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While canines are generally considered the gold standard for olfactory detection in many

situations other animals provide alternatives and offer a unique opportunity to compare

biological detection capabilities. Critical components in successfully studying biological

detectors is not only understanding their anatomical evidence for olfaction, but also,

understanding the life history of the species to better direct the potential of an olfactory

task. Here, a brief overview is provided presenting a comparative viewpoint on the use

of odors by birds and canines over a range of unique detection scenarios. Similar to

canines, birds use olfactory information in various natural oriented contexts where odors

are dispersed over a widespread spatial range. Comparing these two distinctive animal

models, and current trends in physiological and behavioral assessments may open the

door for novel uses of birds as biological sensors in forensic applications.
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INTRODUCTION

The term “biological detector” is applied to organismal detectors including animals and plants that
can be trained, conditioned or genetically modified to detect key molecules in the environment.
The detection of target odor chemicals plays a key role for a variety of purposes within the
forensic realm, thus the active research investigating a variety of animal models for the optimal
and efficient detection of odors in practical field operations (1–3). With respect to mobile chemical
detectors, canines have long been the biological detector of choice, and are currently widely used
by law enforcement around the world for detecting a range of forensically important traces.
Canines offer clear advantages over instrumental analytical detectors: dogs can easily operate
in public; they can be trained to specific odor signatures of target materials, and can track
a scent to its source over uneven terrain. These highly mobile biological detectors are also
able to pick up and discriminate a specific “scent picture” even against a variety of different
“noisy” odor backgrounds. Canine olfaction has been the subject of study from a range of
different perspectives. From a physiological standpoint, researchers have been elucidating nasal
airflow patterns and their role in odorant transport (4–7). Forensically, canines are one of the
most important detection tools for homeland security and law enforcement purposes. Thus,
a number of studies have focused on enhancing and understanding canine team performance
(8, 9), training regimens (10–12) and clarification of relevant odor chemicals within forensic
contexts (13). Clinically, the detection of various types of cancers by canines has been evaluated
(14–16). Not surprisingly, the canine olfaction model is widely used when compared to other
animal systems. However, it is important to keep in mind that other organisms also use odors in
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various contexts as observed by their olfactory-related behaviors
within their natural environment. Birds are one such animal
model that has been largely ignored within an olfaction
perspective and more so, in practical, detection capabilities.
Birds may represent the next phase in understanding how
olfactory cues used across different environmental contexts can
prove useful as a biological detection model if directed toward
more focused olfactory detection tasks. This paper outlines
avian olfaction evidence presenting three bird species as models
(i.e., homing pigeons, turkey vultures and domestic chickens)
and highlights how birds’ intrinsic life history olfactory traits,
even though greatly overlooked for biological detection, can be
potentially directed to similar detection tasks as that observed in
canine forensic field-based operations.

WHAT ARE SOME USES OF ODORS IN
AVIAN SPECIES?

Both canines and birds use olfactory evidence over a range of
unique detection viewpoints. However, as opposed to canines,
avian olfactory capabilities have been substantially overlooked
by a historical belief that birds are anosmic (i.e., having little
or no smell) (17). However, over the past 50 years, researchers
have shown the use of olfaction by birds in a range of biological
contexts ranging from navigation and foraging to species, sex,
and individual odor recognition (18–23). Since the seminal
work of Bang in 1960, the anatomical evidence for avian
olfaction surfaced in the scholarly literature (17). As part of
this morphological evidence in the olfactory functioning of
birds, continuous research focused on comparing olfactory bulbs
across species (24). This early survey suggested that kiwis, tube-
nosed marine birds and some vulture species, had among the
largest olfactory bulbs. However, the relative importance of this
morphological value with the olfaction modality in avian species
was not fully understood and subsequently has become an area
of fruitful biological research (See Table 1) (23). Olfactory-driven
behaviors in birds can be discussed in relation to specific natural
contexts and for purposes of this paper, the bridge between these
natural traits will be linked to their potential forensic approaches.
A description of three avian model systems will be presented:
homing pigeons, turkey vultures, and domestic chickens.

