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Restrictions of in-feed antibiotics use in poultry has pushed research toward finding

appropriate alternatives such as Direct-Fed Microbials (DFM). In this study, previously

tested Bacillus isolates (B. subtilis and B. amyloliquefaciens) were used to evaluate

their therapeutic and prophylactic effects against Salmonella enterica serovar Enteritidis

(S. Enteritidis) in broiler chickens. For this purpose, initial antibacterial activity of

Bacillus-DFM (104 spores/g or 106 spores/g) against S. Enteritidis colonization in

crop, proventriculus and intestine was investigated using an in vitro digestive model.

Furthermore, to evaluate therapeutic and prophylactic effects of Bacillus-DFM (104

spores/g) against S. Enteritidis colonization, altogether 60 (n = 30/group) and 30

(n = 15/group) 1-day-old broiler chickens were randomly allocated to either DFM or

control group (without Bacillus-DFM), respectively. Chickens were orally gavaged with

104 cfu of S. Enteritidis per chicken at 1-day old, and cecal tonsils (CT) and crop

were collected 3 and 10 days later during the therapeutic study, whereas they were

orally gavaged with 107 cfu of S. Enteritidis per chicken at 6-day-old, and CT and crop

were collected 24 h later from two independent trials during the prophylactic study.

Serum superoxide dismutase (SOD), FITC-d and intestinal IgA levels were reported

for both chicken studies, in addition cecal microbiota analysis was performed during

the therapeutic study. DFM significantly reduced S. Enteritidis concentration in the

intestine compartment, and in both proventriculus and intestine compartments as

compared to the control when used at 104 spores/g and 106 spores/g, respectively

(p < 0.05). DFM significantly reduced FITC-d and IgA as well as SOD and IgA

levels (p < 0.05) compared to the control in therapeutic and prophylactic studies,

respectively. Interestingly, in the therapeutic study, there were significant differences in

bacterial community structure and predicted metabolic pathways between DFM and

control. Likewise, phylum Actinobacteria and the genera Bifidobacterium, Roseburia,
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Proteus, and cc_115 were decreased, while the genus Streptococcus was enriched

significantly in the DFM group as compared to the control (MetagenomeSeq, p < 0.05).

Thus, the overall results suggest that the Bacillus-DFM can reduce S. Enteritidis

colonization and improve the intestinal health in chickens through mechanism(s) that

might involve the modulation of gut microbiota and their metabolic pathways.

Keywords: Bacillus, broiler chickens, Salmonella Enteritidis, antimicrobial, anti-inflammatory (activity)

INTRODUCTION

Antibiotics have been widely used in animal production
for decades not only for therapeutic purposes, but also as
antimicrobial growth promoters (AGPs) to enhance growth
rate and feed conversion efficiency (1, 2). Although the use of
AGPs has a significant positive economic impact in commercial
animal production systems, there is a greater concern regarding
possibilities of their use in developing antimicrobial resistance
(AMR) in bacterial populations. Because of this reason, the use
of in-feed antibiotics has been completely banned in Europe
since January 1st, 2006 (EC Regulation No. 1831/2003) and has
also been restricted in several non-European countries, including
Taiwan and South Korea (3). Since January 2017, medically
important antibiotics to human health are no longer allowed in
animal production for growth promotion or feed efficiency in
the United States and require licensed veterinarian prescription
to use them for prevention, control, and treatment of animal
diseases (FDA’s Guidance #213).

The poultry industry is the fastest growing animal industry
and is expected to grow continuously as demand for meat
and eggs is accelerating due to growing populations, increasing
incomes and urbanization (4). However, due to ban or
restrictions on AGPs, there are growing challenges for the poultry
industry to cope with enteric pathogens such as Salmonella. This
has created huge demand for finding alternatives to AGPs, and
thus several possible alternatives such as enzymes (in), organic
acids, probiotics, prebiotics, etheric oils, and immunostimulants
have already been widely studied (2, 5).

Among those alternatives, probiotics or Direct-FedMicrobials
(DFM), which were defined as “a live microbial feed supplement
that beneficially affects the host animal by improving its intestinal
microbial balance” (6), have generated significant interest during
the last two decades to all sectors of animal production. The
majority of microbes used as DFM are bacteria that belong
to around 40 different species in 7 bacterial genera including
Lactobacillus, Bifidobacterium, Propionbacterium, Enterococcus,
Pediococcus, Bacillus, and Bacteroides. In addition to these
bacteria, yeast (Saccharomyces cerevisiae) and molds (Aspergillus
niger and Aspergillus oryzae) were also reported as DFM (7).
Moreover, certain strains of Clostridium such as Clostridium
butyricum MIYAIRI 588 were also used as potential probiotics
(8). Unlike other bacteria whose vegetative cells are used as
DFM, spores from Bacillus sps. can be used as DFM because
they are more stable and heat tolerant (9–11), and thus well-
suited for its application in pelleted feeds (12). Previous studies
reported the ability ofBacillus spores to germinate and enumerate

within the gastrointestinal tract of the poultry (13–15). In
poultry, several studies have reported beneficial effects of
Bacillus isolates when used as DFM on production parameters
and pathogen inhibition (16–18), which might be achieved
through increasing nutrient digestibility, improving intestinal
morphology, balancing intestinal microbiota, and modulating
immunity (19–21). Moreover, our previous studies based on the
selected candidates of Bacillus sps. reported the reduction in the
recovery of Salmonella Typhimurium in both chicks and poults
after experimental infection in preliminary laboratory trials (22)
as well as in poults during the brooding phase of commercial
turkey production (12). However, the modes of action for
improved performance by Bacillus species were not well-defined,
and performance parameters were varied within species or
strains, demanding appropriate screening and characterization of
Bacillus isolates prior to commercialization (23).

