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The only vaccine ever approved for human tuberculosis was developed a century ago

from an isolate ofMycobacterium bovis derived from a tuberculous cow. Initial safety and

efficacy studies of an attenuated version of this isolate were conducted in cattle and other

animals. In 1921 the first human, an infant, was orally dosed with this attenuated strain

that came to be known as M. bovis bacillus Calmette-Guérin (BCG); named for Albert

Calmette and Camille Guérin, the two French scientists that developed the strain. Since

1921, billions of people have been vaccinated with BCGmaking it the oldest, most widely

used, and safest vaccine in use today. It is also the tuberculosis vaccine most studied for

use in wildlife, including deer. While BCG vaccination of deer may not reliably prevent

infection, it consistently decreases lesion severity, minimizing large, necrotic lesions,

which often contain large numbers of bacilli. It is believed that decreased lesion severity

correlates with decreased disease transmission; however, this hypothesis remains to be

proven. Safety studies in white-tailed deer show BCG may persist in lymphoid tissues

for up to 12 months; a factor to be considered in deer used for food. Beyond efficacy

and safety, methods of vaccine delivery to free-ranging deer are also under investigation,

both in the laboratory and in the field. The ideal delivery method is effective, efficient

and safe for non-target species, including livestock. Ingestion of BCG by cattle is of

special concern as such cattle may present as “false positives” using currently approved

diagnostic methods, thus interfering with efforts by animal health agencies to monitor

cattle for tuberculosis. An effective BCG vaccine for deer would be of value in regions

where free-ranging deer represent a potential source of M. bovis for livestock. Such a

vaccine would also be beneficial to farmed deer where M. bovis represents a serious

threat to trade and productivity.
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INTRODUCTION

Mycobacterium bovis is the cause of tuberculosis in most animal species, including man. Clinical
signs and pathological manifestations ofM. bovis in humans can be identical to infection with the
more common cause of human tuberculosis,Mycobacterium tuberculosis. The range of susceptible
hosts to M. bovis is broad and includes most species of both livestock and wildlife. For decades,
most developed countries have conducted costly campaigns to eradicate tuberculosis from cattle
with varying success (1). In cases where a wildlife reservoir ofM. bovis infection exists, eradication
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has been difficult, if not impossible (2) due to transmission of
M. bovis from livestock to wildlife (spillover) and subsequent
transmission from wildlife back to livestock (spillback). In
northeast Michigan, USA there is a focus of M. bovis infection
in free-ranging white-tailed deer (Odocoileus virginianus) where
infected deer have been implicated as the source of infection
in 69 cattle herds from 1995 through 2017. Control efforts,
including increased hunting have been effective in decreasing
disease prevalence from 4.9% in 1995 to 1.7% in 2004, but
prevalence continues to remain at approximately 2% (3, 4).

In addition to white-tailed deer in the US, there is general
consensus that the European badger (Meles meles) in the
United Kingdom and the Republic of Ireland, the brushtail
possum (Trichosurus vulpecula) in New Zealand, and the
European wild boar (Sus scrofa) in the Iberian Peninsula
represent wildlife reservoirs of M. bovis and can be a persistent
source of re-infection of cattle (5–12). Attempts to control or
eliminate these reservoirs of infection have involved population
reductions through hunting, trapping or poisoning, as well
as physical exclusion of wildlife from cattle feeding areas
through barrier fencing. In all cases, vaccination of wildlife to
reduce wildlife-to-cattle transmission has been investigated, with
some vaccines progressing to field trials (13, 14). The goal of
vaccination is to induce an immune response such that the
animal is resistant to infection or if infection occurs, disease
severity is lessened and transmission is reduced or eliminated.
Thus, a successful wildlife vaccine need not provide complete
protection from infection (15, 16).

