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Maternal stress can affect the offspring of birds, possibly due to hormone deposition in

the egg. Additionally, phenotypic diversity resulting from domestication and selection for

productivity has created a variety of poultry lines that may cope with stress differently.

In this study, we investigated the effects of maternal stress on the behavior of different

strains of laying hens and the role of corticosterone as its mediator. For this, fertilized

eggs of five genetic lines—two brown (Brown 1 and 2), two white (White 1 and 2), and

one pure line White Leghorn—were reared identically as four flocks of 27 birds (24F: 3M)

per strain. Each strain was equally separated into two groups: Maternal Stress (“MS”),

where hens were subjected to a series of daily acute psychological stressors for 8 days

before egg collection, and “Control,” which received routine husbandry. Fertile eggs from

both treatments were collected at three different ages forming different offspring groups

that were treated as replicates; additional eggs from Control were injected either with

corticosterone diluted in a vehicle solution (“CORT”) or just “Vehicle.” Eggs from each

replicate were incubated and hatched, and offspring (N = 1,919) were brooded under

identical conditions. To measure the effects of maternal stress on anxiety and fear-like

behavior, offspring were subjected to a social isolation test (SI) between 5 and 10 days

of age and a tonic immobility test (TI) at 9 weeks of age. Compared to Control, MS

decreased the number of distress vocalizations emitted by White 2 in SI. No effects of

MS were observed in TI, and no effects of CORT were observed in any tests. Overall,

brown lines vocalized more in SI and remained in TI for a longer duration than white

strains, suggesting genetic differences in fear behavior. Females vocalized more than

males in TI and showed a trend toward significance for the same trait in SI. Overall,

results suggest that the effects of maternal stress on fearfulness are not directly mediated

by corticosterone. Moreover, it highlights behavioral differences across various strains of

laying hens, suggesting that fear responses are highly dependent on genotype.

Keywords: corticosterone, layer breeder, fear, anxiety, genetics, chicken

INTRODUCTION

Maternal stress can impact offspring physiology, behavior, and cognition (1–3). Its effects are highly
dependent on the intensity, timing of exposure, and type of stressor experienced by the mother (4–
6). More specifically, impacts on offspring behavior are evident across taxa [avian (7); mammals
(1, 8); reptiles (9)], and at the neurological scale, maternal stress has been linked to structural
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and functional changes in the limbic system and prefrontal
cortex of rats (1), and to changes in gene expression in the
hypothalamus of chickens (10). These brain areas are involved in
the mediation of fear and anxiety, social and cognitive processes,
and working memory of mammals and birds (11, 12). Maternal
stress may have long-term impacts on how an animal responds to
its environment. For example, in laying hens, females subjected to
an unpredictable food restriction schedule had chicks that stayed
longer in tonic immobility (TI), a measure of fearfulness, and
were less competitive for access to food in a novel environment
than the offspring of control birds (13). Similarly, the offspring
of female quails stressed during egg production displayed more
anxiety-like behaviors, such as an increased occurrence of distress
calls during emergence and open field tests, and when isolated
from conspecifics (14).

Cottrell and Seckl (15) proposed two major hypotheses to
explain the association between maternal stress and postnatal
effects on offspring: fetal malnutrition and overexposure to
glucocorticoid hormones. More recently, studies in avian species
have shown that maternal stress can also be linked to the
increase in other biological components in the egg, such as
androgens (16), thyroid hormones (17), antioxidants (18), and
immunoglobulins (19). Nevertheless, although glucocorticoid
hormones are not a synonym for “stress” (20), corticosterone
remains as one of the most analyzed mediators of maternal
stress in the literature due to their pleiotropic role in
regulating physiological responses to the environment and in
the development and maturation of vital organs [reviewed in (6,
16, 21)]. Moreover, the hypothalamus–pituitary–adrenal (HPA)
axis of chickens, responsible for corticosterone production,
becomes functional between the 14 and 16th day of incubation
and might also be affected by maternal hormone deposition
(22). The effects of corticosterone on the behavior of the
offspring are, however, inconsistent and appear to depend
on delivery method and species, possibly being related only
to metabolic and developmental processes (23). For example,
although corticosterone injections into fertile eggs and implants
to female chickens were linked to an increase in the duration
of TI in the offspring (24, 25), injections in yellow-legged gulls
had no effects in the same test (26). Moreover, corticosterone
injections decreased the offspring’s ability to learn (27), compete
for a wormlike object (24), and increased aggressiveness (28) in
layer chickens.