NorumTM (Eco-Bio/Euxxis Bioscience LLC, Fayetteville, AR)
is a Bacillus spore direct DFM culture consisting of two isolates
of Bacillus amyloliquefaciens and one isolate of Bacillu subtilis
which were isolated in our laboratory and screened based on
in vitro enzyme production profiles and Clostridium perfringens
reduction (24). In addition, these isolates were shown to reduce
digesta viscoscity, bacterial translocation, improve performance,
bone quality parameters, and balance intestinal microbiota in
chickens raised with rye-based diets or corn distiller-dried
grains with solubles (21, 25). However, the effect of dietary
supplementation of NorumTM has not been evaluated in vivo
in an established Salmonella challenge model until now. Thus,
the objectives of this study were to evaluate the antimicrobial
effects of NorumTM DFM against S. Enteritidis in an in vitro
digestion model that simulates the pH and enzymatic conditions
present in the crop, proventriculus, and intestine of broiler
chickens, as well as the therapeutic and prophylactic effects
against S. Enteritidis colonization in crop and cecal tonsil (CT),
aside from its effects on intestinal health parameters, and cecal
microbiota composition in broiler chickens.

MATERIALS AND METHODS

Preparation of Treatments and Diets
NorumTM (Eco-Bio/Euxxis Bioscience LLC, Fayetteville, AR)
is a Bacillus spore DFM culture consisting of three isolates:
two Bacillus amyloliquefaciens and one Bacillu subtilis. The
product contains a concentration of stable Bacillus spores (∼3
× 1011 spores/g). DFM was added into the feed to obtain
the experimental diet with a final concentration of 104 or
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106 spores/g feed. Samples of feed containing the DFM were
subjected to 100◦C for 10min to eliminate vegetative cells and
validate the number of spores per gram of feed after inclusion
and mixing steps. Following heat treatment, 10-fold dilutions
of the feed samples were plated on TSA, letting spores in the
feed sample germinate to vegetative cells after incubation at
37◦C for 24 h, hence representing the number of spores present
per gram of feed. The experimental diet used in this study
was formulated to approximate the nutritional requirements
of broiler chickens as recommended by the National Research
Council (26), and adjusted to breeder’s recommendations (27).
No antibiotics were added to the diet (Supplementary Table 1).
All animal handling procedures complied with the Institutional
Animal Care and Use Committee (IACUC) at the University of
Arkansas, Fayetteville (protocol #18030).

Bacterial Strain and Culture Conditions
The organism used in all experiments was a poultry isolate
of Salmonella enterica serovar Enteritidis (S. Enteritidis),
bacteriophage type 13A, obtained from the USDA National
Veterinary Services Laboratory (Ames, IA, United State). This
strain was resistant to 25µg/mL of novobiocin (NO, catalog
no.N-1628, Sigma) and was selected for resistance to 20µg/mL of
nalidixic acid (NA, catalog no.N-4382, Sigma) in our laboratory.
For the present studies, 100 µL of S. Enteritidis from a frozen
aliquot was added to 10mL of tryptic soy broth (Catalog no.
22092, Sigma), incubated at 37◦C for 8 h, and passed three times
every 8 h to ensure that all bacteria were in log phase as previously
described (28). Post-incubation, bacterial cells were washed three
times with sterile 0.9% saline by centrifugation at 1,864 × g for
10min, reconstituted in saline, quantified by densitometry with
a spectrophotometer (Spectronic 20D+, Spectronic Instruments
Thermo Scientific, Rochester, NY, United States), and finally
diluted to an approximate concentration of 1 × 108, 4 × 104,
and 4 × 107 cfu/mL. Concentrations of S. Enteritidis were
further verified by serial dilution and plating on brilliant green
agar (BGA, Catalog no. 70134, Sigma) with NO and NA for
enumeration of actual cfu used to in the experiments.

Experiment 1. In vitro Digestion Model
In this experiment, the antimicrobial activity of two different
concentrations of DFM (104 or 106 spores/g) against
S. Enteritidis was determined using an in vitro digestion
model described previously (24, 29) that simulates the pH and
enzymatic conditions present in the crop, proventriculus, and
intestine of broilers. Experiments were run in quintuplicate.
Briefly, 5 g of feed with or without DFM was placed inside 50mL
polypropylene centrifuge tubes, followed by the addition of
1ml of 1 × 108 cfu/mL S. Enteritidis suspension in each tube.
Subsequently, the media and corresponding enzymes to simulate
each compartment of the in vitro digestion model were added
to the tubes, respecting the stirring conditions and incubation
times established. Finally, in each compartment, 1mL of sample
was collected to enumerate S. Enteritidis.

