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Herbivores grazing in extensive systems are exposed to a series of challenges, rooted

in the inherent spatial and temporal variability of their environment that potentially

constrain their health, nutrition, and welfare. Nevertheless, in this review, we argue

that challenges induced by some biotic (e.g., vegetation) and abiotic (e.g., terrain)

factors may also be viewed as “positive” sources of stress or eustress, since they

present complex problems, that when solved successfully elicit a greater degree of

behavioral plasticity and adaptability in grazing animals. Chemically and structurally

diverse landscapes require animals to display complex behaviors and exhibit adaptive

capabilities, like building a balanced and safe diet or finding shelter, which ultimately lead

to positive emotional states. Thus, maintaining or enhancing the diversity occurring in

natural systems represent a management approach that can be used to improve welfare

and prepare the animal for an efficient adaptation to future, and potentially unknown,

environmental challenges.
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INTRODUCTION

Animal welfare is an essential element of modern animal production. First and foremost, animal
welfare is grounded on ethical concerns that derive from the fact that animals are sentient beings,
i.e., able to suffer and experience emotions, but improving animal welfare may have additional
benefits. As many welfare problems have a detrimental effect on production, improving the welfare
of farm animals very often has positive effects on performance (1, 2). In addition, improving animal
welfare is one of the strategies that potentially contributes to reduce the use of antimicrobials in
farm animals (3).

An in-depth discussion of the concept of animal welfare is well-beyond the scope of this review
paper, and several reviews are available on the topic [e.g., (4–6)]. However, it is important to
mention that animal welfare encompasses not only the physical health of the animals (i.e., the
absence of diseases and injuries) but also their behavior and emotions (6–8).

For many years, the Five Freedoms (9) have provided a useful framework to identify the welfare
problems of farm animals. These freedoms, which represent ideal states rather than actual standards
for animal welfare are (a) freedom from thirst, hunger and malnutrition, (b) freedom form thermal
and physical discomfort, (c) freedom from pain, injury and disease, (d) freedom to express most
patterns of normal behavior, and (e) freedom from fear and distress.

More recently, the Five Freedoms have been criticized since they can be misunderstood as
aiming at eliminating all negative experiences (which is not realistic or even desirable, as we argue
in this review), but also because they fail to capture our current understanding of the biological
processes underlying animal welfare (5). As an alternative to the Five Freedoms, the so-called Five
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Domains Model for assessing animal welfare was developed to
address these problems. The Model incorporates four physical
domains of “nutrition,” “environment,” “health,” and “behavior,”
and a fifth “mental” domain. Each physical domain has an impact
on the affective state of the animal (i.e., on the fifth domain),
and the net outcome in the mental domain resulting from the
combination of the four physical domains represents the animals’
overall welfare state.

It is clear that the Five Domains Model applies to animals kept
in confinement under intensive livestock production systems,
but the approach is equally relevant to herbivores grazing in
extensive systems, as all states identified in the model are
crucial for the maintenance of their welfare, even when animals
evolved and are presumably adapted to their “natural” grazing
environments. In several instances, the natural environment
negatively impacts animal welfare due to its inherent temporal
and spatial variability, which may lead to unsuccessful coping
responses to unpredictable and ever-changing challenges (10,
11). With regards to the grazing process, climate variability
has significant negative effects on herbivores, particularly for
dryland regions with low and variable precipitation and high
temperatures in the growing season (12). Under these conditions,
forage abundance and quality may be limited during certain
periods, negatively affecting the nutrition domain, which in
turn compromises animal welfare. Clear seasonal patterns have
been observed for fecal cortisol levels (an indicator of chronic
stress) in Pyrenean chamois (Rupicapra pyrenaica) grazing in
rangelands of northeastern Spain (13). Concentration of fecal
cortisol tracked the levels of nutrient and other environmental
stresses experienced by these animals throughout the year (13).
The effects of season are compounded with the impacts of
thermal stress on ruminants in the face of future heat and cold
waves of greater frequency, intensity and duration (14). As an
example, heat stress reduces feed intake in ruminants while
increasing maintenance requirements, a trend that is aggravated
by the predicted decrease in the quality and productivity of
feed resources available to herbivores grazing in rangelands (15).
All these effects have the potential to promote reductions in
animal welfare and productivity given that long-term declines in
food availability lead to poor nutrition and stress (16). Another
response related to the unpredictability observed in rangelands
involves fear to predation and the indirect effects that predators
impinge on prey by negatively affecting foraging patterns (i.e.,
reduced grazing time, increased vigilance), and as a consequence
animal nutrition and reproduction rates (17, 18).