As evidenced above, two experimental models are commonly
used to increase corticosterone levels in the egg: a maternal
model in which the adult female is exposed to stressors (either
directly or through corticosterone injections or implants) and a
pharmacological model that manipulates the egg. The maternal
model might be considered more holistic as hormone or stress
treatments integrate with other maternal elements that might
also affect embryonic development (29). However, it precludes a
specific control of the quantity of hormone reaching the embryo
(30). Conversely, egg manipulation allows the study of exposure
to an exact dose of specific hormone but relies on the use
of an invasive injection procedure that can be harmful to the
embryo (31, 32). Furthermore, hormonal responses are generally
dose-dependent, and the actual concentrations deposited by

the mother into the egg during development remain unknown
(16, 33).

Similarly unknown is the relationship between maternal
stress and genetics. Although no previous studies have tested
multiple strains of commercial layers simultaneously, the levels
of susceptibility to maternal stress may vary across different
genotypes. A positive correlation between the concentration of
corticosterone in layer breeders and the occurrence of an anxiety-
like behavior in the offspring was observed in a white genetic
hybrid but not in a brown hybrid (34). Furthermore, it has been
found that adult brown and white strains of laying hens have
distinct behavioral and physiological responses to stress (34–
36); and comparisons between offspring of White Leghorns and
their ancestor, the red jungle fowl, revealed that in response
to maternal stress, only the White Leghorn chickens displayed
decreased learning abilities and differences in gene expression in
the hypothalamus and pituitary, suggesting that genetic selection
may have increased maternal stress susceptibility (37).

The main goal of this study was to investigate whether
the effects of maternal stress on offspring fear- and anxiety-
like behavior differ across genetic lines of laying hens. For
this, five strains of breeder hens were subjected to two stress
models: one that involved subjecting the breeders to acute
psychological stressors and another that involved egg injections
of corticosterone. Using these treatments, we sought to decouple
the role of corticosterone from the broader maternal milieu
during maternal stress. We predicted that injections would affect
all strains, acting as a positive control treatment regardless of
genetics, and that the effects of Maternal Stress would vary
according to the natural stress susceptibility of each strain.

MATERIALS AND METHODS

The birds used in this study were treated in accordance with
the Canadian Council on Animal Care, and all procedures were
approved by the University of Guelph Animal Care Committee
(Animal Utilization Protocol #1946). All the strains presented
herein were anonymized as required by the genetics companies
that donated the parent stock.

Parent Stock: Management
A total of 2,600 fertilized eggs of five strains of parent stock
were provided by two commercial genetics companies (Brown
1 and White 1 from company 1; Brown 2 and White 2
from company 2; each company donated 360 female line eggs
and 64 male eggs per strain) and the University of Guelph’s
Arkell Poultry Research Station (pure line White Leghorn).
To guarantee similar experiences, eggs from all strains were
collected from grandparent hens that were between 40 and
50 weeks of age. Eggs and chicks were subjected to identical
incubation and husbandry conditions, as previously described
(38). Chicks were wing banded at hatch, and each strain was
equally distributed into 4 parent flocks that were placed in 2
rooms containing 10 pens of 27 birds (24 females and 3 males)
each (see Supplementary Figure 1). Pens (3.7 m2) were enriched
with pine shavings, one elevated perch and one lower perch,
totaling a perch space of 12.8 cm/bird/pen. At 18 weeks, five
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FIGURE 1 | Experimental design. Treatments (Control and Maternal Stress) were applied to each strain (Commercial Brown 1 and 2, Commercial White 1 and 2, and

Pure Line White Leghorn) of the breeder flocks at three different ages (32, 52, and 72 weeks). The offspring of each maternal age were statistically treated replicates.

nest boxes were added to each one of the pens. Chickens from
different pens were visually separated from each other and did
not interact at any moment. Apart from routine husbandry, all
human interaction was avoided to prevent possible habituation.

