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Salmonella Enteritidis is a major cause of salmonellosis worldwide and more than 80%

of outbreaks investigated in Europe have been associated with the consumption of

poorly cooked eggs or foods containing raw eggs. Vaccination has been proven to

be one of the most important measures to control Salmonella Enteritidis infections in

poultry farms as it can decrease colonization of the reproductive organs and intestinal

tract of laying hens, thereby reducing egg contamination. Differentiation of live vaccine

from field or wild type S. Enteritidis isolates in poultry is essential for monitoring of

veterinary isolates and targetting control actions. Due to decreasing costs, whole

genome sequencing (WGS) is becoming a key tool for characterization of Salmonella

isolates, including vaccine strains. Using WGS we described the genetic changes in

the live attenuated Salmovac 440 and AviPro SALMONELLA VAC E vaccine strains

and developed a method for differentiation from the wildtype S. Enteritidis strains.

SNP analysis confirmed that streptomycin resistance was associated with a Lys43Arg

missense mutation in the rpsL gene whilst 3 missense mutations in acrB and 1 missense

mutation in acrA confer erythromycin sensitivity in AviPro SALMONELLA VAC E. Further

mutations Arg242His in purK and Gly236Arg in the hisB gene were related to adenine

and histidine dependencies in Salmovac 440. Unique SNPs were used to construct

a database of variants for differentiation of vaccine from the wildtype isolates. Two

fragments from each vaccine were represented in the database to ensure high accuracy.

Each of the two selected Salmovac 440 fragments differed by 6 SNPs from the wildtype

and the AviPro SALMONELLA VAC E fragments differed by 4 and 6 SNPs, respectively.

CD-hit software was applied to cluster similar fragments that produced the best fit output

when searched with SRST2. The developed vaccine differentiation method was tested

with 1,253 genome samples including field isolates of Salmovac 440 (n = 51), field

isolates of AviPro SALMONELLA VAC E (n = 13), S. Gallinarum (n = 19), S. Pullorum

(n = 116), S. Enteritidis (n = 244), S. Typhimurium (n = 810) and achieved 100%

sensitivity and specificity.
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INTRODUCTION

Salmonella Enteritidis is a leading cause of salmonellosis
worldwide (1) and more than 80% of investigated outbreaks
in Europe have been associated with the consumption of
inadequately cooked eggs or foods containing uncooked eggs
(https://doi.org/10.2903/j.efsa.2019.5596) (2). Over the last few
decades the Colindale phage typing (PT) scheme has played a
central role in epidemiological studies of S. Enteritidis while
there are limitations regarding Pulsed-field Gel Electrophoresis
(PFGE) and Multilocus Variable-Number Tandem Repeat
Analysis (MLVA) methods and “neither PFGE nor MLVA could
distinguish all of the S. Enteritidis PT30 from various sources,”
for example (3–5). Recent phylogenetic studies based on whole
genome sequencing (WGS) have revealed the presence of two
separate clonal lineages of S. Enteritidis (6, 7). Phage types that
dominated in western Europe and Asia, including PT1, PT4,
and PT21 occurred in clonal lineage I, while PTs that were
most common in North America (i.e., PT8, PT13a, and PT13)
comprised the majority of clonal lineage II (6).

Vaccination has been proven to be one of the most successful
measures to reduce Salmonella Enteritidis infections in poultry
farms (8) as it can decrease colonization of the reproductive
organs and intestinal tract of laying hens by Salmonella, thus
reducing egg contamination (9). The prevalence of S. Enteritidis
in large-scale laying hen holdings may be reduced by 88
percent by vaccination (www.efsa.europa.eu/EFSA/efsa_locale-
1178620753812_1178620761896.htm). Live attenuated vaccines
have been proposed to provide better protection and are better
suited for mass vaccination than inactivated (killed) vaccines
(10), although there can be practical problems with effective
administration in the field (11). There are two commercially
available S. Enteritidis live-vaccines in UK; Salmovac 440
(Gallivac SE) (Merial Animal Health Ltd, Lyon, France) and
AviPro SALMONELLA VAC E (Lohmann Animal Health
GmbH Heinz, Germany). Salmovac 440 vaccine strain has been
derived through chemical mutagenesis from S. Enteritidis PT
4 that lacks the serovar specific plasmid (https://www.efsa.
europa.eu/en/efsajournal/pub/114) and has no antimicrobial
resistance genes but contains point mutations resulting in
auxotrophism for histidine and adenine. S. Enteritidis field
isolates are differentiated from the vaccine strain by growing on
minimal media with and without histidine and adenine (https://
assets.publishing.service.gov.uk/government/uploads/system/
uploads/attachment_data/file/551476/pub-salm15-intro.pdf).
AviPro SALMONELLA VAC E is a metabolic drift mutant strain
derived by chemical mutagenesis from S. Enteritidis PT4 (http://
www.baltivet.com/en/products/veterinary-products/avipro-
salmonella-vac-e/). It has been selected according to attenuation
criteria such as prolonged generation time, super-sensitivity
to quinolones and increased permeability of the bacterial
membrane. It is capable of surviving long enough inside the bird
to stimulate immunity, if administered properly, but incapable
of surviving in the environment. Sensitivity to erythromycin and
resistance to rifampicin are tested to distinguish the vaccine from
Salmonella field isolates. It is also highly resistant to streptomycin