The aforementioned inherent variability of rangelands and
the potential negative impacts on the nutrition and welfare of
herbivores has been extensively reviewed elsewhere [e.g., (19) and
papers in that book]. This review was developed with the aim of
looking at variability in rangelands from a different angle, i.e.,
as a force that may potentially bring about greater adaptation
and resiliency for animals grazing in the complex chemical and
structural realm of rangelands. It is clear that welfare depends
not only on whether the animal succeeds at coping with the
challenges emerging from its environment, but also on whether
coping attempts lead to negative consequences for the animal
(20). On this regard, animals have evolved mechanisms to cope

with different environmental challenges such that if they are
to survive and reproduce, they should maintain a fitness level
>0. Innate behavioral strategies and learning play a key role in
the ability of animals to cope and adapt to stressful situations
imposed by an ever-changing environment (21).

STRESS AND EUSTRESS IN EXTENSIVE

SYSTEMS

The concepts of “animal welfare” and “stress” are closely linked,
partially because many welfare problems cause stress (22). The
term “stress” has been widely used in biology to describe a set of
physiological and behavioral changes elicited by aversive stimuli.
Cannon (23) described stress as the sympatho-adrenomedullary
(SAM) system’s attempt to regulate homeostasis when threatened
by a variety of aversive stimuli or stressors. Later, Selye (24)
conducted some of his classic studies on the response of the
hypothalamic-pituitary-adrenal (HPA) axis to noxious stimuli
and suggested that the organism reacted in a non-specificmanner
to a wide variety of aversive stimuli, mainly with an increase
in the HPA axis activity. Some forms of stress such as the
chronic activation of the HPA axis caused by long-term factors
are typically viewed as impinging deleterious effects on natural
populations, inevitably resulting in maladaptation and pathology
(25). Both the HPA axis and the SAM system are generally
considered to be the two main elements of the stress response
and levels of glucocorticoids in different animal tissues (e.g.,
blood, hair, saliva) and excretions (e.g., feces) have been widely
used as measures of stress. The problem with this approach,
however, is that the HPA axis and the SAM system have a
crucial function in energy mobilization and redistribution of
nutrients to active tissues and both aversive (e.g., fighting)
and rewarding situations (e.g., play and mating) may elicit a
similar physiological stress response (26). Therefore, if stress
is perceived as potentially negative, it may be misleading to
consider stress as a synonymous of the HPA axis activation.
On the other hand, there is now enough evidence showing that
it is not the physical nature of an aversive stimulus that has
negative consequences on the animal but rather the degree to
which the stimulus can be predicted and controlled (26). As a
result, it has been suggested that the term “stress” should be
restricted to conditions where an environmental demand exceeds
the regulatory capacity of the organism, mainly when such
conditions include unpredictability and uncontrollability (26).
Thus, when animals have available the conditions or “tools” to
control or predict their environment, a challenge may represent a
stimulus that results in improvements to their welfare, provided
that the animal overcomes the challenge. Interestingly, research
in zoo animals has shown that giving animals the opportunity to
choose between two different environments (which presumably
increases the animals’ perception of control) reduces several
behavioral and physiological indicators of stress and poor welfare
(27, 28).

The coping process to a stressful situation (i.e., an animal
being exposed to a certain uncomfortable environment) may
lead to fitness costs (i.e., searching activities that increase energy
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expenditure). Nevertheless, the net result of this response needs
to be adaptive (i.e., finding a more comfortable environment) if
the animal is to survive and reproduce, and if improvements in
animal welfare are expected. Thus, under circumstances when
the animal is able to fully cope to a challenge, this may have a
positive impact on animal welfare. Under this context, the word
“eustress” was coined (24) to refer to the idea that there is a
“correct or optimal stress level” that is adaptive (29). For instance,
problems that emerge during the grazing process such as building
a nutritious and safe diet may be stressful (e.g., overcoming food
neophobia, or preventing the ingestion toxic plants or excessive
amounts of nutrients), like the example described above in zoo
animals exposed to a choice between different environments,
but ultimately beneficial if the individual possesses the skills
and resources needed to meet such challenge. Problem-solving
opportunities presented during enrichment programs for captive
animals potentially enhances welfare, as individuals may be
motivated to participate in problem-solving activities when there
is an optimal level of challenge, which depends on the individual’s
cognitive and behavioral skills to solve the presented problem
(30). Contrafreeloading, the choice to work for resources when
identical resources are simultaneously available in free form, also
entails an enrichment of the captive animal’s environment as
it provides opportunities for general exploration and cognitive
challenge that may result in a positive outcome (i.e., “earning
food”), even when such activities represent departures from
optimal foraging strategies (31).