Homing Pigeons
One of the most common avian models to study animal
navigation has been the domesticated rock pigeon (Columba
livia). Beyond their fascinating natural traits, the homing
pigeon has been used in a variety of field operations including
to transport messages and carry small light-weight packages,
including smuggling contraband into prisons or carry messages
in times of war/conflict. Undoubtedly their level of intelligence
cannot be ignored, but more so, is understanding their ability
to travel hundreds of kilometers to and from their home loft
even after being released in completely unfamiliar territory.
This is where the concept of olfactory navigation behavior is
important for these types of potential applications. Back in the
early 1970s, Papi et al. conducted pioneering studies with a group

TABLE 1 | Comparison of olfactory bulb to brain ratios, adapted from Bang and

Cobb 1968.

ORDER/Species Olfactory Bulb

Diameter (mm)

Cerebral

Hemisphere

(mm)

Bulb/

Hemisphere

Ratio

APTERYGIFORMES

Kiwi Apteryx Australia 12.0 35.0 34.0

PROCELLARIIFORMES

Snow Petrel Pagodroma nivea 6.7 18.0 37.0

Wilson’s petrel Oceanites oceanicus 3.6 10.8 33.0

Wedge-tailed Shearwater Puffinus

pacificus

5.5 17.8 30.0

Greater Shearwater Puffinus gravis 6.0 20.0 30.0

Dove Prion Pachyptila desolata 4.1 14.0 29.5

Black-footed Albatross Diomedea

nigripes

8.0 28.0 29.0

California Shearwater Puffinus

opisthomelas

5.0 17.0 29.0

Cape Pigeon Daption capensis 5.5 20.0 27.5

Fulmar Fulmarus glacialis 5.7 21.0 27.0

Diving Petrel Pelecanoides

georgicus

2.0 11.3 18.0

COLUMBIFORMES

Wild Blue Rock Pigeon Columba

livia

2.9 13.7 22.0

Domestic Rock Pigeon Columba

livia

2.0 11.0 18.0

FALCONIFORMES

Turkey Vulture Cathartes aura 6.0 24.0 28.7

GALLIFORMES

Domestic Fowl Gallus gallus 2.0 13.0 15.0

of pigeons with their olfactory nerves sectioned and an intact
control group of pigeons (25). Only the intact group returned to
the home loft. Furthermore, at around the same time, another
experiment conducted by Wallraff introduced the hypothesis
that indeed these birds used an environmental odor picture
directly linked to their successful navigation back home (26).
The idea behind an environmental odor picture is that pigeons
are able to learn and associate these environmental “local” odors
in conjunction with other factors such as wind. Hence, when
left in unfamiliar territory, they are able to identify this odor
“bouquet” and remember the direction and displacement of
these environmental olfactory cues eventually leading them back
home (Figure 1) [see review,(27, 28)]. This seminal olfactory
navigation model basically branches into two distinctive steps,
the first one where the pigeons learn the wind-borne odors in
their home loft surroundings along with the wind direction (29)
and secondly, an active operational step where the relocated
bird can determine direction of displacement by identifying local
odors and remembering where these local odors came from at
the home loft (27, 30). The definition of this environmental odor
blend was furthered validated by a model suggesting an explicit
spatial “network” of odor gradients which is directly linked to
location estimation relative to the loft. In this work, instrumental
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FIGURE 1 | Graphical representation of the environmental odor blend hypothesis in pigeon navigation; with permission Gagliardo (27).

analysis of air samples was studied at 96 sites over a radius of
200 km showing that indeed there is a rather stable gradient
ratio of hydrocarbons that interact with wind patterns which
birds could utilize for navigation (31). To this day, this “volatile
atmospheric odor picture” is the subject of active research not
only in pigeons (32) but extending the experimental approach to
other wild birds (33). Thus, active experimental evidence seems
to highlight the capability of the homing pigeon to sample their
local odor gradients as a mechanism to establish navigation. Even
though the actual compounds used for this purpose is still an
area not yet fully understood, the potential for directing pigeons
toward specific target odor chemicals by a constant exposure in
their home loft environment could be an olfactory task developed
for focused detection missions.

