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Free-ranging wildlife are increasingly recognized as potential reservoirs of

disease-causing Campylobacter species such as C. jejuni and C. coli. Raccoons

(Procyon lotor), which live at the interface of rural, urban, and more natural environments,

are ideal subjects for exploring the potential role that wildlife play in the epidemiology of

campylobacteriosis. We studied the prevalence and genetic diversity of Campylobacter

from live-captured raccoons on five swine farms and five conservation areas in southwest

Ontario. From 2011 to 2013, we collected fecal swabs (n= 1,096) from raccoons, and (n

= 50) manure pit samples from the swine farm environment. We subtyped the resulting

Campylobacter isolates (n = 581) using Comparative Genomic Fingerprinting (CGF) and

114 distinct subtypes were observed, including 96 and 18 subtypes among raccoon

and manure pit isolates, respectively. Campylobacter prevalence in raccoons was

46.3%, with 98.7% of isolates recovered identified as C. jejuni. Novel raccoon-specific

CGF subtypes (n = 40/96) accounted for 24.6% (n = 143/581) of Campylobacter

isolates collected in this study. Our results also show that C. jejuni is readily acquired

and lost in this wild raccoon population and that a high Campylobacter prevalence is

observed despite transient carriage typically lasting 30 days or fewer. Moreover, although

raccoons appeared to be colonized by species-adapted subtypes, they also harbored

agriculture-associated genotypes that accounted for the majority of isolates observed

(66.4%) and that are strongly associated with human infections. This suggests that

raccoons may act as vectors in the transmission of clinically-relevant C. jejuni subtypes

at the interface of rural, urban, and more natural environments.
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INTRODUCTION

Campylobacter species are the second most reported bacterial
foodborne pathogen in Canada (1), and campylobacteriosis
remains one of the most common enteric illnesses worldwide
(2). Although human infections are primarily caused by two
thermophilic species, C. jejuni and C. coli, several additional
species have been reported to cause illness (3). It is generally
accepted that the majority of Campylobacter infections are
acquired through the handling and ingestion of contaminated
poultry products (4–6). While Campylobacter is highly prevalent
in poultry and poultry meat (7), it is also commonly found in
a wide range of animal hosts that not only include livestock
such as cattle and swine, but also household pets and wildlife
(6, 8). Given that Campylobacter is actively shed in animal feces,
environmental sources such as surface waters may also become
contaminated through use by animals or due to surface run-
off (9). This may lead to increased environmental transmission
and dissemination of Campylobacter across different ecological
niches, thereby creating additional routes of exposure to humans
or other potential hosts (10).

Campylobacter have been isolated from a diverse array of
free-ranging wildlife, including birds such as waterfowl and
songbirds and mammals, including rodents, wild boars, and
ungulates (8, 11–14). Although the presence of C. jejuni in
free-ranging wildlife is not necessarily indicative of a role in
the epidemiology of campylobacteriosis, an increasing number
of studies is consistent with this possibility. For example,
Campylobacter subtypes commonly associated with human
illness have been detected in wildlife species (15, 16), and human
clinical cases have been linked to wildlife via direct transmission
(17–20) or source attribution (21). Furthermore, an increased
occurrence of zoonotic pathogens, including Campylobacter and
Salmonella, has been observed in free-ranging wildlife living in
close proximity to livestock and or human populations (22, 23).

A recent scoping review on bacterial zoonotic pathogens
in wild animals reported that the most frequently investigated
wildlife groups were birds (47.3%), cervids (15.4%), and rodents
(10.5%) (24). Similarly, much Campylobacter research on wildlife
has focused on avian species, in large part due to Campylobacter’s
affinity for avian hosts, but also due to host ecological factors
such as increased anthropogenic contact and large habitat ranges.
The importance of wild mammals in Campylobacter ecology and
epidemiology is less clear. By comparison to avian species, there
is a paucity of literature exploring the role of non-avian wildlife
on transmission of Campylobacter. There is even less focus on
synanthropic species, which live in habitats in close association
with humans. In this regard, raccoons (Procyon lotor) represent
ideal study subjects because they use a wide variety of habitats
(25) and have the potential to move between urban, rural, and
forested habitats.

