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Cat-borne parasites and their associated diseases have substantial impacts on human,

livestock, and wildlife health worldwide. Despite this, large and detailed datasets that

allow researchers to study broad-scale trends in the ecology of cat-borne diseases

are either difficult to obtain or non-existent. One condition that is easily detected

at slaughter is macroscopic sarcocystosis, a cat-borne parasitosis of sheep (Ovis

aries). We conducted a cross-sectional study to describe the geographic distribution

of sarcocystosis in sheep throughout South Australia and investigate ecosystem

characteristics associated with the presence of disease. Data were obtained from two

slaughterhouses which processed 3,865,608 sheep from 4,204 farms across 385,468

km2 of South Australia’s land mass for the period 2007–2017. A Poisson point process

model was developed to quantify environmental characteristics associated with higher

densities of sarcocystosis-positive farms. Sarcocystosis was highly clustered on a large

island off of the Australian coast and the density of sarcocystosis-positive farms increased

in areas of low soil pH (intensity ratio: 0.86, 95%CI: 0.78, 0.95) and high clay content. We

hypothesize that region was confounded by, and predominately acted as a proxy for, cat

density. Our results have broader implications regarding the health, welfare, economic,

and conservation impacts of other cat-borne parasitosis, such as toxoplasmosis.

Keywords: Sarcocystis, Toxoplasma, point pattern, soil, pH, acidity, risk factor, feral cat

INTRODUCTION

Feral and domestic cats (Felis catus) harbor a range of infectious diseases that impact on the health
and welfare of human and animal hosts (1). However, despite their importance, the majority of
studies on cat-borne diseases are of limited scale, focusing on relatively small populations, and
relatively small numbers of locations. Studies describing or investigating the ecology of cat-borne
diseases at a landscape scale are scarce.

In agricultural areas, cats transmit infections to food animals. Food animals are systematically
inspected pre- and post-slaughter for clinical conditions to control and ensure food quality
and safety. When inspection findings are centrally recorded, they can provide insights into the
frequency and distribution of food animal diseases across wide geographical areas, including
infections of feline origin. One of these conditions, sarcocystosis, can affect meat aesthetics and
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quality, but does not threaten consumer health (i.e., it is not
zoonotic). Sarcocystosis is caused by a protozoan parasite in
the genus Sarcocystis. Sarcocystis spp. generally have a two-
host predator-prey lifecycle, where the carnivorous definitive
host predates on an intermediate host (2). In the intermediate
host, the parasites develop into cysts (termed sarcocysts) within
the skeletal musculature, that vary in size depending on the
Sarcocystis spp. Large sarcocysts that are visible to the naked eye
are described as “macroscopic,” whereas those not visible to the
naked eye are described as “microscopic.”

Macroscopic sarcocystosis in sheep (Ovis aries) (intermediate
host) is caused by two parasites, S. gigantean, and S. medusiformis.
The sexual reproduction of these two parasites occurs in the
digestive tract of the domestic cat, after which sporocysts are
shed in the feces (3, 4). Sporocysts can survive for ∼6–8 months
in the environment (5, 6); they are resistant to freezing (7, 8),
and killed by desiccation (5), although survival is also influenced
by humidity (6). The impact of other environmental factors on
sporocyst survival is not well-known. Sheep are exposed and
infected by consuming contaminated pasture, water or soil (9).
Parasites develop into macroscopic sarcocysts in the musculature
which are detected and recorded during visual inspection of
sheep carcasses at the slaughterhouse (10, 11). At slaughter,
carcasses infected with sarcocystosis are trimmed, or in the case
of highly infected carcasses, the whole carcass is condemned for
human consumption (12). Trimmed carcasses are then boned-
out to facilitate sarcocyst removal, and consequently sold as
a lower quality product. Macroscopic sarcocystosis results in
economic losses for both sheep farmers andmeat processors (13).

In 2007, Primary Industries and Regions South Australia
initiated an ongoing slaughterhouse surveillance program to
monitor sarcocystosis and other health conditions of sheep
farmed across South Australia. Inspection data are recorded from
any farm submitting sheep directly to two major slaughterhouses
within the state. This provides continuous information, spanning
a large, and diverse geographical area, with substantial variation
in environmental and climatic factors to investigate the ecology
of cat-borne diseases.