(https://assets.publishing.service.gov.uk/government/uploads/
system/uploads/attachment_data/file/551476/pub-salm15-
intro.pdf).

Whole genome sequencing (WGS) has been applied as
an epidemiological tool for outbreak investigations as it
provides high resolution for comparing genomes (12). In
the United Kingdom, where human isolates of Salmonella
are routinely sequenced, WGS has been used successfully to
identify and investigate Salmonella outbreaks (13–15). Typing
of all Salmonella isolates with WGS is planned at Animal and
Plant Health Agency (APHA) in a near future and will include
differentiation of the vaccine from the field isolates, removing the
need for phenotypic testing of vaccine types. Also, phenotypic
methods can be time- consuming and subject to some variability,
requiring confirmation of colony purity and repeat testing of
a proportion of isolates. The national control programs for
Salmonella in chickens introduced in UK in 2007, 2008, and 2009
for breeders, layers, and broilers, respectively, seek to reduce or
maintain low Salmonella levels of specified serotypes to targets
set out in EU regulations (https://assets.publishing.service.gov.
uk/government/uploads/system/uploads/attachment_data/file/
183065/salmonella-breeders.pdf). Differentiation of vaccine
from field S. Enteritidis isolates is essential for monitoring
of S. Enteritidis in poultry and for targeted disease control
measures. As a component of the proposed APHA Salmonella
WGS typing scheme, we characterized the 2 live S. Enteritidis
vaccines: Salmovac 440 and AviPro SALMONELLA VAC E used
in UK poultry by comparing them with wildtype S. Enteritidis
using WGS-based approaches. Here we describe the method
developed to differentiate the vaccine from field isolates based on
SNP differences.

MATERIALS AND METHODS

Bacterial Isolates
The vaccine (Salmovac 440, n = 5; AviPro SALMONELLA VAC
E, n = 5) and the S. Enteritidis wildtype (n = 6) strains used for
method development were from the APHA Salmonella Archives
(Addlestone, UK) (Table 1). All strains were kept at −80◦C in
1% (w/v) proteose peptone water containing 10% (v/v) glycerol.
The methods supplied by the manufacturers for differentiation
with S. Enteritidis wildtype field isolates, based on growth
in minimal media without adding histidine and adenine for
Salmovac 440 or in media containing rifampicin, streptomycin
and erythromycin to distinguish AviPro SALMONELLA VAC
E, were used to confirm the vaccinal identity of isolates (16).
A further 1,237 isolates, including field isolates of Salmovac
440 (n = 46), field isolates of AviPro SALMONELLA VAC E
(n = 8), S. Gallinarum (n = 19), S. Pullorum (n = 116), S.
Enteritidis (n = 238) and S. Typhimurium (n = 810) were used
to test the developed SNP (single nucleotide polymorphism)
differentiation method. All the samples in the study were
collected from the environment, such as chicken feces. Therefore,
there was no need for the APHA ethics committee to approve
the study.
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TABLE 1 | Sequenced S. Enteritidis strains used in this study.