Raccoons are known to carry a number of zoonotic agents
(26–29) and they also display distinct social features such
as the use of communal latrines (30), which may enhance
mechanical transmission of certain microorganisms present in
their feces (31). Previous studies have reported Campylobacter
prevalence in raccoons ranging from 1% (32) to 41% (33). To

our knowledge, there have been few, if any, longitudinal studies
examining Campylobacter in a raccoon population over multiple
years. The objectives of this study were to: (1) determine the
prevalence of Campylobacter in raccoons captured on swine
farms and conservation areas; (2) assess the genetic diversity,
population structure, and ecology of Campylobacter subtypes
observed in raccoons; (3) assess the dynamics of Campylobacter
acquisition/loss in individual animals; and finally, (4) compare
the subtypes observed in raccoons and human clinical cases
to assess the potential role of raccoons in the epidemiology
of campylobacteriosis.

MATERIALS AND METHODS

Animal Trapping and Sample Collection
Procedures for trapping and handling raccoons were approved
by the Animal Care Committee at the University of Guelph
following the guidelines of the Canadian Committee on Animal
Care. For a detailed description and map of the study area
as well as trapping and sampling procedures, please refer to
Bondo et al. (27) and (29). From May 2011 to November 2013,
raccoons were live-trapped on swine farms and conservation
areas near the cities of Guelph and Cambridge in southern
Ontario, Canada. Individual animals were identified by ear and
transponder tags and were sampled only once per monthly
trapping week; however, additional samples were collected
from the same individual if they were caught in subsequent
months. Rectal fecal swabs were collected using Cary-Blair
swab applicators [BBL CultureSwab, (BD) Becton, Dickinson
and Company, Annapolis, MD, USA]. At each swine farm, one
lagoon (i.e., manure pit) sample was collected on the first day
of each trapping week as previously described (29). Briefly, to
collect lagoon samples, a 24′ Nasco Swing Sampler (Conbar,
Monroeville, NJ, USA) was used to collect three sub-samples
from three locations around the pit, and up to two depths (i.e.,
the top 1/3, and mid depth of the storage), for a total of six
sub-samples. The samples were then pooled into one sample
for analysis. All samples were kept refrigerated or on ice until
processing. The median and average number of days between
collection and processing was three; the maximum number of
days for raccoon swabs was eight whereas for manure pit samples
it was 11.

Campylobacter Isolation
Isolation of thermophilic Campylobacter species was performed
as previously described (34). For samples collected prior
to October 2011, the “conventional method” (enrichment
followed by direct plating onto selective media) was used;
the “membrane method” (enrichment followed by passive
membrane filtration onto selective media) was used thereafter.
Briefly, fecal swabs were immersed in 20mL of Bolton broth
(BB) containing BB selective supplement (SR0183, Oxoid),
(20 mg/L cefoperazone, 20 mg/L vancomycin, 20 mg/L
trimethoprim, and 50 mg/L cyclohexamine) and 5% laked
horse blood (SR0048) and mixed rapidly for 20 s. Lagoon
samples were mixed prior to adding 1mL of sample to BB
with supplement. Bolton broth cultures were incubated at
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42◦C in microaerobic conditions (10% CO2, 5% O2, 85%
N2) for 24 h and subsequently streaked onto modified blood-
free charcoal cefoperazone deoxycholate agar supplemented
with 32 mg/L cefoperazone and 10 mg/L amphotericin B
(mCCDA) or passively filtered for 15min through 0.65µM
cellulose acetate membrane filters onto the surface of mCCDA.
All mCCDA plates were incubated for 48 h under the same
microaerobic conditions. Three to five Campylobacter-like
colonies were subcultured to blood agar and incubated for 24–
48 h. Presumptive Campylobacter spp. colonies were identified
on the basis of growth on mCCDA media, colony morphology,
and oxidase tests. DNA was extracted from purified cultures
using the EZ1 DNA tissue kit (Qiagen) according to the
manufacturer’s instructions for subsequent PCR speciation of
presumptive Campylobacter isolates and subtyping of confirmed
Campylobacter isolates.

PCR Confirmation of Campylobacter spp.
Presumptive Campylobacter isolates were confirmed by
multiplex PCR targeting a Campylobacter genus-specific region
of the 16S rRNA gene, and mapA and ceuE genes for C. jejuni
and C. coli identification, respectively (35). Amplicons were
visualized using a QIAxcel capillary electrophoresis instrument
with the DNA Screening kit. The AM320 separation method was
used along with a 15–3,000 bp alignment marker and the QX
100–2.5 kb DNA size marker. Data were analyzed and visualized
using the BioCalculator v. 3.0 software.