Our objective was to analyse the slaughterhouse surveillance
data to investigate: (1) the geographic distribution of
sarcocystosis, and (2) identify potential location-dependent
risk factors associated with the occurrence of the disease. We
mapped the geographic distribution of sarcocystosis throughout
South Australia and investigated potential associations with
geographic and climatic factors. A better understanding of
geographic and climatic factors associated with the presence
of infection might support the development of targeted
sarcocystosis control programs.

MATERIALS AND METHODS

Study Population: Slaughterhouse
Surveillance Data
The sarcocystosis data used in our study were collated by Primary
Industries and Region South Australia over the period January
2nd 2007 to December 31st 2017. This dataset includes all sheep

that were directly consigned (i.e., there were no intermediate
movements between farm and slaughterhouse) for slaughter
at the Thomas Foods International slaughterhouses in Murray
Bridge and Lobethal, South Australia.

The slaughterhouse surveillance dataset captures prevalence
estimates by meat inspectors of visible sarcocysts in dressed
carcasses at the flock-level (14). In the remainder of the paper we
use the term “farm” to refer to a geographical area in which sheep
are reared, and “flock” as a consignment of sheep submitted for
slaughter at a slaughterhouse. Using these definitions, multiple
flocks can originate from a single farm throughout the 11 year
study period. These data do not include information on visible
sarcocysts in the offal of sheep and do not differentiate between
carcasses with single or multiple sarcocysts.

We only analyzed data collected for sheep that were >2
years of age. The prevalence of macroscopic sarcocysts in lambs,
defined as sheep <2 years of age, is very low due to the risk of
infection being cumulative and sarcocysts taking time to grow
to a visible size (15). We further restricted the study population
to include only those sheep farms that were located to the south
of the wild dog barrier fence in South Australia (Figure 1). The
dog fence runs continuously for 2,132 km (5,614 km total fence
length) across the middle of the state from east to west, and
was built to protect sheep flocks from dingo (Canis lupus dingo)
predation. Relatively few sheep farms are present to the north
of the dog fence as a consequence of dingo predation and the
effect of excluding these farms on the inferences drawn from our
analyses was reasoned to be low. All sheep included in our study
were assumed to have originated from extensive grazing systems
as relatively few farms in South Australia operate other systems
(feedlots or similar). We are not aware of any parasite treatments
for sheep or cats that could influence the disease status of sheep
or farms.

Data Formatting and Structure
The raw slaughterhouse surveillance data provided information
at the flock level. Flock level data are linked back to their farm of
origin by a unique farm identification code, which is given to all
South Australian farms submitting sheep to the slaughterhouse.
Farm identification codes are managed via a hierarchical system
where they are grouped into zones, and zones grouped into
regions. South Australia is divided into 10 farm identification
code regions; (1) Adelaide Hills/Fleurieu Peninsula, (2) Barossa
Valley/Lower North, (3) Eyre Peninsula, (4) Kangaroo Island,
(5) Lower South East, (6) Mid-South East, (7) Murray Mallee,
(8) Northern Pastoral, (9) Upper-South East, and (10) Yorke
Peninsula/Mid-North. In the remainder of this paper we use the
term “region” to refer to farm identification code region.

We used the slaughterhouse surveillance data on the total
number of sheep within each submitted sheep flock and the
estimated sarcocystosis prevalence for each flock, to back-
calculate the number of sarcocystosis-positive sheep in each
flock. A farm-level dataset was created by pooling sheep-level
data to describe: (1) the number of sarcocystosis-positive sheep
submitted by each farm over the 11-year study period; (2) the
number of sheep submitted by each farm (irrespective of disease
status) over the 11-year study period; (3) the farm-level period
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FIGURE 1 | Sarcocystosis-positive and negative sheep farms, based on

sheep submitted to the Thomas Foods International slaughterhouses in South

Australia, 2007–2017. Solid black line defines the extent of the study region;

the solid blue line represents the dog fence and outlines the northern and

western boundary of the study region; the gray dashed line outlines farm

identification code regions and the South Australian state border. Farm

locations have been jittered by 5 km to obscure the identity of farm locations in

remote areas. Insert—location of South Australia in relation to the remainder of

Australia. Map projection EPSG: 3107 South Australian Lambert, GDA 94.

prevalence of sarcocystosis across the 11-year study period; and
(4) the latitude and longitude of the centroid of each farm. The
farm-level data (farm locations and the information associated
with each location) were used to create two marked point pattern
datasets using the spatstat package (16) in R version 3.5.1 (17).
In this context the term “marked” refers to attribute information
(e.g., the total number of sheep slaughtered by each farm over the
study period) attached to each point location. Two marked point
pattern datasets were created, one for the sarcocystosis-positive
farms, and one for the entire farm population at risk over the 11
year study period.

