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Estimating eco-epidemiological parameters in free-ranging populations can be

challenging. As known individuals may be undetected during a field session, or

their health status uncertain, the collected data are typically “imperfect”. Multi-event

capture-mark-recapture (MECMR) models constitute a substantial methodological

advance by accounting for such imperfect data. In these models, animals can be

“undetected” or “detected” at each time step. Detected animals can be assigned

an infection state, such as “susceptible” (S), “infected” (I), or “recovered” (R), or an

“unknown” (U) state, when for instance no biological sample could be collected.

There may be heterogeneity in the assignment of infection states, depending on the

manifestation of the disease in the host or the diagnostic method. For example, if

obtaining the samples needed to prove viral infection in a detected animal is difficult,

this can result in a low chance of assigning the I state. Currently, it is unknown

how much uncertainty MECMR models can tolerate to provide reliable estimates

of eco-epidemiological parameters and whether these parameters are sensitive to

heterogeneity in the assignment of infection states. We used simulations to assess

how estimates of the survival probability of individuals in different infection states

and the probabilities of infection and recovery responded to (1) increasing infection

state uncertainty (i.e., the proportion of U) from 20 to 90%, and (2) heterogeneity in

the probability of assigning infection states. We simulated data, mimicking a highly

virulent disease, and used SIR-MECMR models to quantify bias and precision. For

most parameter estimates, bias increased and precision decreased gradually with

state uncertainty. The probabilities of survival of I and R individuals and of detection

of R individuals were very robust to increasing state uncertainty. In contrast, the

probabilities of survival and detection of S individuals, and the infection and recovery

probabilities showed high biases and low precisions when state uncertainty was >50%,
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particularly when the assignment of the S state was reduced. Considering this specific

disease scenario, SIR-MECMR models are globally robust to state uncertainty and

heterogeneity in state assignment, but the previously mentioned parameter estimates

should be carefully interpreted if the proportion of U is high.

Keywords: multi-event capture-mark-recapture, state uncertainty, partial observation, assignment probability,

bias, precision, simulation, SIR model

INTRODUCTION

Describing the dynamics of infectious diseases and
accurately quantifying their effects on hosts is of critical relevance
for human public health and the associated economic costs.
Infectious diseases of wildlife threaten humans or livestock,
either as direct zoonosis, through contact with or ingestion of
infected animals [e.g., rabies: (1); Ebola: (2); brucellosis: (3)],
through air-borne infectious particles [e.g., avian influenza: (4)],
or via other wildlife species that act as intermediate hosts or
reservoirs [e.g., West-Nile fever: (5)]. Infectious diseases can
also seriously reduce the population size of endangered wildlife
species [e.g., fungal infection chytridiomycosis in frogs and
salamanders: (6); white-nose syndrome in bats: (7); facial tumor
disease in the Tasmanian devil: (8)]. They are now recognized as
a major and urgent issue in the context of global biodiversity loss
(9, 10).

To determine the impact of a disease on key demographic
parameters such as individual survival or to investigate temporal
variation in disease exposure, researchers need to monitor the
health status and fate of individuals. Observation of clinical signs

and collection of biological samples (to assess seroprevalence or
screen for the presence of pathogens) are common diagnostic
approaches, which separately or in combination may be used to
determine the health status of free-ranging animals (11–15). Even

so, individually known animals may be (1) undetected during
a field session, or detected but their health status may be (2)
unknown e.g., when no biological sample could be collected,

or (3) uncertain e.g., when clinical signs are subtle and similar
for different pathogens, or when diagnostic tests include false
negative or false positive results (16). These situations regularly

occur when the model species is elusive, or when biological
samples can only be collected opportunistically or by non-
invasive techniques (15).

Individuals with such “imperfect” information have
traditionally been taken out from data sets and statistical
analyses. Not only does this reduce sample size and hence
statistical power, it can also increase bias and/or reduce precision
in the estimates of state-specific demographic (17) or eco-
epidemiological parameters (18). Substantial improvements
in addressing these issues have been made possible by the
development and application of multi-state hidden Markov
models, also termed multi-state capture-mark-recapture
(CMR) models (19). Along the same lines, multi-event CMR
(MECMR) approaches have recently been developed (20, 21)
and applied to improve the estimates of key demographic
or eco-epidemiological parameters in population ecology