Turkey Vultures
As observed from Table 1, the turkey vulture has one of the
largest olfactory bulbs of any bird (23). These birds are normally
associated with their rapid presence at scenes with decomposing
tissue and dead animals. Hence, it is not unexpected that
this avian specie has been the subject of study in numerous
forensic taphonomic experiments. But before taking a forensic
perspective, it is important to understand their olfactory tracking
capabilities. Stager (34) conducted detailed field experiments
where he noted that odors from both fresh and decomposing
animal tissue, produced positive olfactory responses from turkey
vultures. In his pioneering work, he also noted that this avian
specie was able to detect the presence of hidden animal baits
thus further strengthening the olfaction modality used in food
location. Stager further describes how turkey vultures were
attracted to a volatile organosulfur compound, ethyl mercaptan,
used by oil company engineers as an odorant for gas leak
detection (35). Hence, foundational observations led to the
suggestion that olfaction indeed played a significant role in the
life history of this bird. Other studies have even suggested that
turkey vultures can discern the age of the carcass. Houston (36)
performed experiments where turkey vultures were efficient at

locating 1-day old carcasses while rejecting completely rotten
meat. Thus, olfaction in this animal model can play a significant
role for food location and also highlights a distinctive odor
picture of the condition of their prey.

From a forensic viewpoint, vulture species have been the
subject of study in terms of the effects of scavenging on
human remains. For forensic investigators, animal scavenging
can disrupt the crime scene by the dispersal of remains far
from the location of interest and also represents a challenge
in the estimation of the postmortem interval (PMI). However,
regardless of the problems faced by crime scene investigation
(CSI) teams by the effect of these scavenging activities, this avian
model showcases a keen sense of olfaction for the decomposition
odor plume. Reeves (37) used pig carcasses as scavenging targets
in the central Texas region during summer months. Both black
and turkey vultures waited 24 h before scavenging activities
and skeletonized the carcasses in as fast as 3 h. Compared to
this study, another experiment conducted in Southern Illinois
highlighted that there was a delay in the time of first vulture
arrival (up to 28 days), much slower feeding times on the
pig remains. Hence, this study suggests an effect that vulture
scavenging is directly linked to geographical region and climate
(38). Furthermore, using spatial analytical methods, researchers
have observed how skeletal remains are dispersed by vultures to
lower elevations, and that such dismemberment and dispersal
occurs during early phases of the scavenging activity (39). Even
though olfactory studies in this avian species are limited, there
is evidence of their olfactory detection toward a “decomposition
odor blend” that has direct practical implications for future
research in the area in terms of decomposition odor stages (as
that seen with the condition of their prey) and in the potential
identification of decomposing human remains.

Domestic Chicken
Like pigeons, the domestic chicken is a familiar avian model
within various biological experimental contexts. In a review by
Jones and Roper (40), the functional significance of an olfactory
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modality is described in the domestic fowl. This animal system
has been studied with respect to odorant exposure in terms of
their rearing environment and chemosensory learning aspects.
Studies with odorants such as isoamyl acetate, eugenol, and allyl
sulfide demonstrated that 1-day old chicks showed differential
sensitivity to different odorants at varying concentrations
(41). Furthermore, evaluation of odorant exposure to chicks
pre-hatching has also been investigated with stimulus such
as strawberry demonstrating that a chick’s chemosensory
preferences are changed with a pre-hatching exposure to the
desired stimulus thereby implying olfactory learning (42).
Variations of these early exposure experiments have included a
range of odorants (see review by Jones and Roper) (39), and
also a variety of different methods of odor presentation (43–
45). In other behavioral assessments, fecal predator odor was
presented to domesticated chickens and showed that individuals
can respond to predator olfactory cues, as observed by their
decreased foraging and increased vigilance, without any prior
odorant exposure or learning (46). Furthermore, it has been
shown that even a blend of odorants representing a “motherly”
scent reduces stress as determined by a range of physical and
behavioral parameters (47). In a study conducted by Bertin
et al. (48), a pre-hatch effect of the intensity of odor signals in
the regulation of later feeding behavior was reported, thereby
highlighting the capability of embryo chemosensory learning.
Collectively, these findings provide growing support for the role
of olfactory cues in this avian species in a series of chemical
communication purposes.