Data Analyses
Case Definition and Spatial Unit of Interest
Our spatial unit of interest was the centroid of a given sheep farm.
We considered a farm a case/sarcocystosis positive if one or more
sheep submitted to the slaughterhouse by a particular farm over
the entire study period had visible sarcocystosis.

Geographical Distribution of Sarcocystosis Farms
The spatial distribution of a disease can be classified into
two components: broad-scale trends (first-order effects) and
spatial dependence/interaction (second-order effects) (18). For
example, broad-scale trends/first-order effects in the distribution
of sarcocystosis would be predicted to occur due to temperature
or rainfall influencing the survival time of Sarcocystis sporocysts
in the environment, and spatial dependence/second-order effects,

otherwise referred to as spatial autocorrelation, could occur if
the disease status of one farm influenced the disease status
of surrounding farms. To assess broad-scale trends and locate
areas of increased period prevalence of sarcocystosis, we created
a period prevalence density surface. The numerator layer was
the count of sarcocystosis-positive sheep per km2. This layer
was created by weighting each sarcocystosis-positive farm by
the total number of sarcocystosis-positive sheep that the farm
had submitted for slaughter over the 11-year study period. The
denominator comprised the total count of sheep per km2. This
layer was created by weighting each farm (irrespective of disease
status) by the total number of sheep that the farm had submitted
for slaughter over the 11-year study period. In contrast to all
other analyses, we created the sarcocystosis prevalence density
map at the sheep-level to account for the large variation in the
number of sheep submitted to the slaughterhouse by each farm,
and the potential influence of this on within-farm estimated
sarcocystosis period prevalence.

Density surfaces were created using the marked planar point
pattern datasets and a kernel smoothing technique. Here we used
a regular grid of 300 × 300 cells (2.9 km east-west × 3.5 km
north-south) superimposed over the extent of our study area,
with the standard deviation of the Gaussian kernel (that is, the
bandwidth) fixed at 10 km for the positive-sheep density layer
and 15 km for the population sheep density layer. Our reason for
using a larger bandwidth for the sheep population at risk layer
was to deal with the situation where, in areas where the density of
the sheep population at risk was low, small changes in the number
of sarcocystosis positive sheep led to unacceptable variation in the
ratio of the two kernel estimates (19, 20). The bandwidth for the
sarcocystosis positive sheep density layer was determined using
the cross-validation method (21). Maps showing the number of
sarcocystosis positive sheep per 100 sheep per square km based
on the two sheep density layers (described above) were developed
using the sparr package (22) in R. Using this same process, we
then created annual period prevalence density maps for years
2007–2017 inclusive to assess the assumption of stationarity (23).

The presence of spatial dependence or interaction at the
farm-level was assessed by computing Ripley’s empirical K-
function (24, 25) for sarcocystosis-positive and sarcocystosis-
negative farms. The K-function identifies the distance over which
dependence between points occurs (26) and is defined as the
expected number of points that are located within a distance h of
an arbitrary selected point location, divided by the overall density
of points (24). If dependence between points was detected,
sarcocystosis-positive farms would likely be surrounded by other
sarcocystosis-positive farms and, for small values of distance
h, K(h) would be relatively large. Conversely, if sarcocystosis-
positive farms were regularly spaced, each sarcocystosis-positive
farm would likely be surrounded by empty space and, for small
values of distance, K(h) would be small. To facilitate inference,
we created separate K-function plots for sarcocystosis-positive
and sarcocystosis-negative farm locations. For each value of h we
calculated the K-function difference as:

D(h) = K(h)positive − K(h)negative (1)
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For a given h, if sarcocystosis-positive farm locations were
spatially aggregated more than the sarcocystosis-negative farm
locations D h then will appear graphically as a peak, providing
an indication of the nature of dependence and the distance over
which it occurred within the data (20, 26).