(17, 22) and disease ecology (18). These models, when applied
to epidemiological data, consider discrete infection states
such as “susceptible” (S), “infected” (I) or “recovered” (R),
and reduce bias/increase precision in the estimates of state-
specific parameters (as opposed to multi-state CMR models)
by accounting for several processes. First, they account for
“imperfect detection” of individuals, which can occur when some
individuals in the population are not observed during a field
visit. Second, they account for “infection state uncertainty”, also
termed “partial observation”, which can occur when individuals
in the population are observed but their infection state could
not be determined (12, 15, 18, 23–25). Finally, they also account
for “infection state misclassification”, which can occur when
some individuals are observed as alive and their infection state
could only be assigned with some uncertainty. For instance, the
state S may have been assigned although there was a risk that
the individual was in fact I or R (12, 16, 26). MECMR models
provide a powerful methodology to estimate state-transition and
apparent survival parameters even under such circumstances
(20, 21). However, their performance in terms of bias and
precision of parameter estimates when uncertainty increases
importantly, has not yet been investigated, to our knowledge. The
current study aimed to develop a modeling framework to address
this issue. For this purpose, we used simulations and focused on
infection state uncertainty (i.e., partial observation), when some
individuals are detected but not sampled during a field session
and as a result are assigned an unknown (“U”) infection state on a
given occasion.

First, we evaluated how increasing infection state uncertainty
(i.e., increasing the proportion of U individuals) affected bias
and precision of eco-epidemiological parameter estimates. This
knowledge is essential to assess the reliability of MECMR
approaches when the percentage of reliably sampled individuals
in a free-ranging population is low, and therefore data on
infection states are scarce. We gradually increased uncertainty
by decreasing the probability of assigning each infection state
by an equal amount in the simulated data set (“homogeneity”
scenario, Figure 1A). We expected bias and precision to
increase and decrease, respectively, with increasing state
uncertainty.

Second, we asked how heterogeneity in the probability
of assigning infection states influenced bias and precision
(“heterogeneity” scenario, Figure 1B) when infection state
uncertainty increased. The assignment of infection states
may depend on several diagnostic methods such as field
observations of clinical signs and/or laboratory techniques
including serology and/or molecular screening techniques
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FIGURE 1 | Schematic representation of the simulated CMR data sets with (A) homogenous and (B) heterogeneous infection state uncertainty. The x-axis shows the

number of occasions (here 5, see Table 1) and the y-axis shows the individuals (ID, here 192 individuals were simulated). This figure is meant to visually distinguish

between both modeled scenarios. The gradient of uncertainty is not shown, for simplicity. For both scenarios, we used the assignment probabilities of susceptible (S)

(δS), infected (I) (δI), and recovered (R) (δR) states to simulate variation in infection state uncertainty. S, I, R and unknown (U) states are shown in blue, red, green, and

gray, respectively. In the homogeneity scenario (A), we gradually increased uncertainty by decreasing the probability of assigning each infection state by an equal

amount in the simulated data set. In the heterogeneity scenario (B), we varied the assignment probability of all states across a gradient as for (A) and reduced the

value of one state by 50% compared to the other two. For instance, in the first case (right panel, top figure), the number of S states (blue) is lower than that of I (red)

and R (green) states.

[e.g., (11, 15)]. These diagnostic methods are often specific
to the assignment of given infection state(s). For instance,
serological tests such as antigen ELISAs are typically used to
determine S and R states on the basis of the concentration
thresholds of antibody titres (1, 12, 26, 27) and clinical signs
and RT-PCR results are often used to determine the I state
[e.g., (11, 15, 28, 29)]. In habituated free-ranging populations,
where observations of known individuals from a close distance
are feasible, clinical signs for some infectious and virulent
diseases can be conspicuous [e.g., Ross River virus, (30)]. If
these populations are monitored by non-invasive techniques, the
availability of sera for measuring antibody titres would typically
be limited. In this case, the probabilities of detecting animals
in S, I and R states might be similar, but the probabilities of
assigning the correct infection state to each detected animal
may differ—-with the assignment of the I state being more likely
than that of the S or R states. Other scenarios are possible where
the assignment of the I state may be lower than that of the S
and R states. When immune processes control infection, the
period in which an infected animal sheds viral particles will be
limited, thereby restricting the time-window in which genetic
screening will identify the infection. Furthermore, for viral
diseases that have periods of subclinical infection, such as canine
distemper virus [CDV, e.g., (15)], or latent infection such as
equine herpesvirus (31), when virus particles are not shed at all,

genetic screening methods may not correctly identify infected
individuals. This may result in a low assignment of the I state.
It is unclear how such heterogeneity in the assignment of true
infection states affects bias and precision in model parameter
estimates, in particular when infection state uncertainty
is high.

Answering both questions would be very useful to optimize
study designs and disease surveillance programs (32). For both
scenarios, we fitted SIR-MECMR models with a fictive set of
parameter values as input to simulate data, and investigated
bias and precision for different levels of uncertainty. We
simulated the case of a virulent disease inducing life-long
immunity.