Vaccines other than BCG have been successfully used in
wildlife to control rabies in raccoons (Procyon lotor), foxes
(Vulpes vulpes), skunks (Mephitis mephitis) and coyotes (Canis
latrans) in Europe and North America (17–19); plague in North
American black-tailed prairie dogs (Cynomys ludovicianus) (20–
23); and classical swine fever in wild boar (Sus scrofa) in Europe
(24). There have been no widespread efforts to vaccinate wildlife
to control tuberculosis, although there is currently one approved
vaccine for use in European badgers (25) and field trials are
progressing (14).

HISTORY OF BCG

The most studied tuberculosis vaccine in deer, as well as
other wildlife is the attenuated strain of M. bovis known as
bacillus Calmette-Guérin (BCG), named for Albert Calmette and
Camille Guérin, two French scientists at the Pasteur Institute
that developed the strain (26). BCG vaccines are the oldest
vaccines still in use today; moreover, with over four billion
people vaccinated in over 180 countries it is history’s safest and
most widely used vaccine (27) and it remains the only approved
tuberculosis vaccine for humans. Protective immunity in adults
is highly variable, ranging from 0 to 80% depending on the
study (28). In adults, BCG vaccination does not reliably prevent
infection, development of latent tuberculosis, or reactivation
of latent disease (29). However, in infants BCG has proven
beneficial and highly cost-effective in protecting children from
tuberculous meningitis (30, 31).

In 1901, French veterinarian and microbiologist, Edmond
Nocard transferred to Calmette and Guérin a virulent isolate

of M. bovis he had recovered from a cow with tuberculous
mastitis (32). From this isolate, BCG was developed through
continuous subculture on a media composed of ox bile, glycerin
and potatoes. In 1919, after 13 years and 231 subculture passages,
virulence in various animal models was lost (i.e., rabbits, guinea
pigs, cows, horses, hamsters, mice, dogs, chickens, non-human
primates) (33–35). The attenuation of BCG was shown to be
irreversible upon further cultivation on bile-potato medium (36)
and passage through various animal species (33). The first human
was vaccinated in 1921 when an infant was orally dosed with
live BCG. The infant’s mother had died of tuberculosis and the
infant’s caregiver, the grandmother, had clinical tuberculosis. In
spite of what must have been significant exposure to virulent
M. tuberculosis, the child developed normally with no signs
of tuberculosis (33). In the following 3 months after this first
vaccination, 317 infants were vaccinated and by 1924 more than
660 infants had been orally vaccinated (26). Oral, subcutaneous,
intraperitoneal and intravenous routes of administration all
proved safe. Although originally given orally, the current
recommendation for BCG vaccination is intradermal injection
(37). The original BCG was not cloned, but was distributed to
many laboratories worldwide, where the vaccine was propagated,
such that today there are many genetically variant BCG strains,
none of which are identical to each other or to the original vaccine
(26, 32, 38). The various substrains differ in immunogenicity
and potency; a possible reason for historically large ranges of
observed efficacy in human studies around the world (26, 32,
39). Currently, five strains account for >90% of the BCG used
worldwide; Pasteur 1173 P2, Danish 1331, Glaxo 1077, Tokyo
172-1, Russian BCG-I and Moreau RDJ (40). The two strains
most commonly used in deer studies are strains Danish 1331 and
Pasteur 1173 P2. The isolate that would later become BCGDanish
was received directly from Calmette in 1931 by Statens Serum
Institut. In 1960, batch 1331 was freeze-dried and eventually
adopted as the primary Danish 1331 seed-lot in 1966 (32). The
strain Pasteur 1173 P2 originated in 1961; produced from a
colony closely resembling the original descriptions of BCG by
Calmette (32). In white-tailed deer studies, both strains have
demonstrated some degree of protection (41).

Calmette and Guérin recognized in animal studies that
vaccination prevented disease, but did not always prevent
infection (36), a finding consistent with most modern BCG
studies in animals (42–45). Although developed as a vaccine
for humans, it was first proven efficacious in cattle circa
1911. Calmette and Guérin recommended widespread oral BCG
vaccination of neonatal calves, since older calves may have
already been infected with virulent M. bovis (36). Safety studies
in other mammals including horses, sheep, dogs, rabbits, guinea
pigs, non-human primates, rats, mice, chickens, and pigeons
showed no untoward effects (33).