Risk Factor Analysis
We compared sarcocystosis-positive farm density (number
positive farms per 100 farms per km2) with raster maps of each
of our hypothesized explanatory variables (Table 1). Explanatory
variables were all expected to potentially impact the time to
desiccation of Sarcocystis sporocysts in the environment, and
consequently sporocyst survival, by increasing or decreasing
sporocyst moisture loss, or rupturing or degrading the sporocyst
wall in some way (2). We included region (described above) to
adjust for unaccounted for variation operating at the regional
level. We did not include cat density (the definitive host of
macroscopic ovine sarcocystosis) as no appropriate layer existed.

We plotted sarcocystosis-positive farm density as a function
of each of the hypothesized explanatory variables using the
rhohat procedure (29) implemented in spatstat (30). Explanatory
variables were selected for multivariable modeling, based on the
presence of a non-erratic (no irregular or unusual spikes), clearly
defined and well-supported association with sarcocystosis-
positive farm density in the rhohat plots. We tested for
collinearity amongst risk factors using variance inflation factors
(VIFs) implemented within the “USDM” package (31). Risk
factors with VIFs exceeding a pre-selected threshold of three (32)
were excluded. The possibility of two-way interactions between
non-collinear candidate explanatory variables were considered,
and none were judged to be biologically plausible.

Poisson point process models fitted in spatstat are expressed in
terms of the Papangelou conditional intensity function (33, 34)
denoted by λ

(u,x). When referring to Poisson point process
models and the Papangelou conditional intensity function, we
use the terms intensity and density interchangeably, in an attempt
tomake our workmore interpretable for non-statistically minded
readers, although we recognize that intensity is more readily
used within the field of spatial statistics. We assumed that the
density of sarcocystosis-positive farms was a loglinear function
of parameters 8 and θ (35):

logλ(u, x) = φTb(u)+ θTS(u, x) (2)

where φTb(u) represents the broad scale (first order) trend
component of the conditional intensity and θTS(u, x) represents
the spatial dependence (second order) component. To capture
non-linear associations between sarcocystosis-positive farm
density and each of our hypothesized explanatory variables for
multivariable modeling, continuous variables were categorized
based on the rhohat plot trends (described above). To model
broad-scale trends, we included an offset term representing
the geographic distribution of all farms that submitted sheep
for slaughter throughout the study period, in addition to each
of the risk factors identified previously to be associated with
sarcocystosis-positive farm density using the rhohat procedure.

Our model offset term was log transformed so that it was on
the appropriate scale for our loglinear model. To assess the
need for a spatial dependence term in our model, we created a
variogram of the standardized model residuals. In a well-fitting
model, the residual variogram should be essentially flat, showing
no evidence of spatial correlation (36). Model selection involved
manual backwards stepwise variable selection considering Akaike
Information Criterion values (37).

Outputs from the point process model were estimated
regression coefficients and their 95% confidence intervals (CI)
for each of the parameterised explanatory variables. For those
explanatory variables that varied on a continuous scale, the
exponent of the regression coefficient is interpreted as the
multiplicative effect of a one unit increase in the value of the
explanatory variable on sarcocystosis-positive farm density. For
categorical explanatory variables, the exponent of the regression
coefficient is interpreted as the multiplicative effect increase or
decrease in sarcocystosis-positive farm density for that level of
the factor compared to the defined reference category. Residuals
from our point process model were assessed using a series of
diagnostic plots (lurking variable plots) to confirm goodness-of-
fit and to identify outliers in the data; all plots were implemented
in spatstat (38, 39).

All figures were created in the spatstat (16) and ggplot2 (40)
packages in R V3.5.1 (17).

RESULTS

Our restricted dataset represented a total of 3,865,608 sheep,
2 years or older, submitted for slaughter at the two study
slaughterhouses originating from 17,341 flocks and from 4,204
farms across 385,468 km2 of South Australia’s landmass (Table 2,
Figure 1) over the 11-year study period. Period prevalence
was low at the farm-, flock- and animal-level across the 11
year study period in all regions of the state, except Kangaroo
Island (Table 2). On Kangaroo Island, the period prevalence of
sarcocystosis was between 14 and 66 times greater than any other
mainland region depending on which level of data hierarchy was
compared (farm-level Vs. flock-level Vs. animal-level) (Table 2).