Comparative Genomic Fingerprinting
Campylobacter spp. isolates were subtyped by Comparative
Genomic Fingerprinting (CGF) as previously described (36).
Briefly, CGF consists of 8 multiplex PCR reactions that together
assess the presence or absence of a set of 40 accessory gene
targets found to have variable carriage in the Campylobacter
population and that are used to generate a highly discriminatory
binary fingerprint. Products from the CGF PCRs were visualized
on the QIAxcel as previously described (36) and were scored
positive (1) or negative (0) based on presence or absence of
each target amplicon using a combination of the BioCalculator
software’s binary peak calling and confirmed with visual
curation. The resulting binary fingerprints were assigned a three-
digit CGF subtype (e.g., 0923.002.001) derived from cluster
membership in the Canadian Campylobacter CGF database
(C3GFdb). Fingerprints identical to those already existing in
the database were assigned the appropriate CGF subtype, while
novel fingerprints were assigned a CGF subtype based on their
similarity to existing fingerprints in the database. Isolates from
the same sample with identical subtypes were assumed to be
derived from a single clone and only one representative isolate
was included in further analyses.

Association of CGF Type With Host Species
At the time of this analysis, the C3GFdb consisted of 4,847
distinct CGF profiles obtained from 19,141 Campylobacter
isolates collected from across Canada, primarily from the last
decade. These included 23.3% isolates derived from human
clinical origin, 32.0% from poultry sources, 20.9% from cattle

sources and 14.6% from environmental surface water samples. To
compare epidemiologic attributes of subtypes observed among
study isolates, we compiled summary statistics based on the
composition of host-sources observed in the C3GFdb for each
subtype in this study. We classified CGF subtypes observed
in this study (n = 114) into four ecological range categories
(ERC) based on the composition of sources from which they
have been historically observed in the C3GFdb. Subtypes from
the present study included: (I) Raccoon Exclusive (RE; n =

44); (II) Raccoon and Environmental Water (REW; n = 16);
(III) Swine/Swine Lagoon (SSL; n = 10); and (IV) Mixed Host
(MH; n = 44). Phylogenetic and source association analysis
was performed using the R language for statistical computing
(v.3.13) (37) and the following packages: tidyverse (38) and
ggtree (39). A dendrogram was constructed from the 40-gene
CGF profile using the “hamming” distance and “average linkage”
clustering from the dist and hclust functions, respectively, and
visualized using “ggtree.” Clade designations were made based
on a tree height “h = 10,” which produced stable, genetically
distinct groupings. For each of the CGF subtypes observed
in the present study we identified the associated host-sources
from the C3GFdb. For associations between CGF subtypes
and MLST Clonal Complexes, we used an in-house database
created from in silico CGF and MLST predictions generated
from publicly available WGS data analyzed using the program
Microbial in silico Typer (40); a table of associations is provided
as Supplementary Table S1.

Analysis of Strain Dynamics
Forty-three percent (n = 272/628) of the raccoons in this study
were captured on multiple occasions, with 18.5% (n = 116/628)
captured three or more times, up to maximum of eight captures.
These data were analyzed to examine strain dynamics at the level
of individual animals as described below.

Statistical Analysis
CGF subtype diversity was assessed using the Simpson’s Diversity
Index (41) with a 95% confidence interval (42). A chi-square test
statistic was used to explore the hypothesis that there was no
significant difference in the distribution of isolates from prevalent
Campylobacter clades (isolate count n > 9) between each of
the location types (e.g., swine farm sites and conservation sites).
Chi-square test statistics and post-hoc follow-up calculations for
computing adjusted standardized residuals and z-scores for each
clade were performed as described by Sharpe (43).

RESULTS

A High Prevalence of Campylobacter Was
Found in the Raccoon Population Under
Study
From May 2011 to November 2013, we collected 1,096 fecal
swabs from 628 raccoons trapped on conservation areas (n =

687) and swine farms (n = 409), and 50 manure pit samples
from the environment of the swine farm sites. The prevalence
of Campylobacter spp. in raccoon fecal samples was 46.3%
(508/1,096) (Table 1). There were no significant differences in
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TABLE 1 | Frequency, prevalence and species of Campylobacter in fecal samples

obtained from raccoons and swine farm manure pits.