Id Strain Phage type

S02105-11 Wildtype PT9b

S00940-12 Wildtype PT9b

L00397-09 Wildtype PT9b

L00453-12 Wildtype PT9b

FieldSE Wildtype PT4

S00668-06 Wildtype PT4

Strain P125109 Wildtype PT4

Salmovac 440 Salmovac 440 PT4

S01708-17 Field Isolate of Salmovac 440 PT4

S01805-17 Field Isolate of Salmovac 440 PT4

S01806-17 Field Isolate of Salmovac 440 PT4

S04022-12 Field Isolate of Salmovac 440 PT4

Avipro Vac E Avipro Vac E PT4

S03385-15 Field Isolate of Avipro Vac E PT4

S03815-15 Field Isolate of Avipro Vac E PT4

S04327-15 Field Isolate of Avipro Vac E PT4

S04329-15 Field Isolate of Avipro Vac E PT4

The gbk file of S. Enteritidis strain P125109 (accession AM933172) was used as a
reference strain.

Whole-Genome Sequencing and Analysis
Overnight bacterial isolates were collected by centrifugation
and resuspended in 0.5mL 0.1M PBS (pH 7.2) solution.
Genomic DNA was purified with the ArchivePure DNA
Cell/Tissue (1 g) kit (5 Prime, Gaithersburg, USA). Purified
genomic DNA was fragmented, tagged using the Nextera XT
DNA Sample Preparation Kit (Illumina UK) and sequenced
at the APHA on the Illumina MiSeq platform based on
the manufacturer’s instructions. Phylogenetic analysis was
carried out with Snippy (https://github.com/tseemann/snippy)
to identify all SNPs. Tree of life (iTol) was used to produce
midpoint rooted trees (17). To identify differential features that
could separate the S. Enteritidis wildtype from either one of
the two vaccine strains, the draft genomes of S. Enteritidis
field isolates, Salmovac 440 and AviPro SALMONELLA VacE
live vaccine strains as well as 4 field isolates of each of the
vaccine strains (Table 1) were analyzed to identify plasmids,
plasmid replicons, virulence genes, antimicrobial resistant genes
as well as point mutations. SRST2 (18) database searches
were carried out to identify plasmids with PlasmidFinder,
replicons with PlasmidReplicon database (https://github.com/
katholt/srst2), virulence factors with Virulence Factor database
(http://www.mgc.ac.cn/VFs/main.htm) and a vaccine database
(this study). Antimicrobial resistance genes were identified by
Ariba (19) with the Card database (20). The gene presence
and absence tables were generated through genome annotation
by Prokka (21) after the fastq data were assembled to fasta
files with Spades (22) and summarized by Roary (23). Student’s
t-test was carried out compare data between the wildtype
and vaccine strains (two tailed distribution for two-sample
populations with unequal variance) with Excel spreadsheet
function (Microsoft). Blastx was performed with isolate fasta
files from Spades assemblies after a protein sequence database
was made (24).

RESULTS

Comparison of Vaccine and Wild Type
S. Enteritidis Genomes
Comparative genomic analyses of S. Enteritidis field isolates,
Salmovac 440 and AviPro SALMONELLA VacE live vaccine
strains as well as four field isolates of each vaccine strain
idendified by standard laboratory methods were carried out in
order to identify genomic features that could differentiate the
strains. The searches and identified features are summarized
in Table 2. SRST2 plasmid searches identified presence of
a Salmonella Paratyphi C strain RKS4594 plasmid pSPCV
(plasmid CP000858) in the wild type S. Enteritidis genomes,
the vaccine strain SALMONELLA Vac E and field isolates.
However, the 262 bp fragment in PlasmidFinder that identifies
the 55,414 base pairs plasmid CP000858 is identical with
the 262 bp fragment that identifies the 59,372 bp of S.
Enteritidis strain-specific plasmid pSEN (HG970000) or
pSENV (JN885080) which is present in most S. Enteritidis
wild type isolates. As expected, the presence of the pSENV
plasmid and associated plasmid replicon was confirmed
in all wild type and the SALMONELLA Vac E vaccine
strain and field isolates but not in the genome of the
vaccine strain Salmovac 440, one of the features of this
vaccine strain (Rows 1–2, Table 2). The analysis of the AMR
genes or mutations identified rifampicin resistance related
to the rpoB gene in Avipro SALMONELLA Vac E strains
(Row 3, Table 2).

Furthermore, the 9 pSENV plasmid-associated virulence
genes identified in the wildtype and Avipro SALMONELLA Vac
E vaccine and field isolates were not present in the Salmovac
440 strains (Rows 4–12, Table 2), confirming the absence of the
plasmid in these strains.