Experiment 2. Effect of Therapeutic
Administration of DFM on S. Enteritidis
This experiment was performed to evaluate the therapeutic
effect of 104 spores/g DFM in broiler chickens infected with
S. Enteritidis. Sixty 1 day-old male Cobb-Vantress broiler
chickens (Fayetteville, AR, USA) were challenged with 1 ×

104 S. Enteritidis cfu per bird and randomly allocated to one
of two groups (n = 30 chickens/group): (1) control group
challenged only with S. Enteritidis and (2) DFM group challenged
with S. Enteritidis and also with 104 spores/g NorumTM. On
days 3 and 10 post-S. Enteritidis challenge, 15 chickens were
euthanized by CO2 inhalation, and the crop and CT from 12 birds
per group were aseptically collected to evaluate S. Enteritidis
recovery. Blood samples were collected from the femoral vein
and centrifuged (1,000 × g for 15min) to separate the serum for
the determination of fluorescein isothiocyanate-dextran (FITC-
d) concentration and superoxide dismutase (SOD) activity at day
10. The concentration of FITC-d administered was calculated
based on group body weight at day 9 post-S. Enteritidis challenge.
Furthermore, intestinal samples for total intestinal IgA levels
were also collected.

Experiment 3. Effect of Prophylactic
Administration of DFM on S. Enteritidis
In this experiment, two independent trials were conducted to
evaluate the prophylactic administration of 104 spores/g DFM
in reducing the incidence of S. Enteritidis in broiler chickens. In
each trial, 30 day-of-hatch male Cobb-Vantress broiler chickens
(Fayetteville, AR, USA) were randomly allocated to one of two
groups (n= 15 chickens): (1) control group challenged only with
S. Enteritidis and (2) DFM group challenged with S. enteritidis
and also with 104 spores/g NorumTM. Chicks were placed
in heated brooder batteries with a controlled age-appropriate
environment and provided with their respective diet and water
ad libitum. At day 6, all chickens were orally gavaged with 1
× 107 cfu of S. Enteritidis per bird. Chicks were euthanized by
CO2 inhalation 24 h post-S. Enteritidis challenge, and the crop
and CT from 12 birds per group were aseptically collected to
evaluate S. Enteritidis recovery. Blood samples were collected
from the femoral vein and centrifuged (1,000 × g for 15min) to
separate the serum for the determination of FITC-d and SOD.
The concentration of FITC-d administered was calculated based
on group body weight at 6 d old. Furthermore, intestinal samples
for total intestinal IgA levels were also collected.

Salmonella Recovery
The crop and CT collected in experiments 2 and 3 were
homogenized and diluted with saline (1:4 w/v), and 10-fold
dilutions were plated on BGA with NO and NA, incubated at
37◦C for 24 h to enumerate total S. Enteritidis colony forming
units. Following plating to enumerate total S. Enteritidis, the crop
and CT samples were enriched in double strength tetrathionate
enrichment broth and further incubated at 37◦C for 24 h.
Enrichment samples were streaked onto Xylose Lysine Tergitol-
4 (XLT-4, Catalog No. 223410, BD DifcoTM) selective media for
confirmation of Salmonella presence.

Frontiers in Veterinary Science | www.frontiersin.org 3 August 2019 | Volume 6 | Article 282

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Adhikari et al. Antimicrobial and Anti-inflammatory Properties of Bacillus-DFM

Serum Determination of FITC-d Leakage
FITC-d (MW 3-5 KDa; Sigma-Aldrich Co., St. Louis, MO) was
used as a marker of paracellular transport and mucosal barrier
dysfunction (30, 31). In both in vivo experiments, 1 h before the
chicks were euthanized by CO2 inhalation, 12 broiler chickens
from each group were given an oral gavage dose of FITC-d
(8.32 mg/kg of body weight) and the rest were used as controls.
The concentrations of FITC-d from diluted sera (1:5 PBS) were
measured fluorometrically at an excitation wavelength of 485 nm
and an emission wavelength of 528 nm (Synergy HT, Multi-mode
microplate reader, BioTek Instruments, Inc., VT, USA). FITC-d
concentrations were reported as ng of FITC-d/mL of serum (31).

Enzyme-Linked Immunosorbent Assay for
Total IgA Levels
Total IgA levels in both in vivo experiments were determined
in 12 gut rinse samples each as previously described (32).
A commercial indirect ELISA set was used to quantify IgA
according to the manufacturer’s instructions (Catalog No. E30-
103, Bethyl Laboratories Inc., Montgomery, TX 77356). Ninety
six-well plates (Catalog No. 439454, Nunc MaxiSorp, Thermo
Fisher Scientific, Rochester, NY) were used, and samples diluted
to 1:100 were measured at 450 nm using an ELISA plate
reader (Synergy HT, multi-mode microplate reader, BioTek
Instruments, Inc., Winooski, VT, USA). Total intestinal IgA
levels obtained were multiplied by the dilution factor (100) to
determine the amount of chicken IgA in the undiluted samples.

SOD Determination
SOD activity was measured in 12 serum samples per group using
a commercial assay kit (item No. 706002, Cayman chemical
company, Ann Arbor, Michigan, United States) following the
manufacturer’s instructions. The three types of SOD (Cu/Zn,Mn,
and FeSOD) were determined in samples diluted to 1:5. Samples
were measured at 450 nm using an ELISA plate reader (Synergy
HT, multi-mode microplate reader, BioTek Instruments, Inc.,
Winooski, VT, USA).

Data and Statistical Analysis
Log cfu/g of S. Enteritidis, total intestinal IgA, SOD activity
and serum FITC-d concentrations were subjected to analysis
of variance (ANOVA) as a completely randomized design
using the General Linear Models procedure of SAS (33).
Significant differences among the means were determined by
Duncan’s multiple-range test at p < 0.05. Enrichment data
were expressed as positive/total chickens (%), and the percent
recovery of S. Enteritidis was compared using the Chi-Squared
test of independence (34), testing all possible combinations to
determine the significance (p < 0.05).