Parent Stock: Experimental Design
Treatments and egg collection were performed at 32, 52, and
72 weeks of age. To form the offspring groups, equal numbers
of fertile eggs (sampled over time, preference given to recent
over old) from all parent flocks were incubated 1 day after the
end of stressors, and the offspring flocks from each maternal
age were treated as replicates (Figure 1). This experimental
design allowed us to work with a larger sample size, but it also
resulted in replicates confounded with incubatory settings, chick
transfer and placement from the incubator to pens, and egg
composition, since the nutritional value of the egg changes as a
hen ages (39).

Parent Stock: Control and Maternal Stress
Treatments
Each flock of breeders was randomly assigned to either Control
or Maternal Stress (“MS”) treatments with two replicate flocks
per strain and treatment. Regular husbandry was strictly adhered
to for the Control groups, while the females of the MS
flocks were subjected to daily sessions of acute psychological
stress procedures that were selected based on their ability to
increase plasma corticosterone concentration in avian species
(see references for each test and species below). Since the
average time window for egg production from the beginning of

vitellogenesis until laying is 8 days, each MS flock received a
minimum of 8 consecutive days of stressors before the beginning
of egg collection.

Hens from the MS flocks were subjected to each of the
following procedures: (1) Hens were equally distributed into
two plastic crates (89 cm long × 60 cm wide × 26 cm high; 12
hens/crate), followed by 15min of transportation [Figure 2A,
laying hen: (40)]. (2) Hens were individually removed from their
home pens and placed inside a cloth bag located in a nearby room
for 10min of physical restraint [Figure 2B, laying hen: (41)]. (3)
Hens were crated into two groups of 12 birds, transported to an
empty room 400m away from their home pen and transferred
to a test arena (100 cm long × 100 cm wide × 200 cm high)
constructed of solid white panels with two doors located on
opposite walls and two LED lights on the ceiling for 30min. In
the arena, hens were exposed to three simulations of a predator
attack (30 s/each) using the silhouette of a sparrow-hawk made
of black cardboard (35 cm long × 50 cm wide) [Figures 2C,D,
great tit: (42)]. (4) Hens were crated and transported to the test
arena for 15min. An air horn was blown for 3 s at 5-min intervals
[Japanese quail: 14; European starling: (43)]. (5) Hens were crated
and transported to the test arena for 30min with a different strain
[laying hen: (44)]. All birds were immediately returned to their
home pens after each stress session. Overall, sessions respected
the following criteria: (1) Flocks were subjected to one stressor
a day. (2) Stressors and egg collection were performed until the
total number of eggs necessary for incubation had been collected.
(3) To avoid a decrease in the physiological response to stressors
due to repeated exposure, the minimum interval between the
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FIGURE 2 | Stressors used in the MS treatment. (A) Breeder hens were crated

and transported around the research facility for 15min. (B) Physical restraint in

a cloth bag. (C) The silhouette of a sparrow-hawk made of black cardboard

(35 cm long × 50 cm wide). (D) Layer breeders were transferred to a test arena

(100 cm long × 100 cm wide × 200 cm high); three simulations of a predator

attack were performed (All photos used with permission of subjects).

application of the same stressor was 4 days. (4) Sessions ran
randomly from 9:00 to 16:00 h.