Sample

source

Sample

size

Campylobacter

positive

samples

(95%

confidence

interval)

C. jejuni C. coli C. spp.

n n % n % n % n %

Raccoon 1,096 508 46.4 (0.434,

0.493)

502 98.8 1 0.2 6 1.2

Manure

pit

50 17 34.0 (0.224,

0.478)

0 0.0 16 94.1 1 5.9

Campylobacter prevalence from raccoon fecal swabs with a
sample-to-test interval of 1–2 days (46.7%, n = 467) vs. a 3–
4 days (46.0%, n = 363), 5–6 days (48.5%, n = 227), or 7–8
days interval (33.3%, n = 39). Similarly, for swine manure pit
samples, there were no significant differences in Campylobacter
prevalence between sample-to-test intervals of 1–2 days (40.0%,
n = 10) vs. 3–4 (38.1%, n = 21), 5–6 (33.3%, n = 9), or 7–11
days (22.2%, n= 9). Among the Campylobacter positive raccoon
samples, 502 (98.8%) were positive for C. jejuni, six (1.2%) for
Campylobacter spp. (unidentified Campylobacter species), and
one for C. coli (Table 1). A single sample was found to harbor
mixed Campylobacter species, testing positive for both C. jejuni
and an undefined Campylobacter spp. Among swine manure pit
samples 34.0% (17/50) were positive for Campylobacter, of which
94.1% (16/17) were positive for C. coli (Table 1). One sample
tested positive for Campylobacter spp.

Campylobacter Circulating in the Raccoon
Population Represent a Genetically
Diverse Population
A total of 1,555 confirmed Campylobacter isolates derived from
Campylobacter-positive raccoon fecal swabs were subtyped by
CGF. A further 58 isolates were recovered from swine manure
pit samples. After accounting for potentially clonal isolates (i.e.,
isolates from the same sample sharing the same CGF subtype),
610 isolates remained; this included 581 raccoon isolates and 29
manure pit sample isolates. Among the Campylobacter positive
raccoon samples (n = 508), a single CGF subtype was recovered
for the majority of the samples (443/508; 87.2%), two CGF types
were recovered in 11.2% of samples (57/508), and three subtypes
in 1.6% of samples (8/508).We observed a broad genetic diversity
in the Campylobacter population, with a total of 114 distinct CGF
subtypes identified among study isolates. Subtype clusters ranged
in size from 1 to 36 isolates, with 13 subtypes comprising over
50% of isolates in the dataset (n = 329/628) and 51 subtypes
detected in single instances. Forty-six subtypes, representing
21.3% of study isolates (n = 130/610), were novel and had not
been previously observed in the C3GFdb. There were 96 subtypes
observed among raccoon isolates (C. jejuni = 91; Campylobacter
spp. = 4; C. coli = 1) and 18 subtypes observed among lagoon
isolates (C. coli= 17; Campylobacter spp.= 1); no subtypes were
shared between raccoons and manure pit samples. Clustering of
the 114 CGF binary profiles revealed 8 major lineages, designated

clades A–H (Figure 1). The clades segregated by Campylobacter
species: clades A–C, G, andH comprisedC. jejuni isolates; clade F
comprised C. coli isolates; and clade D comprised non-jejuni/coli
Campylobacter species isolates (i.e., undetermined). The majority
of raccoon isolates were observed in clade A (52.0%; n = 302),
followed by clades B and C, with 30.5% (n = 177) and 14.5%
(n = 84) of isolates, respectively. A small number of raccoon
isolates (3.1%; n = 18) were found distributed among clades D
(n = 5), E (n = 1), F (n = 1), G (n = 2), and H (n = 9). Among
swine lagoon isolates, the majority were found in clade F (89.7%;
n = 26), with the remaining isolates (10.3%; n = 3) in clade D.
Similar levels of diversity were observed between swine farms and
conservation areas at the subtype level (Simpson’s Index of 0.9648
and 0.9628, respectively). Although overall genotypic richness
was similar between swine farms and conservation areas, there
was a significant relationship between clade and location type.
For clade A, more isolates were identified from swine farm sites
compared to conservation sites (p< 0.001). In contrast, for clades
B and C, fewer isolates were identified from swine farm sites
compared to conservation sites (p < 0.01).