By visual inspection of annual sarcocystosis period prevalence
densitymaps, there was no obvious or dramatic shift in the spatial
distribution of sarcocystosis across years 2007–2017, suggesting a
largely stationary point pattern. The average sarcocystosis period
prevalence density map (years 2007–2017 grouped together)
identified Kangaroo Island as having a substantially increased
occurrence of sarcocystosis compared to the remainder of the
state (Figure 2). Using the empirical K-function, we identified
spatial dependence in our dataset, consistent with clustering, up
to a distance of 500m from a given farm location.

Soil pH, clay content in the top 0–5 cm of soil, and
region were the only explanatory variables that significantly
influenced (p < 0.05) sarcocystosis-positive farm density in the
reduced Poisson point process model (Table 1 and Table S1,
Figure 3). One unit increases in soil pH decreased the density
of sarcocystosis-positive forms by a factor of 0.86 (95% CI 0.78–
0.95). In contrast, sarcocystosis-positive farm density increased

Frontiers in Veterinary Science | www.frontiersin.org 4 April 2019 | Volume 6 | Article 127

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Taggart et al. Risk Factors for Sarcocystosis

TABLE 1 | Candidate explanatory variables hypothesized to influence the distribution of sarcocystosis.

Candidate explanatory variable Resolution (m) Date range (years) Value range Source

Average annual rainfall 5,000 1961–1990 134–

1019mm

(27)

Average count of days per annum with precipitation >1mm 2,500 1961–1990 16–125 days (27)

Average annual relative humidity measured at 9 a.m. 10,000 1976–2005 46–78% (27)

Average count of frost days per annum (minimum daily temperature ≤ 0
◦

C) 5,000 1976–2005 0–32 days (27)

Annual average of maximum daily temperature 2,500 1961–1990 17–29
◦

C (27)

Annual average of daily sunshine duration 25,000 1990–2003 5–9 h (27)

Clay content in the top 0–5 cm of soil 90 3–42% (28)

Sand content in the top 0–5 cm of soil 90 37–95% (28)

Soil pH 90 3.3–9 (28)

Region 1–10 PIRSAa

aPrimary Industries and Regions South Australia.

TABLE 2 | Regional summary statistics at farm-, flock-, and animal-level, showing number sampled, number positive to sarcocystosis and period prevalence over

2007–2017 period.

Region Total

farms

Positive

farms

Farm period

prevalence %

(95% CI)

Total

flocks

Positive

flocks

Flock period

prevalence %

(95% CI)

Total sheep Positive

sheep

Sheep period

prevalence %

(95% CI)

1 - Adelaide

Hills/Fleurieu

Peninsula

162 10 6.2 (3.4, 11.0) 544 12 2.21 (1.14, 3.82) 90,474 420 0.46 (0.42, 0.51)

2 - Barossa

Valley/Lower North

245 12 4.9 (2.8, 8.4) 815 13 1.60 (0.85, 2.71) 158,864 572 0.36 (0.33, 0.39)

3 - Eyre Peninsula 882 26 2.9 (2.0, 4.3) 3,987 27 0.68 (0.45, 0.98) 852,490 1,347 0.16 (0.15, 0.17)

4 - Kangaroo

Island

310 266 85.8 (81.5, 89.3) 2,475 1,720 69.49 (67.64,

71.31)

502,559 165,244 32.9 (32.8, 33.0)

5 - Lower South

East

214 12 5.6 (3.2, 9.5) 801 13 1.62 (0.87, 2.76) 209,835 394 0.19 (0.17, 0.21)

6 - Mid-South East 283 13 4.6 (2.7, 7.7) 1,111 16 1.44 (0.83, 2.33) 326,934 669 0.20 (0.19, 0.22)

7 - Murray Mallee 671 22 3.3 (2.2, 5.0) 2,480 26 1.05 (0.69, 1.53) 494,355 1,177 0.24 (0.22, 0.25)

8 - Northern

Pastoral

327 7 2.1 (1.0 4.4) 1,496 10 0.67 (0.32, 1.23) 459,976 515 0.11 (0.10, 0.12)