The comparison of the annotated wildtype and vaccine
genomes revealed the absence of 3 genes: envR, a regulator
in the Salmonella pathogenicity island 2 (SPI2) gmr_2, cyclic
di-GMP phosphodiesterase and group_503, and a hypothetical
protein (Rows 13–15, Table 2) and presence of two hypothetical
genes: group_343 and group_413 (Rows 16–17) in the vaccine
strain Avipro SALMONELLA Vac E strains. A further 62
pSENV plasmid-related genes were absent in Salmovac 440
but present in the wildtype and Avipro SALMONELLA
Vac E (Table S1).

Phylogenetic Analysis With Core SNPs
Phylogenetic analysis of the core SNPs indicated a close
relatedness of both vaccine strains with the reference
S. Enteritidis strain P125109 (AM933172). The distance
was 115 SNPs between AviPro SALMONELLA VAC E
and the reference and 213 SNPs between Salmovac 440
and the reference (Figure 1). The Salmovac 440 vaccine
reference strain and the vaccine strains recovered from farms
differed by up to 3 SNPs; while the AviPro SALMONELLA
VAC E reference strain differed from the vaccine strains
recovered from farms by 0–2 SNPs. All SNPs are listed
between the reference and AviPro Salmonella VAC E or
Salmonvac 440 (Table S2).
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TABLE 2 | Identification of differential features between groups of the wildtype, Salmovac 440, and Avipro SALMONELLA Vac E from the search results of PlasmidFinder.

Wildtype Salmovac 440 Avipro Vac E
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S
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3
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5
-1
5

A
v
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E

1 FIIS 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

2 FII_repA 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

3 rpoB (SEN3937) 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

4 pefB (pSENV_028) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

5 pefC (pSENV_030) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

6 pefD (pSENV_031) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

7 rck (pSENV_039) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

8 spvA (pSENV_002) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

9 spvB (pSENV_003) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

10 spvC (pSENV_004) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

11 spvD (pSENV_005) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

12 spvR (pSENV_001) 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

13 envR (SEN1329) 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

14 gmr_2 (SEN3937) 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

15 group_503 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

16 group_343 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

17 group_413 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Row1, plasmid searches with PlasmidFinder searches; Row 2, Plasmid Replicon searches; Row 3, Ariba Card point mutation searches; Rows 4–12, Virulence factor searches; Rows13–
17, gene presence and absence searches with Prokka/Roary. Search results: 1, presence; 0, absence. SEN****, locus tag of AM933172; pSENV_***, locus tag of JN885080; Group_***,
hypothetical protein.

FIGURE 1 | (A), Maximum likelihood tree of S. Enteritidis vaccines. Salmovac 440 (purple), AviproVacE= AviPro SALMONELLA VAC E (orange) and the wildtype

(blue). (B), SNP distance from AviPro SALMONELLA VAC E and Salmovac 440 to all the samples including the reference (S. Enteritidis strain P125109) in the tree.

The Use of Point Mutations to Explain
Some Properties of Salmovac 440 and
AviPro SALMONELLA VAC E
A point mutation in the rpoB gene was identified by Ariba Card

relating to AviPro SALMONELLA VAC E’s rifampicin resistance

(Table 2). Ariba Card does not identify the position in the gene,

however, we identified a missense mutation, Ser531Phe in the
rpoB gene (Row 1, Table 3) that could explain the rifampicin
resistance of the AviPro SALMONELLA VAC E vaccine strain
and a missence mutation Lys43Arg in the rpsL gene that could
explain the resistance to streptomycin (Row 2, Table 3).

Furthermore, 3 missense mutations in acrB and 1 missense
mutation in acrA genes found in AviPro SALMONELLA VAC
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E are likely to be associated with erythromycin sensitivity (Rows
3–6, Table 3).

The adenine dependency of Salmovac 440 could be
explained by a missense mutation Arg242His in purK, the N5-
Carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase
gene of the purine biosynthesis pathway (Row 7, Table 3). Three
mutations in the histidine biosynthesis pathway were identified
when Salmovac 440 was compared with the wildtype (Rows
8–10, Table 3); the mutation in the hisB gene was a missense
mutation, Gly236Arg, suggesting that the mutation might give
Salmovac 440 the property of histidine dependence.