Campylobacter Subtypes in the Raccoon
Population Display Different Types of Host
Range Specificity
Among the four ecological range categories that we defined for
the subtypes in this study (Raccoon Exclusive or RE; Raccoon
and Environmental Water or REW; Swine/Swine Lagoon or SSL;
andMixed Host orMH), raccoon isolates were evenly distributed
among RE, REW and MH subtypes (RE: 31.3%, n = 182; REW:
34.1%, n = 198; MH: 34.6%, n = 201). Swine lagoon isolates
were similarly distributed among SSL and MH subtypes (SSL:
51.7%, n = 15; MH: 48.3%, n = 14). The distribution of ERC
subtypes suggests a strong raccoon association for certain clades
observed in our analysis (Figure 1). Clade C, which included
14.5% of raccoon isolates in the study, was strictly composed
of RE subtypes, and these were novel to the C3GFdb. Clade
A, which included the majority of raccoon isolates in the study
(52.0%), comprised largely RE and REW subtypes (n = 33/38).
Source frequencies from the C3GFdb (Table 2) indicate that a
majority of isolates from clade A subtypes (n = 461) include
raccoon isolates from this study (65.5%; n = 302) along with
historical isolates from environmental water sources (26.2%; n
= 121). A small number of isolates (6.9%; n = 32) comprised
the remaining isolates in the clade and were derived from cattle,
poultry, and human clinical sources (Table 2). Conversely, clades
B and H, which included 30.5 and 1.6% of raccoon isolates,
respectively, were of MH subtype composition (n = 23/29 and
n = 6/7, respectively). Based on C3GFdb source association
data, isolates from subtypes in clades B (n = 2,118) and H (n
= 1,329) were primarily chicken-associated (clade B = 54.9%;
clade H = 55.0%). Importantly, these clades included a large
proportion of isolates from human clinical cases (14.4 and 33.3%,
respectively), which is in contrast to clades A and C (1.7 and 0.0%,
respectively). Unsurprisingly, the C. coli specific-clade F included
26/29 swine manure pit isolates and consisted of 9 SSL subtypes
and 9 MH subtypes.
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FIGURE 1 | Host-range specificity of Campylobacter subtypes observed in a raccoon population on conservation and swine farm sites in southwest Ontario, Canada.

For each of the 114 CGF types in the dendrogram, host-source data from the C3GFdb is used to illustrate relative host-source associations. Terminal nodes of the

tree were classified based on source composition of the CGF subtype (MH, mixed host; RE, raccoon exclusive; REW, raccoon and environmental water; SSL, swine

and swine lagoon). A large proportion (∼97%) of Raccoon isolates from this study are found in clades A, B, and C. Both clade A, which is largely composed of RE and

REW subtypes, and clade C, which consists entirely of RE subtypes, appear to be raccoon-associated niche or host-adapted lineages. Clade B is primarily

composed of MH subtypes with a large contribution from agriculture and human clinical sources.

Campylobacter Strain Dynamics in
Raccoons Include Both Transient and
Longer-Term Carriage Within Individual
Animals
A total of 468 samplings (43%; n = 468/1,096) involved
consecutive recapture events involving the same animal

(Figure 2), with a majority (77%; n = 361/468) occurring within

the same sampling year. The positive rate for Campylobacter was

67% (n = 242/361) and 69% (n = 74/107) among recaptures in
the same and different sampling years, respectively (Figure 2).
Among recaptures within the same sampling year, 58% (n =

209/361) reflected a Campylobacter status change, with either
animals that acquired or lost Campylobacter (n = 139), and
animals that acquired a different subtype (n = 70) between
recaptures. This rate was 67% among recapture events in
different sampling years (n = 72/107), including 52 cases of
animals acquiring or losing Campylobacter between recaptures
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TABLE 2 | Host-source distributions from the C3CGFb for each of the clades observed in raccoon and swine manure pit isolates.

Clade CGF subtypes C3CGFdb source distribution This study Total isolates

Human clinical Cattle Poultry Other Swine Wild bird Wild mammals Water Raccoon Manure pit

A 38 8 2 22 0 0 0 6 121 302 0 461

B 29 306 171 1,163 33 5 11 15 237 177 0 2,118

C 13 0 0 0 0 0 0 1 0 84 0 85

D 6 1 0 0 1 0 1 0 2 5 3 13

E 1 0 0 0 0 0 0 0 0 1 0 1

F 18 60 107 319 16 104 2 0 19 1 26 654

G 2 0 0 0 0 0 0 0 0 2 0 2

H 7 443 123 731 15 1 0 2 5 9 0 1,329

Clade C was exclusively composed of raccoon isolates, while clade A was largely of raccoon and environmental water origin. Clades B and H showed broad source distributions and

have been associated with “generalist” lineages. Clade G, a C. coli group, also showed a broad source distribution and included all C. coli swine lagoon isolates.