9 - Upper-South

East

347 15 4.3 (2.6, 7.0) 964 16 1.66 (0.95, 2.68) 264,417 764 0.29 (0.27, 0.31)

10 - Yorke

Peninsula/Mid-

North

763 30 3.9 (2.8, 5.6) 2,668 47 1.76 (1.30, 2.34) 505,704 1,578 0.31 (0.30, 0.33)

Total 4,204 413 17,341 1,900 3,865,608 172,680

Region numbers correspond to those shown in Figure 2 and Table 3.

by a factor of 1.45 (95% CI 1.10–1.92) where soil clay content
was ≥16.5% in the top 0–5 cm of soil relative to areas where clay
content was <14.5% in the top 0–5 cm of soil. The density of
sarcocystosis-positive farms on Kangaroo Island was 15.25 (95%
CI 8.04–28.94) times greater than the density of sarcocystosis-
positive farms located in the Adelaide Hills/ Fleurieu Peninsula.
The empirical variogram lies within 95% posterior limits
throughout the plotted region, demonstrating that the fitted
model adequately accounted-for the second-order structure in
the data (Figure 4). Whilst other explanatory variables appeared
to be associated with sarcocystosis risk in the rhohat plots
(Figure S1), they did not increase the explanatory power of our

model. For example, soil sand content appeared to influence
sarcocystosis-positive farm density (Figure S1), although spikes
in the plot corresponded with soil sand content values found
across the majority of Kangaroo Island.

DISCUSSION

Our analyses show a marked heterogeneous distribution of
macroscopic ovine sarcocystosis across South Australia with
a clear hotspot on Kangaroo Island. Kangaroo Island had a
modeled density of sarcocystosis-positive farms∼15 times higher
than the Adelaide Hills/Fleurieu Peninsula region and 12 times
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TABLE 3 | Estimated regression coefficients and their standard errors from the

reduced Poisson point process model of variables associated with

sarcocystosis-positive farm density.

Explanatory variable Coefficient

(SE)

P-value Density ratioa

(95% CI)

Intercept 11.49 (0.42)

Soil pH −0.15 (0.05) 0.003 0.86 (0.78, 0.95)b

Soil clay content (%)

<14.5 Reference 1.0

≥14.5 < 16.5 0.24 (0.13) 0.07 1.27 (0.99, 1.63)

≥16.5 0.37 (0.14) 0.008 1.45 (1.10, 1.92)

Region (number – name):c

1 - Adelaide Hills/Fleurieu

Peninsula

Reference 1.0

2 - Barossa Valley/Lower

North

0.09 (0.43) 0.83 1.09 (0.47, 2.52)

3 - Eyre Peninsula −0.44 (0.39) 0.27 0.65 (0.30, 1.40)

4 - Kangaroo Island 2.72 (0.33) <0.001 15.25 (8.04, 28.94)

5 - Lower South East 0.22 (0.44) 0.62 1.25 (0.52, 2.98)

6 - Mid-South East −0.08 (0.43) 0.85 0.92 (0.40, 2.14)

7 - Murray Mallee −0.19 (0.40) 0.65 0.84 (0.38, 1.82)

8 - Northern Pastoral −0.85 (0.50) 0.09 0.43 (0.16, 1.14)

9 - Upper-South East −0.07 (0.41) 0.86 0.93 (0.42, 2.08)

10 - Yorke

Peninsula/Mid-North

−0.29 (0.38) 0.45 0.75 (0.35, 1.59)

Data represent sheep more than 2 years old submitted to the Thomas Foods

slaughterhouses in South Australia, 2007–2017. Bold, significant factors. SE, standard

error; CI, confidence interval.
aDensity ratio equals the exponent of the estimated regression coefficient for each

explanatory variable.
b Interpretation: after controlling for the confounding effect of region in which a farm was

located, one unit increases in soil pH decreased the density of sarcocystosis-positive

farms by a factor of 0.86 (95% CI 0.78–0.95).
cRegion refers to farm identification code regions used by Primary Industries and Regions

South Australia, and corresponds to those shown in Figure 2 and Table 2.

higher than any other region. In addition to a regional difference,
the occurrence of sarcocystosis was decreased by alkaline soils
and increased by soil clay content. A one unit increase in soil pH
corresponded to a 14% reduction in the density of sarcocystosis-
positive farms, and sarcocystosis-positive farm density increased
by∼45% in soils with≥ 16.5% soil clay content in the top 0–5 cm
of soil relative to soils with <14.5% soil clay content.