Phylogenetic analysis considers only single nucleotide
changes. To rule out any possibility of insertions or deletions in
the pathways of efflux pump, histidine biosynthesis, and purine
biosynthesis, Blastx was carried out to find out any amino acid
sequence changes. The analyses showed no evidence of insertions
or deletions and the mis-sense mutations 1 in acrA, 3 in acrB
unique to AviPro SALMONELLA VAC E and 1 in hisB and 1 in
purK unique to Salmovac 440 identified by phylogenetic analysis,
were confirmed (Table 3 and Table S3).

Attenuation of Salmovac 440 and AviPro
SALMONELLA VAC E Vaccine Strains
Salmovac 440 has lost the pathogenic plasmid that encodes
a number of virulence factors (Table 2). This may partially
explain the attenuation of Salmovac 440. However, for AviPro
SALMONELLA VAC E, Prokka/Roary/TTest only identified
envR as a potential candidate for attenuation (Row 13, Table 2)
a regulator in the Salmonella pathogenicity island 2 (SPI2).
Other possible sources for attenuation were sought, such as
point mutations in known genes associated with virulence.
Phylogenetic analysis identified a total of 96 SNPs unique to
AviPro SALMONELLA VAC E of which 56 were missense SNPs.
Among these 56 missense SNPs, 20 were in genes reported to
be associated with virulence (Table 4). This group of genes were
from diverse functions: 1 in iron uptake (Row 6), 3 in potassium
transport (Rows 9–12) and 7 genes related to antimicrobial
resistance through point mutations (Rows 1–4 and 15–17).

WGS Based Differentiation Between
Vaccine and the Wild Type Strains
To construct vaccine differentiation database, total SNPs were
identified from the phylogenetic analysis of the 16 sequenced
genomes (Table 1) using the S. Enteritidis strain P125109
(accession AM933172) as reference. Unique SNPs to Salmovac
440 were identified after comparison with the wildtype S.
Enteritidis and AviPro SALMONELLA VAC E genomes. Two
regions were selected to represent each vaccine strain, Salmovac
440 and AviPro SALMONELLA VAC E, and pair wise fragments
were created so that one represented Salmovac 440 and the other
the wildtype. The paired fragments were identical except for 6
SNPs in each region (Figure S1). CD-hit (45) was performed to
cluster the paired fragments together so that when the fragments
in the database are used as references for SRST2 (18) only one
fragment from a pair gets reported: either a vaccine fragment or
a wildtype fragment but not both.
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TABLE 4 | Missense SNPs unique to AviPro SALMONELLA VAC E in the genes associated with virulence.
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TABLE 5 | The sensitivity and specificity of the fragments in the database.
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832G_Gallivac 51 0 0 0 0 0 0 0 100 100

8321_AviproE 0 13 0 0 0 0 0 0 100 100

8322_AviproE 0 13 0 0 0 0 0 0 100 100

The vaccine strains were farm isolates from fecal, post-mortem or environmental samples
identified by standard laboratory methods. AviproVacE, Avipro SALMONELLA VAC E.

The SNPs unique to Salmovac 440 were located in two
genomic regions, region 831G from position 2145373 to 2157130
of the reference AM933172 with 6 different nucleotides in
positions: 2145373 (WT, G; 831G, A), 2148431 (WT, G; 831G,
A), 2150004 (WT, G; 831G, A), 2153628 (WT, C; 831G, T),
2156212 (WT, G; 831G, A), and 2157130 (WT, G; 831G, A) and
region 832G from position 854486 to 863710 with 6 different
nucleotides in positions: 854486 (WT, C; 832G, T), 855295 (WT,
C; 832G, T), 856153 (WT, C; 832G, T), 858894 (WT, C; 832G, T),
863334 (WT, C; 832G, T), 863710 (WT, C; 832G, T) (Figure S1).
The two regions for the AviPro SALMONELLA VAC E strain
were 509256 to 512337 of the reference AM933172 with 4 SNPs
differences in positions: 509506 (WT, C; 8321, T), 510524 (WT,
C; 8321, T), 510901 (WT, C; 8321, T), 512087 (WT, C; 8321, T),
and Avipro Vac E 8322 from position 802121 to 806926 with 6
SNPs differences in positions: 802371 (WT, C; 8322, T), 802460
(WT, C; 8322, T), 803918 (WT, C; 8322, T), 805115 (WT, C;
8322, T), 805353 (WT, C; 8322, T), 806676 (WT, C; 8322, T)
(Figure S1). The identified genomic regions were used to create
pair wise fragments, one fragment representing the vaccine strain
and the second representing the wild type, differing only by the
identified SNPs.