FIGURE 2 | Rapid changes in Campylobacter status in a raccoon population on conservation and swine farm sites in southwest Ontario, Canada. Campylobacter

culture status was examined for consecutive recapture events involving the same animal (n = 468). A majority of consecutive recapture events (77%; n = 361)

occurred within the same sampling year and 67% (n = 242/361) yielded a Campylobacter positive result. The positive rate among recapture events in different

sampling years was 69% (n = 74/107). Overall, 89% of recapture events that involved a Campylobacter positive result (n = 281/316) reflected a Campylobacter

status change, with either animals that tested positive after previously testing negative or vice-versa (n = 191), and animals testing positive in both cases but that shed

a different subtype (n = 90). These strain dynamics are consistent with the rapid turnover of strains in this raccoon population.

and 20 cases of animals acquiring a different subtype. Overall,
60% (n = 281/468) of recapture events reflected a change in
Campylobacter status, although the rate rises to 89% (n =

281/316) when excluding recaptures in which the animal tested
negative on both occasions (n = 152). There were 125 instances
of consecutive positive results, with a median of 35 days between
recaptures (minimum = 25 days, maximum = 617 days). Of
these, 40.0% (n = 50/125) occurred within a window of 0–30
days (i.e., short), an additional 33.6% (n = 42/125) occurred in
a window of 31–60 days (i.e., intermediate), and 26.4% (n =

33/125) occurred in a window of >60 days (i.e., long), which

included 22 recaptures that occurred on different sampling
years. Overall, 72.0% of consecutive recaptures that were positive
on both occasions (n = 90/125) yielded a different subtype
on consecutive samplings. Among the 28% of consecutive
recaptures yielding the same subtype (n = 35/125), we observed
a decreasing proportion of matching subtypes as the time
between sampling events increased (Figure 3). Furthermore,
when examined in the context of ecological range, we observed
that a larger proportion of recaptures in which the same subtype
was consecutively isolated involved raccoon-associated subtypes
(i.e., categories RE and REW) compared to MH subtypes

Frontiers in Veterinary Science | www.frontiersin.org 6 February 2020 | Volume 7 | Article 27

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Mutschall et al. Campylobacter Strain Dynamics in a Raccoon Population

FIGURE 3 | Short- vs. long-term colonization with Campylobacter in a

raccoon population on conservation and swine farm sites in southwest

Ontario, Canada. Analysis of consecutive Campylobacter positive recapture

events yielding an identical subtype indicates that as the duration between

captures increased beyond 60 days, there is a large decrease in the number of

cases where the same subtype was observed, suggesting that most animals

are only transiently colonized. Among the small proportion of recapture events

consistent with prolonged colonization (i.e., consecutive and temporally

separated Campylobacter-positive recapture events yielding the same

subtype), results indicate that these are more likely to involve raccoon-adapted

subtypes from RE and REW categories.

(Overall: 30/35; 0–30 days: 15/18; 31–60 days: 12/14; and
>60 days: 3/3). Among recapture events yielding changes in
Campylobacter status on consecutive observations, the ratio of
instances of strain acquisition to strain loss was similar across
the three major raccoon-containing clades (A: 126/90; B: 66/46;
C: 41/24 and across the various ERCs (MH: 73/57; RE: 80/53;
REW: 87/56), all of which were similar to the overall ratio of
acquisition-to-loss (n= 240/166).

DISCUSSION

The prevalence ofCampylobacter spp. in raccoon fecal samples in
this study was 46%, which is consistent with what was observed in
a previous study from the same region of southwestern Ontario
(41%) (33). Indeed, given the practical limitations imposed
by potential delays in sample processing (3–11 days) due to
shipping of fecal swabs from the study site (Guelph, Ontario)
to the laboratory where microbiological work was carried out
(Lethbridge, Alberta), it is very likely that our prevalence
estimates underestimate true prevalence rates in this raccoon
population. By contrast, studies from Japan and New York found
only 1.3 and 6% of raccoons carried Campylobacter, respectively
(32, 44). There are a limited number of studies systematically
examining Campylobacter in raccoons or other medium sized
mammals. Many studies instead rely on convenience-based
sampling methodology, for example, intakes into a wildlife
rehabilitation center (20, 45). The Grand River watershed in

southern Ontario is heavily impacted by mixed agricultural
activities, with farms making up∼75% of the watershed (46).