Parent Stock: Vehicle and CORT
Treatments
The CORT treatment aimed to increase the concentration of
corticosterone in fertilized eggs from breeder hens. According
to previous studies, the basal level of corticosterone in laying
hens ranges from 0.3 to 5 ng/ml (45), reaching 30 ng/ml in
response to stress (46). The concentration of corticosterone
in egg yolks has been previously reported to range from
0.77 to 2.8 ng/g in Hy-Line Brown (47–49) to an average
of 1.6 ng/g in Hy-Line White (47) and 2.13 ng/g in Bovan
White (50) under control conditions. The mean concentration
of corticosterone in eggs from unstressed birds has been
previously reported as 1.17 in yolk and 1.55 ng/ml albumen
(51). However, analytical validation of enzyme- and radio-
immunoassay techniques showed the presence of cross-reactive
substances that hamper the quantification of corticosterone in
the yolk and albumen of eggs (52). Furthermore, recent work
has shown that even when more precise techniques such as

Celite or HPLC are conducted, they may not be sufficient
[reviewed in (16)]. Therefore, since the exact concentration
of corticosterone in eggs remains unknown, we followed the
methodology proposed by Janczak et al. (32) and modified by
Peixoto et al. (38), which was based on plasma corticosterone
concentration of hens. Injections of 10 ng/ml cortisol diluted
in sesame (CORT treatment) or sesame oil alone (Vehicle
treatment) were used. In preparation for this procedure, a layer
of approximately 0.5mm of silicone sealant (General Electric,
Boston, MA) was smeared on the basal tip of the shell (2 cm
long × 1 cm wide) of a subsample of Control eggs 1 day before
egg incubation; this sealant would help prevent gas exchange and
contamination following perforation and injection through the
shell. On the morning of each incubation day, Vehicle and CORT
solutions were prepared. The average weight of egg content,
which is estimated to be 90% of total egg weight (53), was 50,
50, and 59 g per hen age group; thus, a volume of 50 µl of either
CORT or Vehicle solutions were injected into eggs from 32- to
52-week-old breeders, while 60 µl was injected into eggs from
72-week-old breeders. Injections were performed using a sterile
23-gage needle through a small hole that was perforated through
the silicone layer using an egg piercer. Eggs from all treatments
were immediately incubated.

Offspring Stock: Management and Data
Collection
Egg collection, incubation, and hatch occurred under similar
conditions for all offspring groups. Chicks from each maternal
age were individually wing-banded at hatch. The placement
of chicks from each strain and treatment was randomized
across rooms 40 pens equally distributed in four rooms (see
Supplementary Table 1 and Supplementary Figures 2–4). Each
pen (3.72 m2) was enriched with a perch (length: 155 cm) and
litter floor. Each replicate in time aimed to comprise two pens
with 20 birds each (10 female: 10 male) per treatment and
strain; however, final densities varied due to lower hatchability
of injected eggs (38). The test orders for the procedures described
below were balanced across the period of the day for all flocks,
strains, and treatments to minimize the effects of time and
circadian rhythm on the results.

Offspring Stock: Social Isolation (SI)
The social separation of young chicks from their conspecifics
produces an increase in distress vocalizations and stress-induced
analgesia (54), allowing for the measurement of anxiety-related
behaviors. Following the methodology proposed by Sufka et al.
(55), chicks between 5 and 10 days of age (N = 701; Table 1)
were individually placed into a squared soundproof box (63.5 cm
high × 63.5 cm deep × 63.5 cm wide) where their vocalizations
were recorded. The box was constructed of solid panels, covered
with acoustic fabric, and equipped with five LED lights and a
microphone taped on the ceiling for recordings (Figures 3A,B).
SI lasted 5min and was conducted from 08:00 to 12:00 h and
from 14:00 to 18:00 h in a quiet room nearby the chicks’ home
pen. Distress calls were recorded, saved as an MPEG-4 file using
the Voice Memos application (Apple, Cupertino, USA). The total
number of distress calls emitted by the chicks were counted
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TABLE 1 | Number of chickens tested by treatment, strain, and maternal age (weeks) in the social isolation and the tonic immobility tests.