Cecal Microbiota Analysis
DNA Extraction and PCR
Six cecal samples from each group (control and DFM groups)
from the therapeutic study at day 10 post-S. enteritidis challenge
were used for the cecal microbiota study. DNA extraction, PCR,
and library preparation were similar as described earlier (5, 35).
In brief, about 200mg of ileal content from each sample was

used for genomic DNA extraction using QIAamp R© fast DNA
stool mini kit (Qiagen, Catalog # 51604) followingmanufacturer’s
instructions with addition incorporation of bead beating step.
For bead beating, a pellet from each sample was resuspended in
1ml inhibit Ex buffer provided with kit and transferred to 2ml
microcentrifuge tubes with screw cap (Thermofisher Scientific,
Catalog # 3468) containing 0.25ml of sterile 0.1mm glass leads
(BioSpec, Mfr # 11079101). Bead beating was performed using
Bead mill 24 (Fisher Scientific) for 6 cycles where each cycle
contained a run time of 0.30 s and stopping time of 0.11 s between
each cycle. The V1-V3 region of 16S rRNA gene from each
10 ng genomic DNA samples was amplified by using unique
barcoded universal primers as described previously (36). PCR
was performed using Q5 R© High-Fidelity DNAPolymerase (NEB;
New England Biolabs) in a final volume of 50 µl following
manufacturer’s instructions. The PCR condition included initial
denaturation at 98 ◦C for 30 s followed by 30 cycles of exponential
amplifications using denaturation at 98◦C for 10 s, annealing at
58◦C for 30 s, extension at 72◦C for 30 s, and final extension
at 72◦C for 2min. Amplicons were purified from 0.7% agarose
gel, concentration was measured using a Qubit dsDNA broad
range assay kit (Life Technologies, United States), and equal
concentrations (20 ng/µl) of amplicons were pooled together.
The purified pooled amplicons were sequenced using MiSeq
Illumina 300 cycle paired end options at the University of
California, Riverside (Riverside, CA, United States).

16S rRNA Gene Sequence Analysis
Raw sequence reads were analyzed using Quantitative Insights
into Microbial Ecology, QIIME version 1.9.1 (37) at Jetstream
cloud computing platform (38, 39) using the pipelines as
described previously (5, 35). Paired end reads were joined
together using join_paired_ends.py command of QIIME with
fastq-join option (40). After joining, barcode positions were
formatted using a customized Perl script, and barcodes
were removed using extract_barcodes.py command of QIIME.
Split_libraries_fastq.py command of QIIME was used for
demultiplexing and quality filtering of joined reads. Reads
having a Phred quality score <20 were discarded. The chimeric
sequences were identified using USEARCH version 6.1.544 (41),
and chimeric sequences along with shorter sequences (<100
bp) were excluded for downstream analysis. The OTU picking
was performed using pick_open_reference_otus.py command of
QIIME with uclust method (41). Taxonomy was assigned based
on green genes taxonomy and reference database version 13_8
(42) with RDP classifier (43). For further statistical analysis and
visual exploration, an OTU table with taxa in plain format and
a metadata file were uploaded to the MicrobiomeAnalyst tool
(44). Data were filtered using the following options: minimum
count 4 and low count filter based on 20% prevalence in samples.
Alpha diversity analysis was calculated based on Shannon Index.
Data were normalized using cumulative sum scaling before
any statistical comparisons (45). Significant differences in alpha
diversity among different groups were calculated based on
ANOVA/T-test where a significant difference level was set at
p < 0.05. Beta diversity was calculated based on Weighted
UniFrac distance metric (46) and statistical comparisons among
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groups were performed with Analysis of Similarities method
(ANOSIM). To determine differentially abundant phyla and
genera among different groups, a MetagenomeSeq (45) that
uses zero-inflated Gaussian fit model was used, where the
level of significance was set at p < 0.05. PICRUSt ver. 1.1.3
(47) was further utilized to predict the functional pathways
from 16S rRNA gene sequencing data using a closed OTU
table created with the Greengenes database 13.8. The statistical
analysis and visualization in the third level KEGG pathways
predicted by PICRUSt between two groups were performed using
the Statistical Analysis of Metagenomic Profiles (STAMP ver.
2.1.3) (48).

RESULTS

In vitro Digestive Model
The antibacterial effect of DFM at two different concentrations
(104 spores/g and 106 spores/g) against S. Enteritidis colonization
in crop, proventriculus, and intestine using an in vitro digestive
model is shown in Table 1. When DFM was used at 104 spores/g
of feed S. Enteritidis colonization in the intestinal compartment
was significantly reduced (p < 0.05), while at a higher
concentration (106 spores/g) S. Enteritidis colonization in both
proventriculus and intestinal compartments was significantly
reduced (p < 0.05) as compared to the control group (Table 1).
However, the antibacterial effect of DFM was more pronounced
at higher dose and especially in the intestinal compartment,

TABLE 1 | Evaluation of the antibacterial activity of different DFM ratios on

S. Enteritidis† in an in vitro digestive model using the plating method‡.

Treatment Crop Proventriculus Intestine

Control 7.78 ± 0.00 5.03 ± 0.12 7.23 ± 0.00

DFM (104 spores/g) 7.78 ± 0.00 5.11 ± 0.03 5.31 ± 0.10

DFM (106 spores/g) 7.66 ± 0.01 4.22 ± 0.04 0.00 ± 0.00

Values within treatment columns for each treatment with different superscripts differ

significantly (p < 0.05).