Our thesis in this review is that the inherent variability
in structure, taxonomy, and chemistry provided by rangelands
represent stimuli that enhance the adaptability and resiliency
of herbivores grazing in these dynamic environments. This is
a novel approach to managing animals in rangelands as it
suggests that preserving and promoting rangeland diversity is
crucial for “providing the training grounds” that will prepare
animals to better respond and adapt to future challenges that
compromise their welfare. We also submit that management
interventions can contribute to foster flexibility in animals
grazing in variable environments by providing the means and
facilitating the acquisition of skills that optimize the prediction
and control of the coping response to the problems presented in
the context of a changing world.

FORAGE DIVERSITY AND EUSTRESS

It is known that a variety of plant species enhances the nutrition
of mammalian herbivores because no single plant provides
all the nutrients or proportions needed by the animal (32).
In addition, plant secondary compounds (PSC) ingested as a
dilute mixture of plants are less toxic to herbivores because
they are less concentrated and potentially detoxified by different
pathways [i.e., the Toxin Dilution Hypothesis; (33)]. Anatomical,
physiological and experiential differences among individuals lead
to specific needs, and thus individual animals can best meet their
needs for nutrients and medicines when offered a multiplicity of
forages, instead of receiving a single food, even if that food is
balanced tomeet the “average” needs of the “average” animal (34).

When herbivores engage in the process of building a diet
from an array of different foods from a diverse plant community
they are faced with solving a problem. This is because they
need to balance the ingestion of required nutrients and potential
medicines (35) from an array of nutritionally unbalanced
and potentially toxic foods. The solution is achieved by the
application of a suite of complex behaviors that require cognitive
and non-cognitive mechanisms for their efficient execution in
time and space (35, 36). For instance, locomotion activities
position the individual in space, within the preferred patch
and feeding station (36), followed by handling and ingestive
activities that consummate a preference for particular plants and
parts. Such preference is triggered by learning mechanisms that
integrate the plant’s orosensorial characteristics with its post-
ingestive consequences (37, 38). The challenge of building a
balanced diet from a diverse array of alternatives may “breed”
innovation and exploratory behaviors in herbivores that when
successful, foster positive emotional responses and allow for
better adaptations to future unpredictable conditions of the
environment (30). Good welfare is not simply the absence of
negative experiences; positive affective states play a significant
role in providing animals a better quality of life (39). Under this
analysis, forage diversity could be interpreted as an “eustressor”
that gives individuals the challenge but also the opportunity to
execute behaviors efficiently across contexts and solve problems
with potential to improve their welfare. In support of this
idea, lambs faced with the problem of building a diet from a
diverse array of food items with or without PSC, showed greater
acceptance of novel foods and flavors in familiar (40) and novel
(41) environments, and showed lower levels of stress-induced
hyperthermia and ambulation scores in open field tests than
animals exposed early in life to a single ration (41). Although
the initial reaction to novel feeds in all treatments was similar
(i.e., low food intake; neophobia), neophobia was attenuated at a
quicker rate in animals that had the task of building a diet from
single foods relative to those previously exposed to a single ration
(40). In another study, lambs challenged to build a diet from
an array of foods with different energy to protein ratios showed
lower blood cortisol levels and neutrophil to lymphocyte ratios
than lambs fed a single ration (42). Additionally, lambs under the
diet-building task also spent a lower proportion of time eating
and showed greater intake rates and greater proportion of time
lying and greater activity than lambs under a single diet (42).
Heifers grazing 2- or 3-way choices of different legumes showed
greater body weight gains, forage intake (43) and hair cortisol
levels than heifers grazing monocultures of these species. Some
non-overwhelming challenges that increase cortisol levels, with
the subsequent decline when the task is mastered or the stimulus
removed, have been linked to the development of resilience and
the fostering of adaptations that enhance emotional processing,
cognitive control, and curiosity in monkeys (44).