Strain

Brown 1 Brown 2 White 1 White 2 W.Leghorn

Maternal age Maternal age Maternal age Maternal age Maternal age Total

Treatment 32 52 72 32 52 72 32 52 72 32 52 72 32 52 72

Social isolation Control 12 12 12 12 12 12 12 12 11 12 12 12 12 12 12 179

Maternal stress 12 12 10 12 12 12 12 12 12 12 12 11 12 12 12 177

Vehicle 12 12 11 10 12 12 12 12 12 12 12 12 11 12 12 176

CORT 12 12 11 10 12 10 12 12 12 12 12 11 10 12 9 169

Total 48 48 44 44 48 46 48 48 47 48 48 46 45 48 45 701

Tonic immobility Control - 11 12 - 12 12 - 13 12 - 12 12 - 10 12 118

Maternal Stress - 12 12 - 12 12 - 11 12 - 12 12 - 11 12 118

Vehicle - 12 11 - 12 12 - 12 12 - 12 11 - 12 12 118

CORT - 12 12 - 12 12 - 12 12 - 12 12 - 9 7 112

Total - 47 47 - 48 48 - 48 48 - 48 47 - 42 43 466

Presented in bold are the total number of chickens tested displayed by strain and maternal age (row) and treatment (column).

FIGURE 3 | (A) Soundproof box (63.5 cm high × 63.5 cm deep × 63.5 cm

wide) used in the social isolation test. (B) The box was constructed of wood

panels, covered with acoustic fabric, and equipped with five LED lights and a

microphone taped on the ceiling.

by three observers blind to treatment using WavePad (NCH
Software, Greenwood Village, USA).

Offspring Stock: Tonic Immobility (TI)
A modified version of the TI methodology proposed by Jones
(56) was used to measure fear in chickens at 9 weeks of age
(N = 466; Table 1). Chickens were individually caught, moved
into a quiet nearby room, and placed on their back in a V-shaped
cradle, where the experimenter gently applied pressure on their
sternum (57). If immobility lasted a minimum of 10 s, it was
considered a successful induction. If not, up to three consecutive
attempts at induction were performed. Each test lasted 10min
or until the bird stood up. Data were collected only from the
offspring of hens of 52 and 72 weeks. Testing was conducted
from 09:00 to 12:00 h and 13:00 to 16:00 h, and the procedure
was recorded using a camcorder (Panasonic HC-V180K) that
had been positioned perpendicularly to the cradle. Behavior was

analyzed from videos and included duration until the bird rights
itself up, the number of vocalizations emitted during the test, and
the number of inductions needed to attain a successful induction.
Data were analyzed by two trained observers blind to treatment.

Although the term TI implies in a state of reduced
responsiveness that includes suppressed vocal behavior and
intermittent periods of eye closure and muscle tremors in the
extremities (58), different responses can be observed throughout
the test (e.g., vocalization and head movement). As described
by Rovee and Luciano (59), TI can be classified in three stages:
In stages 1 and 2, distress calls can be emitted and eyes are
either open or with occasional fluttering eyelids. Whereas, in
stage 3, complete eye closure, no vocalizations, head bobbing,
and occasional generalized body twitches are observed. Since
these behaviors may vary in response to different methodologies
[which can affect the validity of the test (57, 60)], data for the
duration of stage 3 of TI, which will specifically be referred to as
“3rd stage of TI” throughout the text, were separately recorded
and analyzed.

Statistical Analyses
The Glimmix procedure of SAS 9.4 (SAS Institute, Cary, NC)
was used to perform all statistical analyses. The basic statistical
model in ANOVA included fixed effects of treatment (Control,
MS, Vehicle and CORT), strain (Brown 1 and 2, White 1 and 2,
and White Leghorn), sex, and a treatment by strain interaction.
Random effects included maternal age (32, 52, and 72 weeks) and
pen (10 pens) nested in room (4 rooms), with offspring bird as the
experimental unit. Further pre-planned comparisons included
treatment (Control vs. MS, Control vs. Vehicle, and Control
vs. CORT) and white vs. brown strains. Tests for normality
included Shapiro–Wilk and Anderson Darling measurements
in conjunction with visual plots. When a significant strain by
treatment interaction was found, analyses controlled for the
multiple testing error using the percentage of false positives,
which estimates the false discovery rate [FDR (61)]. Significance
was declared at P < 0.05. Reliability between observers (all blind
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TABLE 2 | Average number of distress vocalizations (± SEM) performed by chicks between 5 and 10 days of age during the social isolation test.