The sensitivity and specificity of the vaccine database of
variants in distinguishing field vaccine strains from wild type
strains was 100%. The database was tested with a total of 1,253
sequenced genomes including Salmovac 440 (n= 51) and AviPro
SALMONELLA VAC E (n = 13) field isolates, S. Gallinarum
(n= 19), S. Pullorum (n= 116), wildtype S. Enteritidis (n= 244),
and S. Typhimurium (n= 810) (Table 5).

DISCUSSION

In this study, using whole sequencing approaches, we
characterized some of the genomic properties of the vaccine
strains Salmovac 440 and AviPro SALMONELLA VAC E.
Deletion of the tolC, acrB or acrAB genes is linked to strains
with increased susceptibility to antimicrobials, including
erythromycin (46). In AviPro SALMONELLA VAC E,
phylogenetic analysis identified 3 missense mutations in

acrB and 1 missense mutation in acrA (Rows 3–6, Table 3).
In E. coli, multiple mutations in the acrB gene increase the
susceptibility to erythromycin while individually they do not
result in any changes of sensitivity, and the mutation in strain
T37W even increases resistance to antimicrobials (47). Therefore,
the sensitivity in AviPro SALMONELLA VAC E may be due to
the possibility that these 4 mutations in acrAB have changed
some properties of AcrAB efflux pump. The strA-strB genes are
most likely associated with high levels of streptomycin resistance,
whereas the aadA gene confers low-level resistance (48).
Streptomycin resistance in M. tuberculosis isolates is frequently
linked to missense mutations in the rpsL gene for ribosomal
protein S12 or in the rrs gene for nucleotide substitutions in
the 16S rRNA gene (49). In this study, we detected a missense
mutation, Lys43Arg, in the rpsL gene (Table 3). The same
amino acid replacement Lys43Arg of rpsL has been described
in Mycobacterium tuberculosis and Helicobacter pylori (50, 51);
while in E. coli the change is Lys42Arg (52). A missence point
mutation Ser531Phe in the rpoB gene we detected in this study is
most likely linked to the rifampicin resistance of SALMONELLA
VAC E strain. Several mutations in the rpoB gene have been
described to reduce the susceptibility to rifampicin in clinical
Mycobacterium tuberculosis isolates that contribute to various
degree of fitness cost to the strain (53).

HisB is bifunctional since the C-terminal domain catalyzes as
IGP dehydratase (the sixth step) while the N-terminal domain as
Hol-P phosphatase (the eighth step) in the histidine biosynthesis
pathway (54). A total of 1,020 independent histidine-requiring
mutations were isolated in the histidine operon after strain
LT2 of S. Typhimurium was treated with N-methy1-N’-nitro-
N-nitrosoguanidine, the same agent used for Salmovac 440
mutagenesis; many of these mutations were found in the hisB
gene (55).

Salmovac 440 is lacking the pathogenic plasmid pSENV
that encodes a number of virulence factors (Table 2). The
plasmid could be associated with much of the virulence as
the spv (Salmonella plasmid virulence) is considered crucial
for the phenotype of S. Enteritidis (56) and it has been
shown that spvB mutants are avirulent in mice (57). Histidine-
requiring mutations have also been shown to lead to attenuation.
In Aspergillus fumigatus, mutation in hisB causes histidine
auxotrophy and attenuation of virulence in 3 murine models:
pulmonary infection, systemic infection, corneal infection, and
in the wax moth larvae model (58). In Xanthomonas oryzae pv.
Oryzicola which triggers bacterial leaf streak in rice, two genes
in histidine biosynthesis operon, trpR and hisB, were identified
to be essential for virulence and bacterial growth in plants
(59). Adenine is one of the products of purine biosynthesis.
Disrupted de novo purine biosynthesis has been revealed to
attenuate the virulence of several pathogens, such as Salmonella,
Burkholderia, Brucella, and Francisella (60–64). Therefore, the
attenuation of Salmovac 440 is most likely the result of the
combination of absence of the virulence plasmid and histidine
and adenine dependencies.