METHODS

Model Structure
We built a multi-event capture-mark-recapture (MECMR)
model (20) depicting Susceptible (S)—Infected (I)—Recovered
(R) dynamics to estimate survival, infection and recovery
probability while accounting for imperfect detection and
infection state uncertainty (21). The model had three infection
states (S, I, and R) plus the dead state (D), and five underlying
events—not detected, detected and diagnosed as S, detected
and diagnosed as I, detected and diagnosed as R, detected and
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undiagnosed (i.e., set as unknown: U). The model included
the following state-dependent parameters: survival probability
(φ), infection probability (β) (i.e., transition from S to I
state), recovery probability (γ ) (i.e. transition from I to R),
detection probability (p), and assignment probability of infection
states (δ).

The construction ofMECMRmodels requires the formulation
of two processes: (1) the biological process (or state process),
which accounts for transitions between the three infection states,
conditional on the survival of individuals in their given state,
and (2) the observation process, which accounts for imperfect
detection of individuals and state uncertainty. The model’s
likelihood is a function of these two processes (20, 21) that can,
in turn, be represented as matrix blocks, as shown below and in
Figure 2.

The matrix for the biological process (SIR_Model)
was the product of two matrices representing transitions
between infection states and survival and was as
follows:

SIR_Model =









S I R D

S φS ∗ (1− β) φS ∗ β 0 1− φS

I 0 φI ∗ (1− γ ) φI ∗ γ 1− φI

R 0 0 φR 1− φR

D 0 0 0 1









(1)

with φS, φIand φR the survival probability of individuals in
S, I and R states, respectively, β the infection probability,
1- β its complement, γ the recovery probability, and 1- γ

its complement. Each entry in the matrix SIR_Model is the
probability of transition from a “starting” infection state (4 rows
corresponding to the infection states S, I, R, and the dead state
D) to a “subsequent” infection state (4 columns corresponding to
S, I, R, and D), conditional on the survival of individuals in their
given state.

The matrix accounting for imperfect detection in the
observation process (Obs1) was as follows:

Obs1 =









nd dS dI dR

S 1− pS pS 0 0
I 1− pI 0 pI 0
R 1− pR 0 0 pR

D 1 0 0 0









(2)

with pS, pI, and pR the detection probability of S, I and R
individuals, respectively, and 1- pS, 1- pI, and 1- pR their
complements. Each entry in the matrix Obs1 is the probability of
being detected in a given infection state. The 4 rows correspond
to the infection states S, I, R, and the dead state D and the 4
columns correspond to the following events: not detected (nd),
individual detected in state S (dS), detected in state I (dI) and
detected in state R (dR).

The matrix accounting for the infection state assignment
process (Obs2) was as follows:

Obs2 =









nd aS aI aR aU

nd 1 0 0 0 0

dS 0 δS 0 0 1− δS

dI 0 0 δI 0 1− δI

dR 0 0 0 δR 1− δR









(3)

with δS, δI, and δR the assignment probability of individuals to
S, I, and R states, respectively, and 1- δS, 1- δI, and 1- δR their
complements. Each entry in the matrix Obs2 is the probability of
being assigned to a given infection state. The 4 rows, equivalent
to the columns of the matrix accounting for imperfect detection
Obs1 correspond to the following events: not detected (nd),
detected in state S (dS), detected in state I (dI) and detected in
state R (dR). The 5 columns correspond to the following events:
not detected (nd), detected and assigned as a S (aS), detected and
assigned as an I (aI), detected and assigned as a R (aR), detected
and assigned as a U (aU).

The product of the detection matrix (Obs1) and the state
assignment process (Obs2) then represents the observation
process (Figure 2). State uncertainty was homogeneous when
δS = δI = δR and heterogeneous when δS 6= δI and δR, or δI
6= δS and δR, or δR 6= δS and δI . Note that the MECMR model
becomes a multi-state CMR model when δS = δI = δR = 1.

Simulations
Data Sets and Input Parameter Values
For all analyses, we considered variation in the level of
uncertainty ranging between 20% and 90% and increased this
level by 10% at each iteration. We set the number of occasions,
corresponding for instance to years of observation, equal to
five to mimic the conditions of most eco-epidemiological CMR
studies, which are typically based on a few years of data collection
during a disease outbreak [e.g. (11, 25)]. For each level of
uncertainty, we simulated 1000 data sets. For this, we first
simulated the “true states” of individuals by applying for each
individual the survival and infection processes captured by the
matrix of the biological process SIR_Model (1) from the first
detection occasion until the last one. Second, we considered the
encounter histories of individuals by applying the observation
process described by the matrices Obs1 (2) and Obs2 (3), for
each individual alive along the sampling period. These three
matrices were implemented with input values for the following
parameters: initial state probabilities (π), the survival probability
(φ) of infection states, the infection probability (β), the recovery
probability (γ ), the detection probability (p) of infection states,
and the assignment probability of infection states (δ).