Each mean is represented by five observations (n = 5) ± SE.
†
Inoculum used 108 cfu/mL of S. Enteritidis.

‡Data expressed in Log10 cfu/mL.

TABLE 2 | Effect of prophylactic administration of DFM (104 cfu/g) on

S. Enteritidis cecal tonsil (CT) and crop colonization in broiler chickens.

Treatments CT Log10
cfu/g

CT ± (%) Crop Log10
cfu/g

Crop ± (%)

Trial 1

Control 4.01 ± 0.29 12/12 (100%) 2.68 ± 0.47 9/12 (75%)

DFM 3.72 ± 0.55 10/12 (83%) 2.11 ± 0.66 6/12 (58%)

Trial 2

Control 3.94 ± 0.22 12/12 (100%) 2.69 ± 0.48 9/12 (75%)

DFM 3.75 ± 0.56 10/12 (83%) 2.08 ± 0.64 5/12 (42%)

Data expressed in Log10 cfu/g (Mean ± SE) of tissue from 12 chickens.

Chickens were orally gavaged with 107 cfu of S. Enteritidis per chicken at 6 days old,

samples were collected 24 h later.

Data expressed as positive/total chickens (%).

where it reduced the S. Enteritidis colonization by more than 7
log10 and brought it to an undetectable level.

Prophylactic Effects of DFM
Effect on S. Enteritidis CT and Crop Colonization
The prophylactic effect of DFM (104 cfu/g) on S. Enteritidis CT
and crop colonization in broiler chickens is shown in Table 2.
Although there were no significant differences, there were
tendencies in reducing S. Enteritidis count, and its incidence in
both trials and tissues of chickens in the DFM group as compared
to the control group (Table 2). In trial 1, S. Enteritidis incidence
was reduced by 17% in both CT and crop in DFM group as
compared to the control. Similarly, in trial 2, S. Enteritidis
recovery was decreased by 17 and 23%, respectively, in CT and
crop in the DFM group in comparison with the control group. In
addition, S. Enteritidis count was reduced by less than half log10
and more than 1 log10 in CT and crop, respectively, in both trials
when comparing the DFM group with control group (Table 2).

Superoxide Dismutase (SOD) Activity, Serum FITC-d

Concentration, and Total Intestinal IgA Levels
The SOD activity, serum FITC-d concentration and total
intestinal IgA levels in broiler chickens with or without receiving
DFM into the diet are shown in Table 3. DFM significantly
reduced SOD activity and total intestinal IgA levels as compared
to the control group (p < 0.05). However, no significant
difference was observed with FITC-d between two groups as
shown in Table 3.

TABLE 3 | Evaluation of Superoxide dismutase (SOD) activity, serum fluorescein

isothiocyanate-dextran (FITC-d) concentration, and total intestinal IgA in broilers

chickens that were fed with or without DFM in the diet.

Treatments SOD (U/mL) FITC-d (µg/mL) IgA (µg/mL)

Control 4.50 ± 0.31 0.591 ± 0.055 14.21 ± 0.83

DFM 1.97 ± 1.85 0.664 ± 0.063 10.57 ± 0.82

Samples were collected 24 h post-S. Enteritidis challenge.

Data expressed Mean ± SE from 12 chickens, where different letters indicate statistical

significant difference at p < 0.05.

TABLE 4 | Effect of therapeutic administration of DFM (104 cfu/g) on S. Enteritidis

cecal tonsil (CT) and crop colonization in broiler chickens.

Treatments CT Log10
cfu/g

CT ± (%) Crop Log10
cfu/g

Crop ± (%)

Trial 3-d

Control 6.44 ± 0.15 12/12 (100%) 3.18 ± 0.46 10/12 (83%)

DFM 4.66 ± 0.82 9/12 (75%) 3.05 ± 0.45 10/12 (83%)

Trial 10-d

Control 6.61 ± 0.21 12/12 (100%) 2.93 ± 0.65 7/12 (58%)

DFM 5.49 ± 0.76 10/12 (83%) 1.78 ± 0.65 5/12 (42%)

Data expressed in Log10 cfu/g (Mean ± SE) of tissue from 12 chickens.

Chickens were orally gavaged with 104 cfu of S. Enteritidis per chicken at 1 day old;

samples were collected 3 and 10 days later.

Data expressed as positive/total chickens (%).
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Therapeutic Effects of DFM
Effect on S. Enteritidis CT and Crop Colonization
The therapeutic effect of DFM (104 cfu/g) on S. Enteritidis
CT and crop colonization in broiler chickens is shown in
Table 4. Although there were no significant differences, there
were tendencies in reducing S. Enteritidis count and its incidence
in both ages and tissues of chickens in DFM group as compared
to the control group (Table 4). At 3-day old, the S. Enteritidis
count and its incidence in CT were reduced by∼2 log10 and 25%,
respectively, by DFM group as compared to the control group. In
addition, at 10-d old, DFM reduced the S. Enteritidis count in CT
and crop by more than 1 log10 as compared to the control group,
while the incidence of S. Enteritidis was decreased by 17 and 16%,
respectively (Table 4).

TABLE 5 | Evaluation of Superoxide dismutase (SOD) activity, serum fluorescein

isothiocyanate-dextran (FITC-d) concentration, and total intestinal IgA in broilers

chickens with or without receiving DFM into the diet at day 10 post-S. Enteritidis

challenge.