As for AviPro SALMONELLA VAC E, the attenuation may
also be the result of multiple factors: e.g., the missing envR gene
(Table 2) and point mutations in 20 virulence-associated genes
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(Table 4). EnvR as a potential candidate for attenuation (Row 13,
Table 2) is a regulator in the Salmonella pathogenicity island 2
(SPI2) that encodes type III secretion system (T3SS) that changes
the host cell functions and facilitate intracellular replication
(65, 66). The RpoB H526D mutant (Rif) displayed reduced
survival compared with control strains in Mycobacterium
tuberculosis (36). Mutations in rpsL that result in streptomycin
resistance indicated that the K43N and K43T mutations were
pleiotropic, showing reduced virulence in Erwinia carotovora
(39). Attenuation of an avian pathogenic Escherichia coli strain
resulted from a point mutation in rpsL (40). Direct evidence
of point mutations leading to attenuation is also observed in
Salmonella Typhimurium mutants resistant to streptomycin or
rifampicin that become avirulent in mice (41).

With the wide use of S. Enteritidis live vaccines on
chicken farms, a reliable and rapid differentiation method is
essential. Currently, there are two methods in use. One is
phenotypic typing based on manufacturers’ instructions. For
AviPro SALMONELLA VAC E, the vaccine strain is rifampicin
resistant and erythromycin sensitive; while for Salmovac 440,
the vaccine strain requires histidine and adenine supplements
in order to grow on minimal media. The second method
uses TaqMan-qPCR to differentiate Salmovac 440 and AviPro
SALMONELLA VAC E vaccine strains from the wildtype
Enteritidis (67). To produce this test, the authors sequenced
the whole genomes of both vaccine strains and identified SNPs
that were used to design PCR probes based on 2 SNPs for
AviPro SALMONELLA VAC E and 1 SNP for Salmovac 440.
The real time PCR method identified all 30 Salmovac 440 and 7
AviPro SALMONELLA VAC E vaccine strains (100% sensitivity)
and eliminated all of the 97 wild type S. Enteritidis as well
as other S. enterica strains (100% specificity). The method we
developed in this study was also based on SNP differences
between the vaccine strains and the wildtype however, the short
regions described in Maurischat et al. (67) used in real tim PCR
differentiation, 146 bp in nhaA for Salmovac SE and 88 bp in
kdpA for AviPro SALMONELLA VAC E, were not sufficient
for alignment with Illumina short reads with high coverage. To
ensure high sensitivity and specificity we selected two regions
each to represent the vaccine strains andmore SNPs than the PCR
method (67) (Figure S1). In the real time PCR differentiation
study, the authors tested the specificity with non-Salmonella
species as well as Salmonella serovars (67); while in this study, we
aimed to differentiate vaccine strains from genomes of isolates
typed as Salmonella Enteritidis, Typhimurium, Gallinarum or
Pullorum by our WGS serotyping pipeline. Further database
development will include an additional 3 live vaccines: AviPro
SALMONELLA VAC T, Salmoporc STM and Nobilis SG 9R
(Tang et al. unpublished data). Although the differentiation using

the developed vaccine database showed 100% sensitivity and
100% specificity (Table 5), we have also developed a scheme to
ensure typing accuracy in case of mixed results. If a sample is
typed as wildtype in one region and vaccine in another, this
sample will be analyzed using phylogeny based on a panel of
isolates shown in Figure 1, including wildtype S. Enteritidis
isolates and both Salmovac 440 and AviPro SALMONELLA VAC
E vaccines so that all SNPs will be considered. With the mean
mutation rate across all S. Enteritidis lineages being 2.2 × 10–7
substitutions per site per year or 1.01 SNPs per genome per year
(68) both attenuation of the vaccine strains and SNPs used for
differentiation should be stable.

In conclusion, we characterized Salmovac 440 and AviPro
SALMONELLA VAC E vaccine strains and identified genomic
features that could have resulted in attenuation, resistance to
rifampicin and streptomycin in AviPro SALMONELLA VAC E
and histidine and adenine dependencies in Salmovac 440. We
developed a database of highly specific SNP variants that could
differentiate vaccine from wild type strains with 100% sensitivity
and 100% specificity. The knowledge and methods from this
study could be applied for characterization and differentiation of
other Salmonella vaccine strains that are in use outside UK.
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