MODEL OF INFECTION

To study vaccine-induced protection, a reliable model of
infection is of paramount importance. The ideal model is
repeatable, technically feasible, and produces disease similar to
that seen in natural infection. The best and most widely used
model of tuberculosis in deer was developed in New Zealand
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using red deer (Cervus elaphus) and a low dose (200–500
colony forming units, CFU) intratonsilar inoculation (46); where
virulent M. bovis is deposited into one or both palatine tonsillar
crypts. Using this model, many experiments were carried out to
identify critical variables in BCG studies, such as dose, route,
boosting and detailed immune responses (47–52). The red deer
model has been extended for use in white-tailed deer (53). In
both deer species, the intratonsilar model results in primary
involvement of the medial retropharyngeal lymph node (46, 53),
the most commonly affected tissue in naturally infected deer
(54–56). The frequent involvement of themedial retropharyngeal
lymph node suggests that the primary route of infection in deer
is oral; although contribution by aerosol cannot be excluded (57–
59). Further supporting a primary oral route of infection is the
finding that experimental infection of white-tailed deer via an
aerosol did not result in lesion distribution similar to natural
infection, but rather resulted in disease focused on the lungs and
pulmonary lymph nodes (60).

VACCINE EFFICACY

Vaccine doses of 104-107 CFU of BCG provided significant levels
of protection against infection and disease (lesion development)
in red deer (51), while 107 CFU (parenteral) and 108 CFU (oral)
demonstrated similar efficacy in white-tailed deer (41, 61, 62).

There are no known antemortem immune responses that
correlate to BCG-induced protection. Measurements of immune
responses to vaccination such as intradermal skin testing
or cytokine production do not predict protection in any
species. Rather, BCG efficacy is measured through postmortem
quantitative or semi quantitative assessments of disease severity,
as well as measuring the level of tissue colonization (63, 64).
Disease severity assessments include subjective scoring of gross
lesions based on size, number, presence of liquefactive or caseous
necrosis or fibrous encapsulation, and the number of tissues
with lesions and from which virulent M. bovis can be isolated.
Protection has also been evaluated by considering the extent and
distribution of lesions, that is, animals with lesions limited to
a single body region are considered more protected than those
with lesions in multiple anatomic locations such as cranial lymph
nodes, thoracic lymph nodes and abdominal organs (41, 43, 61,
62, 65).

In white-tailed deer and red deer, oral (43, 51, 62) or
subcutaneous (41, 43, 51, 61) BCG vaccination results in fewer
lesions, as well as fewer tissues from which virulent M. bovis
may be isolated. Using subjective gross lesion scoring, BCG
vaccination of deer decreases lesion severity and limits disease
dissemination. Microscopic examination of tissues reveals that
vaccinated deer have fewer large necrotic lesions that contain
large numbers of acid-fast bacilli compared to non-vaccinated
animals (41, 43, 61, 62). Both live and inactivated BCG in saline
and oil adjuvant, as well as a recombinant BCG expressing the
inflammatory cytokine IL-2 have been evaluated in red deer
(66, 67). Detailed studies show significant immune responses to
some of these preparations; however, necropsy and pathology
results are not always available from these studies making vaccine

efficacy determination difficult. Studies in red deer have also
shown that a homologous prime boost regime (i.e., two doses 4–
8-weeks apart), further reduces infection and disease (48, 68, 69).
A single study in white-tailed deer demonstrated no significant
difference between a single vaccination and a homologous prime-
boost approach (61). Reduction of disease transmission through
BCG vaccination remains to be demonstrated in deer.