Treatments SOD (U/mL) FITC-d (µg/mL) IgA (µg/mL)

Control 10.34 ± 0.67 0.700 ± 0.020 14.34 ± 2.81

DFM 9.29 ± 0.88 0.531 ± 0.013 6.21 ± 2.31

Data expressed as Mean± SE from 12 chickens, where different letters indicate statistical

significant difference at p < 0.05.

SOD Activity, Serum FITC-d Concentration, and Total

Intestinal IgA Levels
The SOD activity, serum FITC-d concentration and total
intestinal IgA levels in broiler chickens with or without receiving
DFM into the diet at day 10 post-S. Enteritidis challenge
are shown in Table 5. DFM significantly reduced FITC-d and
intestinal IgA levels as compared to the control (p < 0.05). In the
case of SOD activity, there was a numerical reduction in the DFM
group compared to the control group; however, no significant
difference was observed.

Cecal Microbiota
Summarization of the OTU table resulted a total of 441,934 reads
that range from 27,654 to 43,856 reads per sample. The total
number of OTUs after data filtering was 1,108.

Taxonomic Assignments
Phylum level Firmicutes were found as a predominant phylum
in both groups (Control group, 88.71%; DFM group, 86.68%)
followed by Proteobacteria and Actinobacteria as shown in
Figure 1. Actinobacteria were significantly reduced in the DFM
group as compared to the control group (p < 0.05).

Genus level The relative abundance of different genera present in
the control and DFM groups is shown in Figure 2. Ruminococcus
was found as a predominant genus in both groups (Control

FIGURE 1 | Relative abundance of major phyla recovered in ceca of broiler chickens at day 10 from two different treatment groups (control and DFM). NA refers to

those reads that could not be assigned to any phyla.

FIGURE 2 | Relative abundance of major genera recovered in ceca of broiler chickens at day 10 from two different treatment groups (control and DFM). NA refers to

those reads that could not be assigned to any genera. Genera having counts <100 are merged together in “Others”.
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group, 14.48%; DFM group, 19.14%), followed by Lactobacillus
(Control group, 8.91%; DFM group, 3.40%), and Streptococcus
(Control group, 0.15%; DFM group, 3.68%) in control and
DFM, respectively.

The genera Bifidobacterium (Control group, 0.094%; DFM
group, not detected), Roseburia (Control group, 0.19%; DFM
group, 0.035%), Proteus (Control group, 0.07%; DFM group,
not detected), and cc_115 (Control group, 0.04%; DFM group,
not detected) were significantly decreased, while the genus
Streptococcus was significantly enriched in the DFM group as
compared to the control group (MetagenomeSeq, p < 0.05).
In addition, some of the notable genera such as Enterococcus,
Dorea, Coprobacillus, Coprococcus, Eubacterium, and Blautia
were numerically reduced in the DFM group as compared to the
control group.

Microbial Diversities analysis
Alpha diversity Alpha diversity of control and DFM groups as
measured by Shannon index is shown in Figure 3. The average
Shannon index in the control group was 4.61 ± 0.09 (Mean ±

SE) and 4.27± 0.22 in the case of the DFM group. However, there
was no significant difference observed between both groups.

Beta diversity Beta diversity between control and DFM groups as
measured by weighted UniFrac metric is illustrated in PCoA plot
(Figure 4). Analysis of similarities (ANOSIM) showed significant
difference in microbial community structure between the two
groups (R= 0.35, p < 0.01).

Functional potentialities of cecal bacterial community The
predicted functions of cecal microbiota in the control and
DFM groups by PICRUSt and their analysis by STAMP are
shown in Figures 5, 6. The PCA plot shows that the third level
KEGG pathways of the DFM group are relatively distinct in
comparison to the control group (Figure 5). More specifically,
many bacterial genes that are involved in various metabolic
pathways such as bile acid synthesis (primary and secondary),
carbohydrate metabolism (pentose phosphate pathway and other
glycan degradation), and nucleotide metabolism (purine) were
predicted to be enriched in the control group. On the other hand,
bacterial genes that could involve in amino acid metabolism
(Glycine, Serine, and Threonine) and alkaloid biosynthesis
(isoquinoline, tropane, piperidine, and pyridine alkaloids) were
predicted to be enriched in the DFM group (Figure 6).

DISCUSSION

Previous research reported nontyphoidal Salmonella sps.,
Clostridium perfringens, Campylobacter sps., and Escherichia coli
as some of the most important foodborne bacterial pathogens
in the United States (49). The overall health-related costs
associated with foodborne illness from those pathogens was
estimated to be around $51.0 and $77.7 billion based on the
basic and enhanced model, respectively, as described earlier
(50). Nontyphoidal Salmonella sp. was reported as a major
causative agent for hospitalization and deaths of patients in the
United States (49). S. Enterica serotype Enteritidis (S. Enteritidis)

FIGURE 3 | Alpha diversity of two different groups (control and DFM) as

measured by Shannon Index. No significant difference was observed between

them (T-test, p > 0.05). The diamond shape represents the mean value in

each group.

FIGURE 4 | PCoA plot showing difference in microbial community structure

between control and DFM groups (ANOSIM; R = 0.35 and p < 0.01).

which emerged as an important human illness during 1980s is
currently one of the most common nontyphoidal Salmonella
serotypes worldwide, especially in developed countries (51).
Poultry and their products (eggs and meat) are considered as
one of the most important sources of S. Enteritidis infection
in humans; however, S. Enteritidis was also isolated from non-
poultry sources such as market hog carcass, steer and heifer
carcass, cow and bull carcass, and ground beef (52–54).