In this study, we examined raccoons circulating in a range that
included several swine farms and more natural environments in
order to investigate Campylobacter prevalence, genetic diversity,
and strain dynamics in this wild animal population. Significant
genetic diversity was observed among raccoon isolates collected
in this study, with 96 distinct CGF subtypes and at least eight
major lineages observed in this population. Interestingly, there
was a distinct lack of overlap in CGF subtypes observed in
raccoons trapped at swine farm sites and samples obtained at
those farms (i.e., manure pit samples) despite the high rates of
Campylobacter recovery in these animals. Swine are known to
preferentially harbor C. coli, which was recovered from nearly
all manure pit samples analyzed. The near absence of C. coli
in raccoons from this study was unexpected, as some level of
C. coli exposure would be expected to take place in the swine-
farm environment. Nonetheless, our findings are consistent with
overall trends in the C3GFdb, in that of nearly 300 subtypes that
have been observed in either raccoons or swine, only sevenminor
subtypes have included isolates recovered from both species.
Other studies investigating interactions between wildlife and
swine farms have shown little evidence of shared Campylobacter
subtypes between farm fecal/manure isolates and small and
medium sized wild mammals (such as mice, rats, badger, fox)
(11, 47, 48). The swine in this study were housed indoors, which
likely prevented raccoons from coming into direct contact with
the animals or fresh swine feces. Furthermore, swine fecal wastes
are generally managed in a more confined manner (e.g., manure
pits) compared to other livestock such as cattle. Lastly, because
raccoons have wide-ranging habitats, it is possible that raccoons
trapped at swine farm sites may not have routinely used these
areas to forage, thereby decreasing their exposure. Thus, there
exist possible barriers (i.e., biological, physical, behavioral) that
may limit the transmission ofC. coli between swine and raccoons.

During the course of this longitudinal study, a significant
proportion of samples represented cases in which the same
animal was recaptured and these data were used to examine
Campylobacter strain dynamics within individual animals,
including patterns of short-, intermediate-, and long-term
Campylobacter carriage and their shedding. A majority of
recapture events (60%) yielded differences in Campylobacter-
status, including cases in which the animal appeared to have
acquired or lost Campylobacter between recaptures (40%), and
cases in which the animal tested positive in both occasions but
where we observed a difference in subtype (19%). Overall shifts
in Campylobacter status increased to 89% if excluding recaptures
in which the animal tested negative in both occasions. Moreover,
we observed instances of Campylobacter-positive animals that
appeared to revert to negative status on subsequent recaptures
in as few as 25 days, with 18 instances occurring within 30 days.
This would suggest that although Campylobacter prevalence
in this raccoon population is high, carriage and shedding is
likely transient, with the majority of raccoons harboring C.
jejuni for only short periods of time (≤1 month). We also
observed significant strain displacement among animals that
tested positive for Campylobacter on consecutive recaptures,
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with a different subtype observed in 72% of cases. Moreover,
although we selected 1,555 isolates for subtyping from among
the 508 fecal swabs that tested positive for Campylobacter, a
majority of samples (87.2%) yielded a single subtype. Taken
together, these data suggest that raccoons readily acquire and lose
Campylobacter, with rapid turnover of strains among animals
that remained Campylobacter-positive on consecutive samplings.
Nonetheless, it is important to note possible confounding
factors that could yield data consistent with transient carriage.
These include limitations with microbiological and molecular
subtyping methods (i.e., limit of detection/recovery of isolates
leading to culture-negative samples or limiting the isolation of
multiple strains from a single sample).

Our data yielded a small proportion of instances in which
consecutive recaptures were Campylobacter positive and yielded
the same subtype. Although these tended to be recapture events
on consecutive months, a small number of cases included
recaptures with significant temporal separation, up to a length
of 394 days. It is unclear whether these represent ongoing
colonization or re-infection with the same subtype; whole-
genome sequence (WGS) analysis of these isolates is likely to shed
light on this issue since the much higher discriminatory power
of WGS-based subtyping approaches could help differentiate
between these two types of events.