Being able to solve a foraging problem, in addition to the
reward provided by the nutrients harvested in the process
(nutrition and behavior domains in the Five Domains Model),
represents an intrinsic reward and positive emotional state
(mental domain in the Five Domains Model) inherent to being
successful at solving the task performed (30). Thus, the process
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of building a balanced and safe diet from a diverse array of
nutritionally unbalanced alternatives may be interpreted as an
achievement [a sense of “victory;” (24)] that leads to a positive
emotional state that improves welfare. More research is clearly
needed to better understand the effects of forage diversity
and diet building on positive emotions in grazing animals.
Nevertheless, since the display of behaviors concerning essential
activities such as foraging are considered self-rewarding (39), it
is plausible to speculate that successful diet building activities
are also linked to positive emotional states. Food seeking
(motivational states of wanting) and consummatory behaviors
(liking or the hedonic pleasure felt during food consumption)
have rewarding properties (45) and they are clearly involved in
the process of diet selection in mammalian herbivores (35, 37).
In addition, it has been shown that controlling an event per
se can be perceived as rewarding or at least as less stressful
(46). In contrast, foragers may experience negative states (i.e.,
frustration) when exposed to monotonous rations that may not
satisfy all their individual and specific nutritional and medicinal
requirements, as well as the need to experience a diverse array of
flavors during the foraging process (47, 48). Under the context of
single feeds or rations, foraging opportunities are limited since
the only responses possible are to eat or to stop eating. Single
foods/plants may elicit frustration as the animal’s response does
not lead to a solution, i.e., there are no single plants/forages
that provide all the nutrients and proportions required by the
animal (32, 34) and generalist herbivores evolved consuming a
diversity of flavors from diverse plant communities instead of
single flavors in monotonous foods. In addition, the initial stress
(i.e., neophobia) promoted by exposing animals to diverse novel
foods may be attenuated by the presence of a familiar model such
as mother (35) or experienced companions (49), which allow for
a prompt selection of a diversity of food items from the array
of novel foods presented. Finally, forage diversity allows for the
expression of foraging preferences that may not be able to be
expressed under monotonous diets resulting in some animals
expressing abnormal and stereotyped behaviors, considered an
indicator of poor welfare (20).

FORAGE DIVERSITY AND

GENERALIZATION TO OTHER CONTEXTS

As expected from an evolutionary point of view, the ability
of animals to compensate for the variability imposed by their
environment will be a function of the individuals’ phenotypic
plasticity (50). Such plasticity may also be interpreted as
behavioral flexibility, allowing for a rapid pathway for adjusting
to environmental changes that exceeds the rate of evolutionary
genetic change (51). Behavioral flexibility may be acquired
when animals become familiar with solving foraging problems,
generalizing their problem-solving abilities to other contexts,
and situations imposed by a changing environment. There is
evidence for this process to occur under natural and artificial
settings. For instance, models with hummingbirds suggest that
environmental heterogeneity (e.g., changes in temperature, water
and food availability) are linked to problem-solving abilities,

innovation, and exploration that allow individuals to better
adapt to the unpredictable conditions of their environment (52).
Environmental enrichment programs that allow farm animals
show a more flexible foraging behavior lead to reductions in
chronic stress due to confinement (53). Sheep have been found
to predict and form expectations about the amounts of food
that they are receiving, and to control an aversive event in
order to access food, showing problem-solving abilities that allow
for adjustments to new situations stemming from challenges
experienced and solutions achieved in previous tasks (46). This
plasticity acquired by the appraisal of novel situations relative
to the individual’s abilities and past experiences suggests that
animals challenged by less predictable environments may be
more likely to show a broader range of coping strategies in
response to changing environmental conditions than animals
living in more stable and predictable conditions (54). Behavioral
flexibility may be also influenced by early life conditions as
individually housed calves had learning deficits relative to calves
housed in a dynamic group with access to their mothers (55).