Several studies have been conducted with the objective
to reduce S. Enteritidis load in poultry and their products
using various approaches such as antibodies, bacteriophages,
probiotics, prebiotics, vaccines, and integrated farmmanagement
(55–59). In the present study, we evaluated the effects of
NorumTM (DFM) to reduce S. Enteritidis colonization using both
in vitro and in vivo trials in broiler chickens. Our previous
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FIGURE 5 | PCA plot comparing third level KEGG pathways between control and DFM groups. The third level KEGG pathways were predicted using PICRUSt

followed by the generation of PCA plot using STAMP.

FIGURE 6 | Extended error bar plot generated by STAMP showing differential abundant third level KEGG pathways between control and DFM group. Only significant

features with p < 0.05 (Welch’s t-test) were included in the plot.

study using an in vitro digestion model showed a reduction
of C. perfringens by the isolates used in NorumTM in different
non-corn based diets demonstrating their antibacterial property

against this Gram-positive bacteria (24). The antimicrobial
activity of various species of Bacillus, including B. subtilis and
B. amyloliquefaciens, were studied elsewhere and found to be
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effective mainly against Gram-positive bacteria (60–63). In the
current study, we also observed the reduction of S. Enteritidis
by DFM in the intestinal compartment simulated in the
model and in both proventriculus and intestinal compartments,
when using 104 spores/g and 106 spores/g DFM, respectively.
The Salmonella Enteritidis colonization was reduced by more
than 7 log10 cfu/mL and brought to an undetectable level
in the intestinal compartment when DFM was used at 106

spores/g of feed, suggesting its more noticeable antibacterial
effects at a higher dose. These findings further suggest that
DFM exhibits a wide range of antibacterial activities which
can be effective for both Gram-positive and negative bacteria.
Although the detailed mechanism is not well-understood, these
antibacterial properties of DFM might be achieved not only
through competitive exclusion and production of antimicrobial
peptides (AMPs), but also might be indirectly through one or
several beneficial effects exhibited by them including secretion
of exogenous enzymes, alternation of immunity, gut microbiota,
and morphology (23, 24, 64, 65). The AMPs secreted by Bacillus
sps. are diverse in nature with different chemical structure (60)
and include bacteriocins, glycopeptides, lipopeptides, and cyclic
peptides (61).

The antibacterial activity of Bacillus isolates in NorumTM

against Clostridium perfringens (24), S. Enteritidis, Escherichia
coli, and Clostridium difficile (64) was evaluated earlier using
an in vitro model and reported as promising DFM candidates.
In addition, dietary supplementation with DFM (106 spores/g)
mitigated the negative impacts of necrotic enteritis in broiler
chickens using a laboratory challenge model (35). Therefore,
considering that the model of necrotic enteritis is more severe
than a Salmonella infection model and in vitro results, in this
study, we evaluated the therapeutic and prophylactic effects of
those isolates in NorumTM (104 spores/g) against S. Enteritidis
CT and crop colonization in broiler chickens. Although there
were no significant differences, there were tendencies in reducing
S. Enteritidis count and its incidence in both ages (3 and 10 days)
and tissues (CT and crop) of chickens by DFM as compared to
the control during the therapeutic study. Similar tendencies were
also reported in both trials during the prophylactic study. This
may be due to the lower dose of Bacillus spores (104 spores/g of
feed) used during the in vivo trials, because the antibacterial effect
was more pronounced with higher dose compared to the lower
dose as demonstrated by the in vitro digestion model (Table 1). A
similar antimicrobial dose-dependent response of Bacillus-DFM
against necrotic enteritis was observed earlier, where the higher
dose (106 cfu/g of feed) mitigated negative impacts of NE more
than the lower dose (104 cfu/g of feed) (66).

Several enteric pathogens including Salmonella sps. disrupt
the intestinal tight junctions leading to the increase in gut
permeability; commonly known as “leaky gut” (67, 68). Serum
FITC-d increases with inflammation and is considered as a
good indicator to measure enteric inflammation induced gut
permeability in broiler chickens (69). The significant reduction
(p < 0.05) of serum FITC-d level by DFM as compared to
the control group in the therapeutic study might be due to the
alleviation of negative impacts of S. Enteritidis by increasing
the regulation of tight junction proteins (23, 70). Antioxidant

enzymes such as SOD play a vital role to degrade superoxide
anions and hydrogen peroxide produced during an inflammatory
process. There was a significant (p< 0.05) and numerical increase
of SOD activity in the control group of the prophylactic and
therapeutic study, respectively, when compared to the group
treated with DFM. The increased SOD activity in the control
group could be related to the response to increased oxidative
stress due to severe intestinal damage caused by S. Enteritidis,
since SOD plays a key role in the reduction of oxidative stress
(71). Similarly, the significant increase in IgA level (p < 0.05)
in both in vivo trials might be associated with disruption of
intestinal epithelium, since secretion of intestinal IgA serves
as the first line of defense to protect the intestinal epithelium
from enteric toxins and pathogenic microorganism, as well
as to antagonize the inflammatory processes and enhance the
non-specific defense mechanisms (32, 72). In contrast, the
decrease of SOD activity and IgA level by DFM could be related
to its anti-inflammatory and immune modulating properties
to mitigate the negative impacts of S. Enteritidis, reducing
the gut morphological and immunological alterations through
expression of the cytoprotective proteins and modulation of
various cytokines (19, 23, 73–76).