Our analysis of host source metadata from the Canadian
Campylobacter CGF database (C3GFdb) revealed that the C.
jejuni population found in raccoons consisted primarily of
subtypes with a strong raccoon association and subtypes with a
mixed-host association. These were primarily distributed among
three major clades that included the majority of raccoon isolates
in this study. Nearly one-third of raccoon isolates had subtypes
that were novel to the C3GFdb, with many of these forming a
clade that appears to be exclusive to raccoons. Most remaining
isolates from raccoon-exclusive subtypes could be found in a
clade that was otherwise composed primarily of subtypes that had
previously been observed only among isolates from surface water
samples. Host-adapted subtypes in wild animals and surface
water have been described in previous studies (49–51). Although
Stabler et al. (8) have previously described an apparent water and
wildlife C. jejuni clade, this is the first report of Campylobacter
subtypes that appear to be uniquely host-adapted to raccoons. It
is noteworthy that the majority of events in which animals were
positive for the same CGF subtype on consecutive recaptures
(i.e., consistent with longer-term colonization) involved raccoon-
adapted subtypes.

In contrast to raccoon-adapted clades, 78% of isolates
in clade B, which contained approximately 30% of raccoon
isolates in this study, were from subtypes with mixed-host
association. Mixed-source genotypes have been well-described
and typically include representatives from Clonal Complexes
(CCs) described as ‘generalists’ including ST-45, ST-21, and
ST-48 (52–55). These CCs are highly prevalent worldwide,
known for their broad host distribution, including livestock, and
high burden of human illness. During the course of validating
CGF (36), we established correlations between specific CGF
subtypes and corresponding CCs and have subsequently been
able to refine these based on in silico subtyping predictions

from WGS data (40, 56). Notably, many CGF subtypes within
clade B have been characterized as belonging to CC ST-
45, including CGF subtype 0926.002.001, which is the third
most prevalent genotype in the C3GFdb and ranks sixth in
terms of number of human clinical cases associated with
it. Although clade H only comprised a small proportion
of raccoon isolates in this study (1.6%), it is noteworthy
because CGF subtypes from within clade H have been
shown to belong to CCs ST-21 and ST-48 (57). Moreover, it
includes CGF subtypes 0044.003.001 and 0083.001.002, which
are among the most prevalent in Canada and rank second
and third in terms of number of associated human clinical
cases, respectively. Because of their synanthropic behavior, the
potential for acquisition of clinically relevant Campylobacter
subtypes by raccoons via the same routes of exposure as
humans cannot be ruled out. Our data suggest that the high
Campylobacter rates observed in this wild raccoon population
are likely due to environmental and ecological factors, including
high rates of mixed agriculture activities, which allow for
sustained and consistent Campylobacter exposure to agriculture-
associated genotypes strongly implicated in human cases
of campylobacteriosis.

CONCLUSIONS

Prevalence of Campylobacter in the raccoon population under
study, which is native to the Grand River Watershed in
southwestern Ontario, Canada, was found to be much higher
than what has been previously reported for other populations
of small to medium-sized wild mammals. This high prevalence
was observed despite evidence suggesting that individual
animals were only transiently colonized, with a majority
of raccoons harboring C. jejuni for only short periods of
time (i.e., ≤1 month). Our data show significant genotypic
flux within individual animals, which is consistent with the
constant acquisition, loss, and replacement of strains, and
suggest that this raccoon population is constantly exposed
to a wide range of circulating but endemic strains. This
may be due to ecological factors within the Grand River
Watershed, where agriculture and human activities may give
rise to a wide variety of Campylobacter sources. Although
raccoons appear to be poor hosts for C. coli strains typically
observed in swine, many of the C. jejuni subtypes observed
in this raccoon population have been previously associated
with agricultural sources (e.g., chickens, cattle) and human
illness. Interestingly, raccoons were also found to carry C. jejuni
subtypes within two clades that appear to be genetically distinct
from genotypes recovered from humans and food animals and
that appear to represent raccoon-associated niche- or host-
adapted strains; the potential risk to human health from these
strains remains unknown. Nevertheless, the high proportion
of clinically-relevant generalist Campylobacter subtypes found
in raccoon fecal samples suggests that raccoons likely act as
transient vectors of Campylobacter and may play a role in the
transmission of strains at the interface of rural, urban, and more
natural environments.
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