HOW CAN AVIAN USE OF ODORS BE
COMPARED TO CANINE BIOLOGICAL
DETECTION?

The presented avian models emphasize the distinctive use
of odors in their natural contexts. From navigation, food
searching, to olfactory learning, these three presented avian
species corroborate the use of olfaction. However, what has yet
to be exploited is the potential uses of these natural olfactory-
mediated behaviors in a more practical biological detection
context, namely forensic detection and a direct comparison to
the canine model. As stated previously, canines are the biological
detector of choice, specifically in the realm of law enforcement
and security purposes. In terms of biosensor applications, other
animal models such as rats, bees, wasps (49), and elephants (50)
have demonstrated such potential applications. To date, the avian
species has not been the focus of any study for forensic odorant
detection applications.

One reason for the neglect of avian biological detection
could be that olfaction is not historically been considered
a major sensory modality in birds. Perhaps, a general lack
of recognition of the importance of olfaction in birds has
misguided our efforts, despite the evidence, that avian species
could be redirected for detection roles. When looking at the
3 avian models presented in this paper, olfaction in birds
plays a key role for chemical signaling, communication, odor
learning and exposure, early animal experience, and as a housing

or environmental enrichment (as seen with navigation). The
environmental enrichment can be observed by the ability of birds
(as seen with the pigeon model) to learn environmental odors
in association with wind direction, which highlights how the
environment provides an odor source they are able to recognize
to determine displacement direction (26). All of these olfactory-
guided contexts are shared by the canine species. The only
difference between these 2 species is the application to practical
forensic detection roles.

The Environmental Odor Bouquet of Birds
and Dogs
Using the “odor map” model of avian olfaction as that observed
with pigeons for navigation, a comparative viewpoint can be
made with the odor plume encountered by a canine during
their search pattern behavior. This spatial odor gradient map
suggested by Wallraff (25, 30, 51) in terms of sampling the
air to obtain environmental odor cues for directionality, can
be directly linked to canine’s directional tracking. Whether it
be for operational tasks such as finding a missing person or
in search and rescue missions, the success of this olfactory
role is in the canine’s ability to sample the surrounding air for
directionality as to the whereabouts of the target’s location. In
this case, the canine is not finding home (as the pigeon with
the home loft) but his trained target odor. Studies in canine
olfaction have embarked on evaluating the behavior of dogs
during this olfactory tracking. Thesen et al. (52) evaluated 4
trained German shepherd tracking dogs using 20-min old tracks
on grass and 3-min old tracks on concrete. They recognized
three distinctive phases, an initial searching phase, a deciding
phase (determination of directionality) and a tracking phase.
Thus, the study demonstrated the need of the canine to obtain
olfactory cues from the environment and points to the sensitivity
in detecting specific substances for successful tracking. Other
studies have even compared olfactory and visual cues for
directionality of tracking (53) and also evaluated the amount of
discrete information needed (5 sequential footsteps) to determine
the direction of an odor trail (54). Thus, this tracking example
within the canine model can be directly compared to the pigeon
navigation model where the bird “samples the air” to determine
directionality in relation to the home loft. The notion of an
environmental odor blend capable of yielding these olfactory
cues for navigation/tracking purposes exists for both species,
thus the possibility of directing this navigation olfactory behavior
(as in the case of birds) to specific chemical odor blends of
forensic importance, within an avian species, is certainly not so
implausible.