Treatment Strain Treatment

average
Brown 1 Brown 2 White 1 White 2 White leghorn

Control 222.3 ± 104.7a,y 144.2 ± 71.0a,y 119.8 ± 53.7a,y 135.3 ± 61.0a,y 47.7 ± 23.2a,y 119.89 ± 40.2

Maternal stress 393.7 ± 178.0a,y 222.1 ± 101.1ab,y 60.3 ± 27.8bc,y 13.8 ± 6.2c,z 80.9 ± 38.3ab,y 89.89 ± 30.35

Vehicle 126.0 ± 59.4a,y 302.7 ± 144.0a,y 60.3 ± 31.7a,y 86.3 ± 39.0a,y 203.7 ± 100.9a,y 132.15 ± 44.9

CORT 118.7 ± 58.0a,y 220.4 ± 116.3a,y 63.8 ± 29.5a,y 44.4 ± 21.1a,yz 213.0 ± 110.6a,y 109.56 ± 38.0

Strain average 190.05 ± 66.6a 215.01 ± 76.90a 72.64 ± 35.84bc 51.65 ± 18.0c 113.75 ± 58.0ab

Results are presented by strain and treatment. Means in the same row with different letter superscripts (a, b, c) differ significantly between strains (P < 0.05). Means in the same column

with different letter superscripts (y, z) differ significantly among treatments (P < 0.05). Presented in bold are the average number of distress vocalization per strain (row) and treatment

(column).

to treatment) was calculated using Kendall’s Tau-b coefficient.
Kendall’s τ score of 1.0 is considered a perfect relationship,
and a score of 0.7 is considered acceptable (62). Consequently,
scores reported for SI (Kendall’s τ = 0.93; P < 0.001) and
duration of TI (Kendall’s τ = 0.82; P < 0.001) indicate agreement
among observers.

Social Isolation
The SI data were subjected to the basic model and log-normally
transformed to meet the assumption of a normal distribution of
residuals. Significance post-FDR correction was set at P < 0.005
and followed by a power analysis (alpha = 0.005). Least square
(LS-) means and standard error of means (SEM) were back-
transformed and are presented in the results as the average of
distress vocalizations.

Tonic Immobility
The duration of immobility and number of vocalizations were
subjected to the basic statistical model in ANOVA. To meet
the assumption of a normal distribution of residuals, data for
duration were subjected to a log-normal transformation, while
vocalization data were transformed by the arcsine of the square
root. Random effects were grouped by strain. LS-Means and
standard deviation (SD) of both tests were back-transformed
and are presented in the results as the average duration of TI
in seconds and the average number of calls emitted during the
test. The number of attempts needed for induction is presented
as a percentage of birds; data were subjected to a Poisson
transformation but were not normally distributed when the
model included a strain by treatment interaction. Thus, a simpler
statistical model containing only treatment as the fixed effect
was used. Differences between LS-means were tested using a
chi-square test. Due to the small number of birds induced
into stage 3 of TI (n = 41), residuals for measurements of
duration were not normally distributed when the model included
a strain by treatment interaction. Therefore, a simpler statistical
model containing only strain, treatment, and sex as fixed effects
was used.

RESULTS

Social Isolation
The number of distress calls expressed by the offspring of layer
breeders was affected by strain and stress treatment (P < 0.001;

FIGURE 4 | Duration (s) of tonic immobility displayed by strain (+ SD). Means

with different letter superscripts(a−c) differ (P < 0.05).

Table 2). Chicks of the White 2 strain vocalized less when their
mothers were subjected to MS compared to Control (P < 0.001).
Similarly, MS breeders from the Brown 1, Brown 2, and White
Leghorn strains produced chicks that vocalized more thanWhite
2. Overall, brown chicks vocalized more than white (P < 0.001),
and sex displayed a trend toward significance (P = 0.066), with
females (125.7 ± 39.6 calls) vocalizing more than males (99.4 ±

31.3 calls).