In other wildlife species, the time to seroconversion, and
transmission from adults to offspring have been used to
demonstrate BCG-induced protection in European badgers (13,
14). The median time to seroconversion was significantly longer
for vaccinated badgers (413 days), compared to non-vaccinates
(230 days) (14). In addition to a direct protective effect of badger
vaccination, there was a positive indirect effect on unvaccinated
badger cubs. When at least one third of a badger social group was
BCG vaccinated, the probability of an unvaccinated badger cub
testing positive for M. bovis infection was reduced by 79% (13).
The use of such metrics in deer would be difficult due to differing
social structures, fecundity and biology.

VACCINE DELIVERY

The most efficacious vaccine is of little use if it cannot be
delivered to the target population. An effective means of delivery
requires knowledge of host feeding behavior, climatic effects
on bait matrix composition, environmental survivability of the
vaccine, and bait attractiveness and palatability to the target host.
In most cases the only effective means to vaccinate wildlife is
through an oral bait. Oral vaccines have been used experimentally
to protect white-tailed deer from the prion-based, chronic
wasting disease (70, 71), as well as brucellosis (72).

A variety of oral baits have been evaluated in wildlife.
Dried shell corn has been used to deliver an acaricide to
free-ranging white-tailed deer (73, 74) while Hakim, et al
showed that free-ranging white-tailed deer found a liquid bait
composed of apple juice, water and glycerin palatable; thus a
plausible means of delivering pharmaceutical agents (75). A
molasses-based bait for potential BCG delivery was evaluated
for palatability, attractiveness and stability under various
environmental conditions (76). Although environmentally stable
and attractive for captive deer, field testing demonstrated a lack of
palatability to free-ranging deer. A lipid formulation of BCG has
been used as an oral vaccine for brushtail possums (77, 78), and
European badgers (45, 79). The same BCG lipid-formulated bait
has been used in white-tailed deer, and although vaccination was
achievable (43, 80), deer found the lipid formulation unpalatable.
In Spain, baits prepared from feed mixed with paraffin, sucrose
and cinnamon-truffle powder worked well to deliver BCG to wild
boar (81, 82), but have not been evaluated in deer.

A potential hazard of oral bait vaccines, is the difficulty
of preventing non-target species from consuming the vaccine
bait. Cattle are a non-target species of special interest as it
is possible that BCG ingestion could result in sensitization to
the tuberculin used in intradermal skin testing resulting in
false positive results; thus, confounding accurate identification
of infected cattle (83). Alternative diagnostic tests, able to
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differentiate infected from vaccinated (DIVA) cattle would be
needed to avoid this confounding problem (84–86). In addition
to exposure of non-target species to vaccine, dosage is difficult to
control using oral baits. The effect of higher than recommended
doses of vaccine should be evaluated in the target population. In
red deer, no untoward effects have been seen using subcutaneous
doses of BCG up to 1 × 108 CFU (68); 10–100 times the regular
dose, or in white-tailed deer using oral doses of 1 × 109 (80, 87)
to 1× 1010 CFU; 10–100 times the regular dose.

Studies in red deer did not demonstrate shedding of BCG
from vaccinates to non-vaccinates (66); however, evidence shows
that BCG-vaccinated white-tailed deer shed vaccine and cohorts
can become “secondarily vaccinated” (88, 89). It remains to
be evaluated whether deer vaccinated secondarily through shed
BCG possess any protection against infection with virulent
M. bovis. If secondary vaccination were to provide protection,
this self-disseminating feature could serve to increase vaccine
coverage without additional labor or cost. However, the shedding
of BCG by deer increases the possibility that non-target species
such as cattle could be exposed to BCG. Thus far, indirect contact
of calves with BCG-vaccinated white-tailed deer has not resulted
in deer-to-cattle transfer of BCG (88, 89).

By comparison, orally vaccinated possums and badgers were
shown to shed BCG in feces for up to 7 and 17 days, respectively,
after vaccination (44, 90), while excretion could not be detected
in orally vaccinated wild boar (82).

SAFETY

Vaccine safety may be viewed from both the perspective of either
the vaccinated animal or humans that may come into contact
with vaccinated animals. No untoward effects have been reported
in BCG-vaccinated deer, possums or badgers (66, 91, 92). In
white-tailed deer vaccinated subcutaneously with BCG, but not
challenged with virulent M. bovis, microscopic, but not gross
lesions due to BCG were reported in various lymph nodes
(superficial cervical, tracheobronchial, hepatic) as late as 250 days
after vaccination (41).