VARIABLE LANDSCAPES AND EUSTRESS

Access to pasture for animals kept in confinement provides
some health-related welfare benefits to cows, even when diets
in confinement are nutritionally balanced and cover all of
the animals’ physiological needs (health domain in the Five
Domains Model). For example, at least in some circumstances,
cows on pasture have a lower incidence of lameness (56) and
mastitis (57) than cows kept indoors. If given the choice,
cows will spend a significant proportion of time on pasture,
mainly at night (58). Moreover, by using operant responses to
assess motivation, it has been shown that cows value access
to pasture as highly as fresh feed (59). It might be suggested
that access to pasture provides an opportunity to experience a
more diverse, stimulus-rich environment than indoor housing.
Although boredom in animals has received little empirical study,
research done in several species suggests that monotonous
environments caused an increasedmotivation for diverse stimuli,
consistent with the hypothesis that animals kept in barren
environments may experience boredom or something like it (60).
Cattle in pens with ad libitum access to a monotonous forage
displayed contrafreeloading, spending energy (they pushed a
gate) to obtain a forage which was simultaneously available
in a feeder and in abundance (61). This behavior could be
interpreted as a form of environmental enrichment, given that
the housing environment was barren and the animals had limited
social contact (61). Alternatively, pushing a gate may have been
perceived as rewarding if this behavior attenuated boredom,
created a sense of control over the environment or allowed the
animals to experience “a sense of victory” by handling a doable
challenge (61).

Consistent with the research described for cows in
confinement, and for zoo animals exposed to a choice between
different environments (27, 28), the welfare of ruminants grazing
in extensive systems may benefit from the opportunity to
choose across different locations in the landscape. Nevertheless,
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preference in dominant animals within a social group may
overcome spatial preferences by subordinate animals, which may
lead to frustration. Food preferences and social interactions both
influence choice of foraging location by sheep (62), although
when animals experienced toxicosis after eating certain foods,
dietary preferences overrode social influences (62).

Access to locations that require complex tasks like moving
across rugged terrain or uphill may represent challenges that
elicit a higher degree of behavioral diversity in grazing animals
(environmental domain in the Five Domains Model). Foraging
enrichments in confinement are in general designed to facilitate
the physical expression of feeding behaviors such as food-
searching and food consumption, but not to facilitate complex
tasks related to food acquisition (30), although recent research
on cognitive enrichment shows positive effects on animal
welfare (63). We propose that the equivalent of complex task-
solving processes for animals grazing in extensive systems
entails building a diet from a diverse and complex landscape
with different biotic (e.g., plants with diverse chemistries and
structures) and abiotic (e.g., slope, rough terrain, rocky outcrops)
challenges. Foraging across different spatial scales, from regions
and landscapes to plant communities and patches could be
viewed a “natural cognitive enrichment program” that enhances
animal welfare by providing a form of enrichment, creating
a sense of control over the environment, or allowing for the
realization of a task that leads to a positive emotional state. In
contrast, lack of biotic and/or abiotic challenges, similar to those
observed in barren environments lead to boredom, frustration,
helplessness, and depression (5). Supplying grazing animals
with the opportunity to interact with a more sophisticated
environment by challenging their cognitive abilities with chances
to gain environmental control or to anticipate rewards represents
an appealing approach to enhance their welfare, supported by
the positive results observed for animals living in captivity (64).
These conditions at the spatial scale may facilitate the acquisition
of positive emotional states, induced by a successful coping with
a complex cognitive challenge rewarded by the formation of
a balanced diet. Consistent with this idea, complex behavioral
tasks rewarded by food improve the welfare of intensively housed
pigs by providing adequate cognitive challenges that generated
successful coping and positive emotional states (63, 65). In
addition, structural (climbing racks) and cognitive enrichment
(drinking water as a reward for a correct choice) improved
different aspects of behavioral competence (e.g., visual four-
choice discrimination tasks and reactions to external challenges)
in goats exposed to stressful situations relative to animals exposed
to barren environments with easy access to water (64). It
has been hypothesized cows remain longer at feeding sites in
rugged heterogeneous pastures, withmore diverse vegetation and
nutrient profiles, than in homogeneous pastures as variability in
biotic and abiotic factors reduce satiety and increase residence
time at the more complex feeding sites (66). In contrast,
monotonous landscapes of uniform topography promote satiety
and reduce the time spent at individual feeding sites (67). Cows
born and raised under the environmental challenges of the
Chihuahuan Desert were farther from water and spent less time
at water than naïve cows of the same breed grazing at the same