Tonic Immobility
The duration of TI in 9-week-old offspring of layer breeders was
not affected by an interaction of strain by treatment (P = 0.105),
treatment (P = 0.924), or sex (P = 0.643); but brown chickens
stayed longer (P < 0.001) in TI than white (Figure 4). The
duration of the third stage of TI was not affected by treatment
(P = 0.863), strain (P = 0.701), or sex (P = 0.089).

The number of vocalizations expressed by offspring in TI
was also not affected by an interaction of strain by treatment
(P = 0.580) or treatment (P = 0.325). However, chickens of
brown strain vocalized more (P < 0.003) than white (Figure 5),
and pullets (10.2 ± 1.2 calls) vocalized more (P < 0.001) than
cockerels (3.05± 0.7 calls).

The number of attempts needed to induce a chicken into TI
was not affected by treatment (P = 0.892). More chickens from
the Brown 1 strain needed a second attempt to reach TI compared
to the White 1 strain (P = 0.015) (Figure 6).
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FIGURE 5 | Number of distress calls (+SD) emitted during tonic immobility

displayed by strain. Means with different letter superscripts(a,b) differ (P < 0.05).

FIGURE 6 | Percentage of chickens that were induced into tonic immobility

after 1, 2, or 3 attempts displayed by strain (*P < 0.05).

DISCUSSION

Limitations and Effects of the Stress
Treatments
This study aimed to determine the effects of maternal stress on
the behavior of different strains of laying hens. We hypothesized
that the CORT treatment would show a clear response acting as
a positive control treatment, while MS would highlight genetic
differences among strains. In contrast to our hypothesis, the
CORT treatment showed no effects on the behavior of the
offspring andMS decreased the number of distress calls expressed
by the offspring of White 2 mothers during SI but showed no
differences in TI.

One limitation of this study is that the acute stressors used in
the MS treatment were based on reports in the literature and not
validated in our population of layer breeders, with the exception
of the physical restraint test. The HPA axis activation of a
subsample of layer breeders from all strains and treatment groups
was tested at 75 weeks of age (N = 119). Breeders from both
MS and Control treatments produced elevated concentrations of
corticosterone in response to the restraint test [baseline control:
2.37 ± 0.49 ng/ml; baseline MS: 2.97 ± 0.47 ng/ml (P = 0.822);
stress response control: 5.24 ± 0.55; stress response MS: 5.73 ±

0.55 (P = 0.841)] confirming that layers from the MS treatment
were still physiologically responsive to restraint after repeated
exposure (unpublished data). Nevertheless, we were unable to
measure if this transient increase in plasma corticosterone was
enough to alter the egg composition. Lastly, corticosterone has a
short lifetime in chickens [∼22min (63)], and each stressor used
in the study lasted a maximum of 30min from catching until
layers were returned to their home pen. Chronic stress is likely
more important to signal the offspring than the short-term, acute
stressors used in our experiment.

Once viewed as a successful model for testing the effects of
maternal stress (6), the largely unnatural and invasive aspects of
the egg injection methodology should be carefully considered.
Firstly, the actual concentration of corticosterone transferred
from mother to egg remains unknown (52, 64), may differ
across strains (47), and can potentially overwhelm the embryo if
outside of the physiological range of eggs. Indeed, as published
in Peixoto et al. (38), the average hatchability for the control
treatment of this study was 83%, whereas hatchability for the
vehicle and control treatments were 38 and 25%, respectively.
The decrease in hatchability in the vehicle treatment suggests that
mechanical damage such as puncturing and disrupting eggshell
membranes (which might increase the chances of pushing
eggshell particles into the albumen) or the chemical composition
of the vehicle affected the progeny. It is also possible that the
silicone layer used to seal the hole was applied ineffectively,
leaving an open hole in the shell that facilitated contamination.
Lastly, the high levels of embryonic mortality in the injected
groups may have created a subset of birds that were more
resistant to the adverse effects of the injection, limiting the
generalization of the results presented herein. Until a precise
method for quantifying corticosterone in the egg and less invasive
procedures are available, the efficacy of this methodology and
the biological relevance of the corticosterone dosage used in the
present experiment are debatable.

