional specific amino acid changes and positive selection
within the known FMDV antigenic sites of viruses recovered
from carrier animals have also been reported (25, 26, 34), whereas
the capsid proteins have a critical role as anti-receptors in host
cell binding (68) as well as generating the most relevant host
immune response (69, 70). The accrual of these amino acid
substitutions may alter these proteins resulting in improved
fitness and enabling immune evasion. Further investigation,
including analyses of serial sequences from greater quantities of
animals, is needed to elucidate whether mutation in these regions
is a commonality of adaptation of FMDV across persistently
infected hosts and viral strains.

Burrows (20) was the first to show experimentally that the
tissues of the nasopharynx were the anatomic sites of FMDV
persistence. Subsequent studies have further localized persistent
FMDV infection to specialized segments of follicle-associated
epithelium of the nasopharynx (12, 42) or associated lymphoid
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tissue (15, 71). In the current study, FMDV RNA was recovered
from the laryngeal mucosa of two persistently infected cattle
and the caudal dorsal soft palate of one of these animals,
suggesting tissue localization under natural infection is similar
to distribution in experimental infections. Although infectious
virus was not recovered from any of the tissue samples, FMDV
was isolated from OPF samples collected immediately prior to
necropsy, indicating the presence of replicating virus in these
carrier animals at the time of necropsy. FMDV is not evenly
distributed within tissues (42), and the specific sections collected
for virus isolation may have contained little or no virus even
though adjacent sections may have been infected. Additionally,
it is possible that sample preservation failures may have occurred
during the transfer of samples from DAH, Vietnam to PIADC,
USA, which would have decreased the amount of viable virus in
the sample, thereby decreasing the likelihood of successful virus
isolation.

Despite decades of research investigating the FMD carrier
state, the answers to two persistent questions remain
unsatisfactorily resolved: What is the duration of persistent
infection? And, what is the risk of transmission from a
persistently infected animal? The current study contributes to
these knowledge gaps, albeit on a very limited scale, and under
the specific conditions of the study, including persistent infection
with FMDV serotype O/ME-SA/PanAsia and typical Vietnamese
husbandry practices, climate, and cattle breeds. These data
suggest that the duration of persistent infection in some animals
may be longer than previously documented, but the risk of
transmission is exceedingly low. Additionally, this study shows
that the sites of viral persistence in tissues of the pharynx
are similar to what has been described under experimental
conditions. This study also contributes to knowledge of within-
host evolution of FMDV. Although care should be taken
interpreting the current small study, these results will contribute
to informing policy decisions regarding FMDV carriers. Further
studies are needed to investigate the duration of persistent
infection under typical husbandry practices and the role of
carriers in FMDV epidemiology in endemic areas.
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