Input parameter values are presented in Table 1. We
mimicked the case of a virulent disease, which induces lifelong-
immunity, i.e., characterized by a high infection probability,
a low survival probability once infected and a low recovery
probability. The number of new released individuals (i.e.,
previously unmarked), at each occasion, in each state was 12, 24,
and 12, for S, I, and R respectively, to simulate a case where the
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FIGURE 2 | Schematic representation of the SIR dynamics with state uncertainty between two sampling occasions, t and t + 1. The state or biological process (left)

and the observation process (right) underlie the construction of the MECMR model. In the state process [corresponding to the matrix SIR_Model, Equation (1)], solid

circles indicate infection states (S [blue]: “susceptible”, I [orange]: “infected,” R [green]: “recovered”) and the dead state (D, [black]). The solid black arrows indicate

transition probabilities between those states as a function of the probability of surviving in a given state (φi , with i specific for S, I and R), i.e. the probability of staying

susceptible (1 – β), becoming infected (β), staying infected (1- γ ) or recovering (γ ). The observation process was composed of two steps: detection of individuals

[corresponding to the matrix Obs1, Equation (2)], and assignment of infection states [corresponding to the matrix Obs2, Equation (3)]. Events are shown in black solid

boxes. Solid gray arrows indicate the detection probability of individuals in a given state (pj with j being specific for S, I, and R) and the assignment probability of

individuals in a given state (δk with k being specific for S, I and R).

disease already started spreading at the beginning of the study.
Hence, initial state probabilities of S, I and R states were as
follows: πS = 0.33, πI = 0.66, πR = 0.33. We chose this set of
input parameter values because we expected bias to be higher and
precision to be lower than in less virulent disease scenarios, as
suggested by our preliminary runs (not shown).

Definitions of Bias and Precision
At the end of the procedure described above, and for each level
of uncertainty ranging between 20% and 90%, we quantified bias
and precision of parameter estimates. Biases were the differences
between the average of parameter estimates across the 1000
simulations and the “true values” of the parameters (i.e., the
input parameter values shown in Table 1). To assess precision,
we calculated the mean squared error (MSE) as the mean of
the squared differences between simulation outcomes and true
values.

Homogeneity Scenario
To determine the impact of an increasing level of state
uncertainty (from 20 to 90%) on bias and precision, we

TABLE 1 | Fictive input parameter values for the probabilities of surviving (φ),

becoming infected (β), recovering (γ ) and of detection (p), which were used to

simulate data sets.

Parameter Description Estimate

φS Survival probability of susceptible 0.90

φI Survival probability of infected 0.50

φR Survival probability of recovered 0.90

β Infection probability 0.90

γ Recovery probability 0.30

p Detection probability 0.50

We mimic the case of a virulent disease (i.e., high β, low φI, low γ), which induces lifelong

immunity, in a population where animals have a moderate detection probability.

progressively decreased the assignment probability of S, I and
R states by identical values (homogeneity scenario, Figure 1A),
from 0.8 down to 0.1

Heterogeneity Scenario
To determine the impact of heterogeneity in the assignment
probability of infection states on bias and precision when state
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uncertainty increases, we progressively decreased the assignment
probability of S, I and R states from 0.8 down to 0.1 to simulate as
above an increasing level of state uncertainty from 20 to 90%, but
reduced by 50% the value of assignment probability for one state
(e.g., for S) while keeping the two other assignment probabilities
(e.g., for I and R) similar. We repeated this procedure for all three
states (heterogeneity scenario, Figure 1B).

R Programming Code
We used R.3.5.0. (33) for all analyses. We used the R package
“TMB” 1.7.13 (34) to fit MECMR models to simulated data
and perform maximum likelihood estimation. This study is the
first application of the TMB package to MECMR models to
our knowledge. Because in this package models are directly
formulated in C++, TMB speeded up the optimization process
substantially, making the analyses 100 times faster than the native
R code based on a benchmarking analysis.

Case Study
In the Supplementary Material Table S2 we present a similar
analysis as the one described above, where parameter estimates
originate from a MECMR model developed for and fitted to 20
years of data on CDV infection in the spotted hyena (Crocuta
crocuta) population in the Serengeti National Park, in Tanzania
(15). We illustrate using this case study that our simulation
framework can easily be applied to real data.