Kangaroo Island is situated ∼14 km off the South Australian
coast line, with the Adelaide Hills/Fleurieu Peninsula region
being the closest mainland region. Both Kangaroo Island and the
Adelaide Hills/Fleurieu Peninsula have similar Mediterranean
climates (41, 42), land uses (predominately agriculture) and
vegetation communities (41, 43). One major difference between
these two regions is the abundance of feral cats. We recently
identified an∼11-fold greater relative abundance of feral cats on
Kangaroo Island compared with the Fleurieu Peninsula (44). Cats
are the definitive host of S. gigantea and S. medusiformis (3, 4), the
parasites responsible for macroscopic sarcocystosis in sheep. We
therefore suspect that region predominately acts as a proxy for cat
density within the Kangaroo Island and Adelaide Hills/Fleurieu
Peninsula regions, and likely across South Australia. We

FIGURE 2 | Raster image showing the estimated prevalence of sarcocystosis

in sheep >2 years of age submitted to the Thomas Foods International

slaughterhouses in South Australia, 2007–2017. Data were log-transformed

for plotting to facilitate detection of high- and low-risk areas, as the estimated

prevalence of sarcocystosis on the mainland is relatively low. The solid blue line

represents the dog fence and outlines the northern and western boundary of

the study region; the gray dashed line delineates the farm identification code

regions/numbers as listed in Tables 2, 3. Map projection is EPSG: 3107 South

Australian Lambert, GDA 94.

expect that active and consistent cat management on Kangaroo
Island would produce long-term reductions in macroscopic
sarcocystosis in the island’s sheep, with cat eradication expected
to result in the complete eradication of sarcocystosis by means
of breaking the parasite’s life cycle. Whilst other methods of
reducing sarcocystosis burden on Kangaroo Island are potentially
possible, such as collecting, burying or burning sheep carcasses
and offal on farms, or treating all cats with anti-parasitic drugs,
these methods are not practical or feasible, particularly at large
geographic scales, and where large populations of feral cats exist.

We believe our study is the first to describe the impact of soil
pH and clay content on sarcocystosis in sheep, and first to provide
evidence from the field suggesting that soil pH and clay content
may influence the survival of Sarcocystis spp. sporocysts in the
environment. Similar relationships have however been reported
for parasites closely related to Sarcocystis spp. For example,
there is evidence that increased soil pH decreases the probability
of detecting oocysts of Cryptosporidium spp. in the soil (45),
although another study found no evidence for a relationship
between soil pH and Cryptosporidium spp. oocyst viability
(46). Similarly, soil clay content has previously been suggested,
to influence the survival of Toxoplasma gondii oocyst in the
environment (47), and Cryptosporidium parvum oocysts are
known to associate with clay particles over time (48) due to their
higher cation exchange capacity (49), although experimental
studies have suggested that Cryptosporidium parvum oocysts
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FIGURE 3 | Ratio of sarcocystosis-positive farm density to population farm density as a function of soil pH (A) and clay content (%) in the top 0–5 cm of soil

(B) estimated across South Australia using the rhohat procedure. The solid line shows function estimate; gray shading is pointwise 95% confidence band. The vertical

dashes along the horizontal axis represent individual data points. The horizontal dashed line represents the null association (density of sarcocystosis-positive farms

equals the density of all farms at risk). Interpretation: for those areas in the study area where soil pH was ∼5 the intensity of sarcocystosis-positive farms was ∼2 times

that of all farms at risk. Data represent 4,204 sheep farms that submitted sheep for slaughter during the period 2007–2017.