location, but born and raised in a humid environment with
gentle topography and lush vegetation (68). During winter and
early summer (drought conditions), naïve cows selected diets
with lower crude protein content than cows born and raised in
the desert (68). No welfare parameters were measured in this
study, but it is likely that “desert cows” experienced a sustained
cognitive enrichment by the association of successful coping with
a demanding behavioral task (i.e., moving in rugged terrain,
uphill and away from water in a dry environment) rewarded by
food. Interestingly, cows born and raised in the desert, moved
to lush pastures for 3 years and then returned to the desert,
displayed behavioral patterns similar to cows that spent their
whole life at the desert (68).

VARIABLE LANDSCAPES AND THE

THERMAL ENVIRONMENT

Trees, shrubs, or long grass, as well as abiotic factors such as
topography also provide a diversity of structural arrangements in
the landscape that contribute to reduce the incidence of thermal
stress in animals living under natural conditions. Thermal stress
is a direct welfare problem, as it causes discomfort and it can
significantly reduce access to pasture in grazing animals (58).
Use of shade is likely to be the most feasible strategy for grazing
ruminants. Depending on the quality of shade, provision of shade
will reduce radiant heat load by 30–70% (69). Even in temperate
climates, provision of shade has positive effects on heat load and
production in grazing ruminants (70). The thermal environment
plays an important role in determining livestock distribution
(71), and thus factors in the landscape such as aspect, slope,
type of terrain, type of vegetation also provide “tools” that allow
animals gain environmental control or anticipate rewards (i.e.,
approach to their thermoneutral zone). Such tools are absent in
flat terrains without shelter. On sunny summer days, cows have
been observed spending considerable time (8 h) under shade trees
near water (72). Contrastingly, during winter cattle exhibited heat
seeking strategies of grazing south slopes during the day and not
resting under shade trees and laying down at night on warmer
ridges (72). On cold days cattle would move to lower, sheltered
areas that were warmer (72), and on windy days cattle rest
in sinkholes sheltered from the wind, possibly creating a more
thermally neutral microclimate (71). Effective shelter during cold
weather may also entail dry grass or shrubs when sheep graze
in areas with such structural diversity in the vegetation, leading
to substantial improvements in lamb survival under cold stress
(73). Thus, biotic and abiotic factors that lead to successful coping
such as efficient thermoregulation could be viewed as “natural”
enrichment elements with potential to enhance animal welfare.

RANGELAND DIVERSITY, MANAGEMENT,

AND PREPAREDNESS TO THE UNKNOWN

Social and psychological research has placed emphasis in recent
years on positive outcomes to stress-related experiences that
breed resilience in organisms (74), instead of negative emotions
and chronic stress that promote illness. A similar approach could
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be followed in natural systems by maintaining or enhancing their
chemical and structural diversity, which in addition to services
like improvements in the efficiency of resource capture, nutrient
cycling and stability (75, 76), may promote improvements in
animal welfare. Providing new chemicals to the landscape like
medicinal PSC (e.g., with the introduction of herbs, shrubs or
trees) will benefit the nutrition and health of grazing animals
(77, 78), thus addressing the nutrition and health dimensions
of the Five Domain Model. The benefits of plant diversity on
animal welfare may also need to be pondered in relation to the
nature of the assemblage of plant species presented to herbivores.
For instance, when subjects are offered a choice of foods
under experimental settings to understand their specific nutrient
requirements through their diet-building abilities [e.g., the
geometric framework of diet selection; (79)], the foods presented
are unbalanced but designed in such a way that allows for the
construction of a mixed balanced diet that meets the specific
nutrient requirements of the individual. Extrapolating from this
controlled setting to natural systems, the foods presented in
the plant community should be such that different individuals
under different physiological states should be able to build a
balanced diet. If mixing diverse foods does not lead to meeting
specific nutrient and medicinal needs, animals may experience
negative emotions such as frustration in response to suboptimal
diets, in addition to the direct negative impacts of unbalanced
diets on fitness. Thus, it is important to consider the herbivores’
foraging preferences when managing grazing environments
for improvements in animal welfare and productivity. As an
example, it has been shown that beef heifers grazing in natural
grasslands use low-quality tussocks in order to harvest strategic
amounts of dry matter during the day, given that the high
productivity of these plants offer large intake rates (80). Intake
of tussocks is then complemented with the consumption of
high-quality herbs and grasses (of lower productivity) present in
inter-tussock areas (80). Originally, farmers tended to eliminate
low-quality tussocks, regardless of their abundance in the plant
community, as they were considered problematic for animal
production. After exploring the animals’ feeding preferences,
tussocks are now considered beneficial when present in the
plant community below a certain frequency threshold such that
animals build a diverse diet, where tussocks optimize the amount
of biomass harvested daily and herbs and grasses in the inter-
tussock areas provide the nutrients needed to optimize the
digestibility of tussocks in the rumen (81). Managers also offer
proportions of grass and clover in the landscape that match the
grazers’ preference for these forages in order to foster an optimal
use of food resources by herbivores (82); such arrangement may
also contribute to animal welfare improvements as it offers the
conditions needed to successfully complete the task of building a
balanced diet. Thus, fostering the “right” diversity, i.e., arrays of
complementary plants that when mixed lead to the realization of
a balanced diet is essential.