A Decomposition Outlook
A growing area of operational use and research needed within
canine biological detection has been that observed in the
detection of human remains, or the use of the so-called cadaver
dog. Not only for particular crime scene processing issues (i.e.,
clandestine graves) but also in contexts such as those observed
after natural disasters where these canine teams are deployed
to help locate and identify deceased victims under difficult
terrains and rubble piles. Many research groups have focused
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on understanding the chemical odor blend of decompositional
odor to gain a perspective on this volatile odor profile. Vass et al.
(55–57) initiated the establishment of an odor database of human
remains showing chemical trends for volatile organic compounds
detected utilizing triple sorbent traps. The understanding of a
human decomposition odor picture plays a key part in better
directing optimal training procedures for biological detection.
Hence, other work in the area has focused on the development
and analysis of synthetic training aids (58–60), influence of
age, soil textures, and surfaces on chemical odor profiles (61–
63), to name a few. Recently, the introduction of 2-dimensional
gas chromatography and time of flight mass spectrometry has
been the subject of intensive decomposition odor profiling
studies (64, 65). Having a context of the vast amount of
research in the area of human decomposition odors, only calls
for alternate pathways of detection. As observed in the above
discussion on vulture scavenging, and their natural olfactory
behavior in finding their decomposing prey, this avian specie
could represent an experimental model to further investigate
target compounds of interest within a decomposition odor
picture. From the knowledge gained from decompositional odor
databases using instrumental analysis, researchers can target
compound validation using avian models such as turkey vultures
to verify odor mixtures and concentration thresholds that yield
positive avian response. Different odor blends can be prepared
and demonstrate attraction or aversion to better understand
human decomposition using an altogether novel biological
system.

A Forensic Perspective on Odor Exposure
Under operational conditions, canine biological detection
revolves around routine maintenance training of the target
odor(s) for the corresponding mission. Hence, it is imperative
that optimal performance be assessed not only on the behavioral
aspect, but also in a thorough understanding of the target
odor chemicals involved in that positive alert. Advances in the
analytical forensic laboratory have resulted in increasingly lower
detection thresholds allowing the elucidation of some of these
volatile odor chemical signatures (13). Explored forensic areas
have included narcotics (66–68), explosives (69, 70), and human
scent (71). Regardless of the specific area of detection, a common
factor of study is the underlying link between odor exposure and
the behavior of the canine with respect to that odor mixture.
Different studies have geared to understand effects of extraneous
odors on canine detection sensitivity (72), while others have
tested the number of substances trained with respect to detection
performance (12). Just as that seen with the decomposition

odorous blend, a key aspect in optimal detection is the ability
to provide efficient training aids. Thus, comparing this need
and area of research, a comparative perspective can be bridged
with the domestic chicken as an avian model. Odor exposure
pre-hatching and the link to odor learning can be extended to
employing odor chemical of forensic importance in order to
establish baseline odor thresholds within an avian species under
controlled laboratory conditions. Comparing to practical canine
models of experimentation, where different training aids, and/or
target odor chemical are presented for behavioral responses,
the domestic chicken can be trained to detect similar odor
chemicals, developing the possibility of detection by indicating
presence/absence of stimuli in natural environments. Initial work
in this area has demonstrated that birds can be trained using the
same forensic target odors used by dogs (73).

CONCLUSION

The role of biological detection in the area of forensic
science and national security has witnessed an increase of
active research investigating various animal models, with
canines, being the most optimized and best-known working
animal model to date. However, animal systems such as birds
provide an olfactory foundational framework worth exploring
further, and which to date, has largely been ignored within
a practical operational perspective. It is important to inform
how scientific support highlights an active and varied role
of different olfactory-mediated behaviors within the avian
species. Canine detection science has become a key tool in
many forensic applications, but by working on a parallel
level, birds can represent an avenue of olfactory detection
that provides yet another pathway for implementation. It is
critical to the success of biological detection to assess alternate
models that represent solid evidence-based characteristics of
fine-tuned olfactory capabilities. This review serves as a
call for the research community to consider a different
perspective on birds as a viable and working system for
comparative olfactory tasks as that observed with working dogs
simply taking into consideration already existing life history
olfactory traits.
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