FIGURE 4 | Empirical variogram fitted to the posterior mean of the

standardized residuals from reduced Poisson point process model explaining

sarcocystosis-positive farm density. Dashed lines show the pointwise 95%

posterior intervals constructed from 999 simulated realizations of the fitted

spatial model.

have reduced survival in silt clay loam, compared to silt loam
and loamy sand (50). If the viability of Sarcocystis spp. sporocysts
does decrease with increasing soil pH, as suggested by our study,
the spreading of agricultural lime across pastures may be used
to mitigate macroscopic sarcocystosis in sheep. Agricultural lime

is commonly spread across pastures to increase soil pH and
reverse soil acidification (51) and could additionally be used to
decrease the survival of Sarcocystis spp. sporocysts in the soil.
The re-application of lime may however be necessary for long-
term reductions in disease occurrence, deeming it un-feasible.
Furthermore, the effectiveness of agricultural lime to reduce the
survival of Sarcocystis spp. sporocysts at a large scale remains to
be tested.

We found that the average count of frost days per annum
(minimumdaily temperature≤0

◦

C) did not influence the density
of sarcocystosis-positive farms, consistent with previous findings
that Sarcocystis spp. sporocysts are resistant to freezing (7, 8).
Sarcocystis spp. sporocysts have previously been suggested to be
killed by desiccation (5, 6) and candidate explanatory variables
were selected based on predictions that they may influence
the time to desiccation of sporocysts. However, the availability
and resolution of candidate explanatory variable data may have
negatively impacted on our ability to detect interacting factors
and to more precisely tease out the influence of two competing
variables in our analysis, for example the influence of rainfall or
temperature Vs. cat density on sarcocystosis risk.We suspect that
an adequate cat density data layer would be particularly beneficial
in future analyses to help tease out possible variable interactions.
Whilst soil sand content appeared to influence sarcocystosis
risk in the rhohat plots, spikes in the plot corresponded with
soil sand content values found across the majority of Kangaroo
Island, explaining why this variable was not included in our
reduced model.

We did not include a spatial dependence term in our model,
due to the empirical variogram of the standardized residuals from
the fitted model demonstrating no evidence of spatial clustering
without the inclusion of this term, but we did identify spatial
dependence in our data out to a distance of∼500m using Ripley’s
empirical K-function. Spatial dependence is most commonly

Frontiers in Veterinary Science | www.frontiersin.org 7 April 2019 | Volume 6 | Article 127

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Taggart et al. Risk Factors for Sarcocystosis

observed for infectious diseases, and represents the influence of
an infected property/animal on the disease status of surrounding
properties/animals. Sarcocystosis is however a non-infectious
disease, and hence spatial dependence in our data suggests that
cats consume Sarcocystis sarcocysts in infected sheep on one
property and subsequently shed infective sporocysts into the
environment on adjacent properties out to a distance of∼500m.
Whilst cat home ranges throughout our study region are known
to have a greater radius than 500m (52), this distance may be
broadly representative of the radius of the average cats’ core home
range area, particularly on Kangaroo Island where cat density is
high (46) and the majority of sarcocystosis-positive farms cluster.

Identifying the possible influence of soil pH and clay content
on sarcocystosis is one example of where landscape scale studies
can provide insights into little known aspects of the ecology
of cat-borne diseases. One obvious limitation to conducting
landscape scale studies is the availability of suitable landscape
data of adequate scale and resolution. For example, we could not
access an appropriate cat density or ultraviolet radiation layer
that provided sufficient scale, resolution, quality, and variability
across our study area to be of use in risk factor analysis;
despite both variables being hypothesized to be important in
explaining the distribution of sarcocystosis. In the absence of
landscape scale data, proxies can provide appropriate insights
if a strong association between the proxy and the outcome of
interest has been demonstrated. The Sarcocystis spp. responsible
for the development of macroscopic sarcocystosis in sheep are
particularly closely related to Toxoplasma gondii, and both share
similar biology and lifecycles. Consequently, we would predict
that macroscopic sarcocystosis in sheep could potentially be
utilized as a proxy of T. gondii infection in sheep, and that our
findings are of relevance to other protozoal parasites other than
Sarcocystis spp., although this association remains to be tested.

In our study, the influence of region on macroscopic
sarcocystosis in sheep indicates unequal economic impacts
throughout the sheep industry for this disease. We are aware of
one regional slaughterhouse in South Australia that no longer

processes Kangaroo Island sheep >2 years of age due to its
high occurrence of macroscopic sarcocystosis. Whilst we have
highlighted two potential methods of reducing sarcocystosis
burden in sheep, it is likely that cat management is currently the
most feasible and sustainable.
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