Appropriate challenge is a key concept in environmental
enrichment, referring to the problem that is potentially solvable
through the application of an animal’s cognitive and behavioral
skills (30). Under this scenario, managers may be able to “enrich”
a certain landscape by providing the supplements or plant
species that complement the chemical composition of the existing

vegetation such that animals are able to build “optimal diets”
that provide an appropriate mix of nutrients and medicinal PSC.
Environments of low nutritional quality reduce the fitness and
welfare of grazers and browsers (13), but the same is true when
plants are high in nutrients (38). Non-complementary plant
species that provide excesses of nutrients (e.g., crude protein)
lead to stress and food aversions because excessive or frequent
ingestion of such foods produce high levels of byproducts of
fermentation that are toxic [e.g., ammonia or acid loads; (38, 83)].

Animals faced with the problem of building a diet from
an array of diverse and complementary alternatives may be
more adapted to maintain their fitness and welfare in response
to future challenges triggered by shifts in vegetation like
the predicted reductions in crude protein content in grasses
in response to increased ambient temperatures (15). It has
been proposed that as climatic warming reduces grass protein
concentrations, woody species increase in abundance and
grassland habitats decline for growing populations of herbivores,
wild, and domestic species may need to compensate by relying
less on grass and more on browse, which contains greater
concentration of PSC (15, 84). In addition, the pattern of
protein reduction in grasses may also increase the reliance
on protein-richer eudicots, with greater potential for toxicity
due to the greater concentration of PSC in these flowering
plants (85). Plant secondary toxicity may also be exacerbated
with the predicted increases in ambient temperature because
toxins interfere with thermoregulation (86, 87). Detoxification
pathways are thermogenic and toxins uncouple mitochondrial
oxidative phosphorylation, which also generates heat (88). The
imbalanced nature of herbivore diets and the presence of
toxins, which affect the thermal balance, may increase the
likelihood of heat stress at high ambient temperatures (88).
These emerging problems may require building diets of lower
PSC content in landscapes where the concentration of protein
is declining. Finding appropriate locations in the landscape
to dissipate heat under warmer conditions and the challenge
of temperature-dependent toxicity will be more relevant for
future generations of herbivores. Adaptability in these predicted
scenarios is expected to be greater for animals previously
exposed to solving the problem of building balanced diets
from complex arrays of unbalanced alternatives and complex
landscapes with a diversity of biotic and abiotic factors that
foster cognitive enrichment. Trans-generational diet-building
abilities of offspring as observed in cattle (89) and sheep (90)
may also contribute to more efficient adaptations to future
environmental challenges.

CONCLUSIONS

We submit that chemical and structural diversity breed animal
resiliency and adaptability to current and future challenges
imposed by the inherent dynamic conditions of rangelands.
Positive outcomes to stress-related experiences may enhance
behavioral competence and lead to positive emotions that
benefit animal welfare. Using this concept, managers should
promote resilience and plasticity in animals by enhancing
chemical and structural diversity in rangelands (i.e., through
targeted grazing treatments, revegetation efforts that increase
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plant species diversity, or by strategic distribution of water
points that enhance animal distribution in the landscape),
thus creating “natural cognitive enrichment programs” that
enhance animal welfare and better prepare animals for
future challenges inherent of living in these dynamic and
variable landscapes.
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