Although BCG has proven safe in humans with
uncompromised immune systems, use of BCG in
immunocompromised individuals can result in disseminated
disease, with infection in various organs and body systems
(93, 94). Because BCG may persist in tissues of vaccinated deer,
hunters could potentially be exposed to BCG while field dressing
vaccinated deer and unlike many other wildlife hosts ofM. bovis,
deer may be consumed as food by humans. In BCG-vaccinated
white-tailed deer, vaccine was recovered from lymphoid tissues
up to 12 months after oral dosing of 109 CFU. Lowering the
dose to 108 CFU decreased persistence to 9 months. Persistent
and viable BCG were limited to lymphoid tissues such as
cranial lymph nodes, tracheobronchial, hepatic and mesenteric
lymph nodes. Importantly, samples of muscles commonly
consumed by hunters (epaxial, sublumbar, supraspinatus,
triceps, semimembranosus, semitendinosus and biceps femoris)
did not yield viable BCG at any time point (80, 87). In BCG-
vaccinated red deer, viable vaccine could be recovered from

various lymph nodes and the site of vaccination 14 weeks after
vaccination, although the numbers of recoverable CFU were
extremely low, 32–57 CFU/node and 150–190 CFU/vaccination
site, representing 0.007–0.009% and 0.002–0.003%, respectively,
of the original inoculum dose (2 × 106 CFU) (67). It has been
shown that thoroughly heating meat products to 60◦C (1400 F)
for 6min kills virulent M. bovis (95) and M. avium (96). It is
assumed the same would be true for M. bovis BCG. As humans
generally avoid consumption of lymphoid organs and usually
cook meat before consumption (97), the potential exposure of
humans to BCG from vaccinated deer is very low.

By comparison, BCG has been found in the tissues of orally
vaccinated badgers 30 weeks after vaccination (44) and in
possums 8 weeks after oral vaccination (90). In contrast, BCG
could not be found in the tissues of orally vaccinated wild boar
(82) even when examined 30 days after vaccination (98), an
important finding as wild boar, similar to deer, are often used for
food.

NON-TUBERCULOUS MYCOBACTERIA

Many saprophytic, non-pathogenic species of mycobacteria exist
in soil and water. These mycobacteria may be collectively
described as non-tuberculous mycobacteria (NTM). Numerous
NTM have been isolated from deer (41, 61, 62, 80, 99–
101), some of which were found within lesions consistent
with tuberculosis. Although some studies have suggested that
preexisting sensitivities toM.avium, or other NTM, has no effect
or confers some degree of protection against virulent challenge
(102–106), others show interference with BCG efficacy by NTM
exposure in humans, laboratory animals and cattle (102, 104,
107, 108). One proposed mechanism for this reduced efficacy
is that pre-existing immune sensitivity to NTM restricts BCG
multiplication following vaccination, resulting in dampening of
critical cytokine responses, such as that of interferon-gamma
(108). For this reason, it is recommended that humans and calves
be vaccinated as neonates prior to NTM exposure. It is, as yet
unclear how exposure to NTM affects BCG efficacy in deer.
Vaccination of neonates, although possible in farmed deer, would
prove very difficult in free ranging deer.