Along with the advancement in sequencing technologies, the
cost of sequencing has significantly reduced recently, making
microbiota studies more affordable. It is now a well-accepted fact
that the gut microbiota plays a key role in health and diseases of
both humans and animals, which has been reviewed elsewhere
(77–80). Although detailed mechanisms are unknown, the
supplementation of various alternatives to antibiotics including
Bacillus-DFM can improve overall intestinal health and growth
in chickens (24, 35), probably due to the modulation of the gut
microbiota, which is one of the important mechanisms of action
exhibited by alternatives to antibiotics in order to exert beneficial
effects on the host (2, 23, 81–83). Moreover, the inclusion of
Bacillus-DFM has been shown to alter the cecal (20) and ileal (21)
microbiota in broiler chickens.

The cecum of the chicken harbors the greatest bacterial
diversity and is an important organ for water regulation
and production of short chain fatty acids (SCFA) through
carbohydrate fermentation (23, 84). The ceca of young chickens
are mainly dominated by the phylum Firmicutes, Proteobacteria,
and Actinobacteria, whereas the relative abundance of
Bacteriodetes increases with age and was detected only after
15 days in broiler chickens (85). We also reported Firmicutes as
the dominant phyla in both groups followed by Proteobacteria
and Actinobacteria. Actinobacteria were significantly lowered
by the DFM, which could be due to the antibacterial activity of
DFM against S. Enteritidis since Actinobacteria were increased
in chickens infected with S. Enteritidis (5, 86). The genus
Proteus and the genus cc_115 of the family Erysipelotrichaceae
were significantly higher in the control group as compared
to the DFM. The increased abundance of Proteus and cc_115
was associated with necrotic enteritis in broiler chickens
(87). Similarly, the genus Proteus and the bacterial family
Erysipelotrichaceae were found to be associated with intestinal
dysbiosis in humans as reported in the DisbiomeR database (88).
Thus, the increase of Proteus and cc_115 in the control might
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be associated with gut dysbiosis and inflammation caused by
S. Enteritidis (89), whereas their decrease in the DFM group
might be due to the antibacterial property of DFM. Furthermore,
the increase of Bifidobacterium and Roseburia in the control
group might be due to the inflammatory response, since these
genera were found to have anti-inflammatory properties (90, 91).
A significant increase in Bifidobacterium after S. Enteritidis
inoculation was also reported earlier in chickens (92). Although
some of the species of Streptococcus cause infection in poultry
(93, 94) they are commensal organisms present in the GI tract
of chickens and have been used as potential probiotics (95, 96)
because of their ability to reduce pathogen colonization through
competitive exclusion and reduction of the pH through lactic
acid production (97). Thus, increase in Streptococcus by DFM
in the present study may be playing a vital role in reducing the
colonization and incidence of S. Enteritidis; however, a higher
resolution to the strain level is needed to understand the actual
effects as two strains of the same species can carry out completely
opposite roles (98).

DFM not only affected the bacterial composition in the
ceca of broiler chickens but also the community structure
as indicated by the beta diversity analysis. However, in the
case of alpha diversity, although there was numerically higher
diversity in the control group, no significant difference was
observed between the two groups. This may be related to
one of the theories that the DFM promotes growth of the
host by reducing the number and diversity of the commensal
microbiota, which will allow increased nutrient utilization
by intestinal epithelial cells and lower detrimental effects of
microbial metabolites (99). These regulations by DFM might
be achieved through changes in bacterial genes involved in
various metabolic pathways (Figures 5, 6). One of the important
metabolic pathways predicted to be enriched in the control group
was bile acid synthesis. Bile acids are considered as important
regulators of the gut microbiota and reduced levels of bile
acids in the gut are associated with bacterial overgrowth and
intestinal inflammation (100, 101). Enrichment of the bile acid
synthesis pathway in the control group might be a response
to the lower level of bile acids and inflammation caused by
S. Enteritidis and other dysbiosis associated bacteria colonization
in the gut. Similarly, another glycan degradation pathway was
enriched in the control group, and this might be related to
the response of mucinogeneis as a result of S. Enteritidis
inflammation and the overgrowth of Bifidobacterium in the
control group, which can degrade the host-derived glycans (102).
Amino acids serve as precursors formicrobial-derived SCFA such
as acetate, propionate, and butyrate, which has been reviewed
elsewhere (103). Meanwhile, the increase in metabolic pathways

associated with the metabolism of amino acids (glycine, serine,
and threonine) in the DFM group could be related to the
amino acid fermenting ability of the Bacillus-DFM (104) to
produce SCFA. SCFA serves as nutrients for colonocytes and
other gut epithelial cells and plays a key role in shaping the gut
microbiota of the host (105). Future investigation of the effects of
DFM in the Salmonella challenged model by metagenomics and
metabolomics analysis will reveal more functional potentialities
of DFM.

In summary, the overall results of the present study
suggest that the Bacillus-DFM (NorumTM) can be used for
the prevention and treatment of S. Enteritidis infection since
it has the potential to reduce S. Enteritidis colonization
and mitigate its negative effects in broiler chickens. These
effects of NorumTM could be achieved through mechanism(s)
that might involve the modulation of gut microbiota
and their metabolic pathways. The effects of NorumTM

against S. Enteritidis at a higher dose (106 spores/g)
may disclose more promising results and are currently
under evaluation.
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