RESULTS

Overview
When state uncertainty increased from 20% to 90%, bias tended
to increase (in the positive or negative range) for most parameter
estimates, irrespective of whether the increase was homogeneous
across infection states (Table 2, Figure 3) or heterogeneous
(Table 2, Figure 5). Similarly, precision tended to decrease
with increasing state uncertainty (see Table 2 and Figure 4 for
homogeneous state uncertainty and Figure 6 for heterogeneous
state uncertainty). All values for bias and precision are provided
in Table S1.

Homogeneity Scenario
We show (Figure 3) how bias varied with increasing state
uncertainty when we homogeneously decreased the assignment
probability of infection states. The maximal bias (in absolute
values) was 0.2; for the probabilities of infection (β), recovery (γ ),
the detection of S (pS) and I (pI), estimated between 50 and 90
% level of uncertainty (Figure 3, Table S1). For the probabilities
of survival of I (ϕI) and of R (ϕR), the detection of R (pR) and
the assignment of R (δR), bias was below 0.05 in absolute value,
even when state uncertainty was at a maximum (90%) (Table 2,
Figure 3).

In terms of precision, the probabilities of infection (β) and
of detection of S (pS) were the most sensitive parameters to
increasing state uncertainty, reaching an MSE value of 42.0 when
state uncertainty was 90% (Figure 4,Table S1). This was followed
by the detection probability of I (pI) and the recovery probability
(γ ), which reached MSE values of 33.8 and 27.3, respectively,

when state uncertainty was 90% (Figure 4, Table S1). Similar to
the results for bias, the precision of the probabilities of survival of
I (φI) and of R (φR), the detection of R (pR) and the assignment
of R (δR) remained high even when state uncertainty was very
high, as none of these parameter estimates reached an MSE value
strictly higher than 1 (Table 2, Figure 4).

Heterogeneity Scenario
We show (Figure 5) which parameter estimates had a high
bias (i.e., >|0.2|, see Table 2) when state uncertainty was
heterogeneously increased among infection states. All scenarios
(i.e., “hetero S”, “hetero I,” “hetero R”, see Table 2) resulted in
high biases under some conditions (Figure 5). Globally, bias
increased progressively for all parameter estimates shown in
Figure 5, when state uncertainty increased. For the survival
of S (φS), the ranges of bias values and the patterns of bias
increase were similar for two scenarios (“hetero S” and “hetero
R”). For the probability of infection (β), the increase in bias
with increasing state uncertainty was more pronounced for the
“hetero S” scenario than for the two others. Interestingly, bias
for this parameter estimate and for the detection of I (pI) was
at least >|0.1| (Table 2) even when state uncertainty was low
(i.e., 20%). All parameters for the biological process, except
the recovery probability (γ ) (see Table S1) showed a tendency
to being overestimated when state uncertainty increased. In
contrast, the recovery probability showed a tendency to being
underestimated when state uncertainty increased.

For the observation process, the detection probability of S (pS)
showed an increase in bias with increasing state uncertainty that
wasmore pronounced for the “hetero S” scenario than for the two
others (Figure 5, Table 2). For the detection probability of I (pI),
the response to increase in state uncertainty, in terms of bias, was
similar for all three scenarios (Figure 5, Table 2). In all scenarios,
the probability of detection of R (pR) was only biased minimally
(Table 2).

The parameter estimates with the highest bias, as shown in
Figure 5, also had the lowest precision (i.e., MSE >15) (Table 2,
Figure 6). In addition, the recovery probability (γ ) showed a
moderate increase in its MSE value in all scenarios when state
uncertainty increased. The probability of infection (β) reached
the highest MSE value (i.e., 66.8) in the “hetero S” scenario. For
the probability of survival (φS) and the probability of infection
(β) the decrease in precision was more important in the “hetero
S” scenario than in the two others. Interestingly, MSE showed
a marked increase when state uncertainty reached 90% for the
survival probability of S (φS) and the infection probability (β), in
all scenarios.

Overall, the scenario “hetero S” resulted in more parameters
being importantly over- or underestimated and imprecise when
state uncertainty increased (Table 2) than the scenarios “hetero
I” and “hetero R”.

DISCUSSION

Uncertainty about the health status of animals is inherent to
field studies of free-ranging wildlife populations exposed to
naturally occurring pathogens (18, 35). Whereas it is known that
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TABLE 2 | Overview of variation in bias (mean difference between the parameter value estimated via simulations and the input parameter value) and precision (minimum

squared error, MSE) of parameter estimates in relation to an increasing infection state uncertainty (ranging between 20 and 90%) implemented as a decreasing

assignment probability of infection states (ranging between 0.8 and 0.1). Bias and precision were calculated in data sets simulated under different scenarios of assigning

infection states: homogeneous or heterogeneous assignment probabilities, in which the assignment of S (“hetero S”), I (“hetero I”) or R (“hetero R”) states was reduced by

50% in comparison to the two other infection states. We used the following notations for the parameters: φS, φI and φR for the survival probability of individuals in S, I,

and R states, β for the infection probability, γ for the recovery probability, pS, pI and pR for the detection probability and δS, δI and δR for the assignment probability of

individuals in S, I, and R states, respectively. Orange: cases where bias (in absolute value) was >0.1 and ≤0.2 (light orange) and > 0.2 (dark orange). Blue: cases where

precision was > 5 and ≤15 (light blue) and > 15 (dark blue). For simplicity reasons we chose to show these broad categories here and to present the values for bias and

precision in the Supplementary Material Table S1.