FUTURE DIRECTIONS

Self-disseminating Virus-Based Vaccines
One limitation of traditional oral or parenteral vaccination is
the need to administer vaccine to every animal individually.
Furthermore, with many inactivated vaccines, adequate
protection requires subsequent booster vaccinations. In
contrast, self-disseminating vaccines are designed to exploit
replicating virus-based vectors to spread within the target
animal population without the need for individual animal
inoculation (109). Vaccination of a limited number of animals
introduces the vaccine into the target population and the
vaccine is spread naturally as it is shed by vaccinates. Ideal self-
disseminating vaccines are viruses with high immunogenicity
and high horizontal transmission levels, but with a robust
species barrier to minimize infection of non-target species.
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Examples of self-disseminating virus-based vaccines include a
cytomegalovirus-based vaccine targeting deer mice (Peromyscus
maniculatus) to interrupt transmission of Sin Nombre
hantavirus, and a myxoma virus-based vaccine targeting
European hares (Oryctolagus cuniculus) to prevent myxomatosis
and rabbit hemorrhagic disease [reviewed inMurphy et al. (109)].
A similar self-disseminating viral vectored vaccine targeting
white-tailed deer to prevent deer-to-deer and deer-to-cattle
transmission ofM. bovismay one day be possible.

Plant-Based Vaccines
Another alternative to traditional vaccination is the use of plant-
based vaccines (110). Selected immunogenic antigens of the
pathogen are introduced into a plant, creating a recombinant
edible vaccine. Ingestion of the plant material induces a
protective immune response against that particular pathogen.
Plant-based vaccines are cost-effective and amenable to large
scale production (110); moreover, using plants that are part of
the normal diet of the target population minimizes issues of
palatability and acceptance. Edible vaccines have been produced
in tobacco, cereal grains, fruits (banana, tomato), leaves (lettuce,
alfalfa), tubers (potato, carrot), and legumes (cow pea, soybean)
(111).When produced in plants, antigenic proteins of the vaccine
are bioencapsulated in plant cells, to be released when plant cells
are digested bymicrobes of the gut (112). Thismay be particularly
advantageous with diseases such as tuberculosis where mucosal
immune responses are critical. Transgenic carrots, tobacco,
lettuce and arabidopsis expressing M. tuberculosis proteins have
been tested in mice and piglets and shown to induce both
humoral and cell-mediated immunity (112–115).

Inactivated Vaccines
Attenuated live vaccines, like BCG have some drawbacks.
The possibility exists that vaccine shed by vaccinates, may
contaminate not only the environment, but also potentially
expose various non-target species. Use of genetically altered
subunit vaccines may be an alternative; however, there could
be public resistance to the use of genetically altered microbes.
Heat-inactivated M. bovis (oral and parenteral) has been shown
to reduce disease severity in wild boar (82, 116) similar
to protection provided through vaccination with BCG (117),
without risk of environmental contamination or spread to non-
target species. Similarly, heat-inactivated M. bovis has been
shown to decrease disease severity in experimentally infected

red deer (118). Another noted advantage to heat-inactivated
M. bovis is that vaccinated calves did not have false positive
responses in either antibody-based assays or interferon gamma
release assays measuring cell-mediated immune responses
(118) reducing concern that vaccine exposed cattle would
be falsely identified as M. bovis infected during routine
surveillance.

CONCLUSIONS

Between 1940 and 2004, more than 335 emerging infectious
disease events were reported in the scientific literature. The
majority (60%) of those events involved zoonoses, most of
which (72–80%) had an epidemiologically important wildlife host
(119, 120). Controlling or eliminating disease, which has become
established in wildlife is extremely difficult, with seemingly few
solutions, such as population reduction, separation of wildlife
from livestock and disease control through vaccination. Varying
degrees of success have been achieved with rabies, plague and
classical swine fever. In the case of tuberculosis in deer and other
wildlife, the challenge is indeed monumental. In spite of millions
of research dollars and countless hours of research effort toward
a new human vaccine, the only approved vaccine remains one
that is 100 years old and provides questionable protection in some
settings. Far less money and effort have been expended exploring
a vaccine for animal tuberculosis. Nevertheless, there is reason
to be optimistic. Regardless of the species, research to date on
BCG vaccination consistently demonstrates a decrease in disease
severity, which likely results in decreased disease transmission,
and progress is being made in the development of oral baits as
vaccine delivery devices. Moreover, advances are being made in
the next-generation of human vaccines based on BCG (79), some
of which may prove useful for vaccination of deer or other
wildlife.
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