FIGURE 3 | Bias (mean difference between the parameter value estimated via simulations and the input parameter value) of parameter estimates as a function of

homogeneously increasing infection state uncertainty. Error bars represent 95% CI. The increasing state uncertainty on the x-axis corresponds to a decreasing

probability of assigning an infection state. We used the following notations for the parameters: φS, φI, and φR for the survival probability of individuals in S, I, and R

states, β for the infection probability, pS, pI and pR for the detection probability and δS, δI and δR for the assignment probability of individuals in S, I, and R states,

respectively.
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FIGURE 4 | Precision (mean squared error, MSE)) of parameter estimates as a function of homogeneously increasing infection state uncertainty. The increasing state

uncertainty on the x-axis corresponds to a decreasing probability of assigning an infection state. We used the following notations for the parameters: φS, φI and φR for

the survival probability of individuals in S, I and R states, β for the infection probability, pS, pI, and pR for the detection probability and δS, δI, and δR for the assignment

probability of individuals in S, I and R states, respectively.

FIGURE 5 | Parameter estimates with a bias greater than |0.2| as a function of a heterogeneous increase in state uncertainty. Error bars represent 95% CI. The

increasing state uncertainty corresponds to a decreasing probability of assigning an infection state. We used the following notations for the parameters: φS for the

survival probability of individuals in the S state, β for the infection probability, pS and pI for the detection probability of individuals in S and I states, respectively.

Scenarios of assignment heterogeneity were reducing by 50% the assignment probability of the S state compared to the assignment probability of the I and R states

(“hetero S” (blue)), reducing by 50% the assignment probability of the I state compared to the S and R states (“hetero I” (red)) and reducing by 50% the assignment

probability of the R state compared to S and I states (“hetero R” (green)).

MECMR models can deal with various types of uncertainty in
the data, previously it was unclear how much infection state
uncertainty could be tolerated to provide reliable estimates of

eco-epidemiological parameters. Here, we tested the robustness
of these models in terms of bias and precision of parameter
estimates when uncertainty about the health status of individuals
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FIGURE 6 | Parameter estimates with a precision (MSE) greater than 15 as a function of a heterogeneous increase in state uncertainty. The increasing state

uncertainty corresponds to a decreasing probability of assigning an infection state. We used the following notations for the parameters: φS for the survival probability

of individuals in the S state, β for the infection probability, γ for the recovery probability , pS and pI for the detection probability of individuals in S and I states, and δS

for the assignment probability of individuals in the S state. Scenarios of assignment heterogeneity were reducing by 50% the assignment probability of the S state

compared to the assignment probability of the I and R states (“hetero S” (blue)), reducing by 50% the assignment probability of the I state compared to the S and R

states (“hetero I” (red)) and reducing by 50% the assignment probability of the R state compared to S and I states (“hetero R” (green)).

in the monitored population increases, mimicking the specific
and extreme case of a virulent disease that induces lifelong
immunity. For most parameter estimates and in all scenarios, we
found a progressive increase in bias and a progressive decline in
precision with increasing state uncertainty. This was expected,
even if in some cases this increase/decline was minimal (Table 2,
Figures 3–6). The results from our simulations indicate that
overall these models are robust in terms of bias to variation in
infection state uncertainty because even at a very high level of
uncertainty in the data set (90%),maximumbias in absolute value
was moderate (0.3 for the probability of infection (β)). The loss
in precision was more important than the increase in bias when
state uncertainty increased, as the MSE values were high when
state uncertainty reached 90% (the highest value being 66.8 for
the probability of infection (β)).

Assignment Probability and Proportion of
Unknown
Here we used the assignment probability of infection states to
model the proportion of unknown infection states in the data set,
rather than modifying the proportion itself in the data set. This
allowed us to know exactly which parameter values were used
as input. We have verified that there was a direct and obvious

correlation between the assignment probability of infection states
and the proportion of individuals in an unknown state in the data
set (results not shown).

Impact of S, I, and R States (SIR Dynamics)
on Bias and Precision
The outcomes from all modeling scenarios indicated that for the
probabilities of survival, detection and assignment of infection
states, the infection state itself had a critical impact on bias and
precision of parameter estimates. The results shown in Table 2

indeed indicate that the bias was highest (and the precision
lowest) for all parameter estimates related to the S state, then
followed by those related to the I state. In contrast, all parameter
estimates linked to the R state showed very little bias (i.e.,≤|0.10|)
and high precision (i.e., MSE ≤5), irrespective of the modeling
scenario.

These results are a likely consequence of the fact that
we modeled disease dynamics under the assumption that the
pathogen induces lifelong immunity—i.e., SIR dynamics where
individuals in the R state can never become S again (Figure 2).
This illustrates for instance the case of morbilliviruses such as
CDV (15), measles, or rinderpest (36), classical swine fever (11)
or rabbit haemorrhagic disease (25). For such types of diseases,

Frontiers in Veterinary Science | www.frontiersin.org 9 August 2018 | Volume 5 | Article 197

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Benhaiem et al. Robustness of Capture-Recapture Parameter Estimates

the final data sets should comprise far more individuals in the R
state—a “final” state, than in the S or the I states. This pattern
should be influenced by the duration of the study and whether or
not the duration of the study matches the duration of the disease
epidemic. If the duration of the study extends well beyond the
duration of the epidemic [as in e.g., (15)], then this may leave
enough time for the pool of S to rebuild, and this pattern may
be attenuated. In contrast, this pattern of a lower bias and higher
precision for parameter estimates linked to the R state may be
particularly apparent when studies are based on just a few years
of data collection during a disease outbreak [e.g., (11, 25)].

In our fictive data sets, this effect may have been further
exacerbated by the fact that we used a very high infection
probability value as input (β = 0.90, see Table 1), which resulted
in the rapid spread of the disease in the population and a
relatively rapid accumulation of individuals in the R state. It
would be interesting to assess if this pattern is also observed for
the I state in SI disease dynamics where the transition from the I
state to the S state is not possible, as for tuberculosis in badgers
(16). Similarly, we would expect the pattern to be absent for
other types of modeled disease dynamics such as avian influenza
(4), where infection does not provide lifelong immunity upon
recovery from infection, and individuals can become S again (e.g.,
SIS or SEISmodels). Our flexible code allows tomodel these other
types of disease dynamics.

Heterogeneity in Assigning S, I, and R
States
Irrespective of any variation in detection probabilities among
infection states, it is likely that infection states will not have
equal probabilities of being assigned in field studies [e.g., (1, 15)].
Such heterogeneity may result from the manifestation of the
disease in the host and/or the diagnostic method employed. For
instance, Faustino et al. (28) observed house finches infected with
conjunctivitis and assigned them to either an infected or not
infected state, based on the observation of clinical signs of the
disease manifested around the bird’s eyes. When (18) reanalyzed
this data set by applying a MECMR model, they found that the
assignment probability varied with infection state. The difficulty
of assigning the infection status of birds observed from a long
distance resulted in a lower assignment of the infected state than
the non-infected state (irrespective of the detection probability).

When infection states are assigned based on the outcome of
one diagnostic test such as “seropositive” and “seronegative”, as
for free-ranging rabbits exposed to rabbit haemorrhagic disease
(25) or bisons exposed to brucellosis (3), we expect heterogeneity
in the assignment of infection states to be minimized as
compared to cases where more than one diagnostic method
is employed [e.g., (11, 15)]. This is because the assignment
of infection states in such cases depends on the performance
of only one type of diagnostic test (e.g., ELISAs to measure
antibody titres) rather than several, which should minimize bias
introduced by the diagnostic approach itself.

To our knowledge, our study is the first to investigate
the impact of such heterogeneity on bias and precision of
capture-recapture eco-epidemiological parameter estimates. We

did not find any striking differences between cases where state
uncertainty varied homogeneously or heterogeneously (Table 2).
However, as mentioned previously, we found that the scenario
“hetero S”, in which the assignment probability of the S state
was half of that of the two others, tended to result in a
higher bias and a lower precision of parameter estimates.
It is probable that the pattern linked to the SIR dynamics
described above is further exacerbated when the assignment
probability of the S state is lower than that of the I and R
states. This suggests that for SIR diseases and other types of
diseases where individuals accumulate in a “final” infection state,
researchers should attempt whenever possible to maximize the
assignment probability of the S state (or any other “starting”
state), e.g., by increasing sampling effort to collect serum, or
at least be aware and mention that these specific parameter
estimates may be biased and imprecise when state uncertainty
is high.

Impact of Our Set of Input Parameter
Values
In this study, we chose to simulate an “extreme” disease
case, characterized by a virulent pathogen inducing life-long
immunity, and high and low probabilities of infection and
recovery, respectively, such as Ebola in western lowland gorillas
(37) or highly pathogenic avian influenza viruses of the H5N1
subtype in humans (38). Our preliminary model runs indicated
that bias and precision of parameter estimates would be more
affected by state uncertainty in this situation than in “milder”
disease scenarios. However, it is possible that our conclusions on
the relatively high robustness of eco-epidemiological parameter
estimates in presence of high levels of state uncertainty are
specific to the set of input parameter values we used. A future
interesting step would thus be to conduct a sensitivity analysis
to assess the importance of key input parameters such as the
probabilities of infection and recovery, survival of infected
individuals or the detection of S,I, and R. For instance, these
probabilities could be varied by 1% within a given range (e.g.,
0.1 and 1), while maintaining the other parameter estimates
constant. Bias and precision of all parameter estimates could
then be estimated at each iteration, for each level of uncertainty.
Other critical parameters may be the number of occasions
and/or the initial probabilities. We chose here a relatively short
time scale (5 occasions) to mimic the conditions of most eco-
epidemiological CMR studies, typically based on a few years of
data collection during a disease outbreak [e.g., (11, 25)]. We
show in the Supplementary Information 2 that our framework
can well be applied to other timescales, such as in longitudinal
long-term research projects, as we used there a far larger number
of occasions (20 years) [e.g., spotted hyenas infected with CDV
in (15)]. All else being equal, we generally expect that bias
and precision of parameter estimates should decrease when the
number of occasions increases. Our framework is highly flexible,
the type of disease dynamics modeled can be modified easily,
and any given set of input parameter values can be tested
to assess bias and precision of eco-epidemiological parameter
estimates.
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State Uncertainty: Partial Observation and
State Misclassification
In this study, we chose to focus on “partial observation”
[of infection states], which occurs when individuals in the
population are observed (alive) but their infection state could
not be determined (12, 15, 18, 23–25). We hence deliberately
ignored “state misclassification”, the other component of the
concept of state uncertainty, which occurs when some individuals
are observed (alive) and their infection state could be assigned,
but with some (unmeasured level of) uncertainty. Although state
misclassification is in fact likely to be widespread, due to false
positive and false negative test results, this type of uncertainty
has largely been ignored (16). Yet recent methodological
developments have been proposed to quantify and account for
it (16, 39). It would be very interesting to investigate the impact
of both types of state uncertainty in the data on bias and
precision of eco-epidemiological parameters using simulations.
Our framework and the codes that we provided could be used as
a starting point.

Conclusions and Study Prospects
In disease ecology, MECMR models improve precision
and decrease bias of parameter estimates by incorporating
unknown infection states instead of censoring them (18).
Using simulations, we showed here that such models produce
relatively unbiased and precise estimates of eco-epidemiological
parameters even when the proportion of individuals in the
U state is high, in conditions akin to the ones we have used
here (see Table 1). As we provide a flexible framework, our
study should be useful to disease ecologists, conservationists
or wildlife managers who may wish to explore the potential
bias in their parameter estimates a posteriori, by adjusting the
values of input parameters, the number of occasions and the
sample sizes (for an illustration, see the case study presented in
the Supplementary Material Table S2). Our framework may be
particularly useful to researchers constrained by non-invasive
sampling approaches to assess the health status of animals
[such as skin swabs in frogs e.g., (39)], as this may result in
a high proportion of unknown infection states in data sets
or heterogeneity in the assignment of infection states. Other
types of disease dynamics can also be modeled, such as SI
dynamics [e.g., (16, 23, 24). As uncertainty in disease ecology
studies may in reality arise from several diverse processes,
which extend well beyond state uncertainty, such as taxonomic
crypticity or a mismatch of sampling and process scales
[see (40) for a detailed review], researchers need to bear in
mind that all potential sources of bias and imprecision, and
their magnitude, should be considered prior to any study
(40).

An interesting area for future research could be to explore
bias and precision along a gradient of both heterogeneity
in the detection and assignment of infection states, when
state uncertainty increases. Here, we did not investigate the
consequences of heterogeneity in detection probabilities among
infection states. Such heterogeneity occurred for instance in a
study of blue tits exposed to malaria, as infected individuals

had higher detection probabilities than uninfected ones (23).
In contrast, in house finches exposed to conjunctivitis (41)
or in badgers to Mycobacterium bovis (16), non-infected
individuals had higher detection/recapture probabilities than
infected ones. It is possible that a high heterogeneity in the
detection of S, I, or R states has a more important influence
on bias than heterogeneity in the assignment of infection
states. We provide here a flexible framework to explore such
effects. Another promising methodological development to
attenuate the effect of uncertainty on bias could be the use
of a Bayesian approach to inform the prior on assignment
probabilities.
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