SI is a well-validated test that has been used as an in vivo
preclinical screening of anxiolytic drugs (65, 66), which were
shown to reverse distress vocalizations and pain-related behavior
in chicks (67). Moreover, birds tested with and without the
presence of a mirror confirmed the assumption that vocalizations
increased due to an absence of conspecifics (68). In the present
study, the offspring of the White 2MS breeders vocalized less
than the Control treatment of the same strain. To our knowledge,
this is the first study that evaluated the effects of maternal
stress on anxiety-like behavior through the SI test, and the
results are congruent with those observed in quails tested in
an open field test (14). Interestingly, the eggs from stressed
quails showed higher concentrations of testosterone compared
to control groups. Androgenic hormones such as testosterone
are known to be important mediators of maternal effects on
the behavior of the offspring (69, 70), possibly more than
corticosterone [reviewed in (16, 71, 72)]. In addition, genetic
differences across strains display a higher susceptibility of the
White 2 strain to maternal stress compared to the other strains
used in this study. Nevertheless, only minimal outcomes were
observed in the progeny of the MS breeders, suggesting a higher
resiliency to stressors than expected.
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Tonic immobility is a state of reduced responsiveness thought
to be a defense strategy used to decrease the predator’s interest in
the prey (73). It is induced by physical restraint, and its duration
is considered a measure of fearfulness in birds (56, 57). Our lack
of treatment effects in TI corroborates with Rubolini et al. (26),
who injected corticosterone into fertile eggs of yellow-legged
gulls. Contrary to our findings, the offspring of hens subjected to
an unpredictable feeding schedule stayed longer in TI (13). This
stressor, however, is not necessarily associated with increased
levels of corticosterone in the egg and may be translated to the
offspring via different pathways (e.g., nutrition). Also using a
single egg injection of corticosterone prior to incubation, Janczak
et al. (74) observed that chicks from injected eggs stayed longer
in TI but only if they had been previously handled, suggesting
that life experiences influence this behavioral effect of maternal
stress. Interestingly, physiological studies on maternal stress and
the HPA axis activation of the offspring showed that treatment
effects are only observed when the offspring is also subjected to
stressors (75–77). Therefore, a combination of maternal stress
and life experience might be essential to trigger behavioral and
physiological responses in the offspring. Our lack of treatment
effects in TI might, thus, be related to a natural preservation
of the phenotype of the offspring, since behavioral changes can
easily become detrimental. This has important consequences
for predicting and managing maternal effects in both breeder
and commercial flocks, which may be regularly exposed to
stressful events.

Analyses of the duration of the 3rd stage TI failed to display
any effects of treatment or strain. Although the description of a
bird in the 3rd stage (i.e., complete eye closure, no vocalizations,
head bobbing, and occasional generalized body twitches) seems
more similar to the original description of TI by Nash et al. (58),
it is possible that the rigorousness of the method (which excludes
birds with their eyes open and vocalizing, common behaviors
during TI) may have reduced the test’s ability to detect subtle
behavioral differences, and therefore, it is not recommended.

Effect of Strain
Strain effects were found in both behavior tests. Contrast
statements showed that the differences were primarily associated
with the phylogenetically distant brown and white strains.
The brown strains vocalized more in SI and TI and showed
longer durations of immobility during TI, suggesting a higher
occurrence of anxious and fearful behaviors compared to the
white lines. This variability might be due to the intense genetic
selection for productive traits in the domestic layer or by the
phylogenetic, behavioral, and physiological differences across
strains (34, 36, 47, 78, 79), which might be explained by evolution
and domestication. Population studies exploring genetic diversity
showed that brown lines originally came from African and
Mediterranean genetic clustering, whereas white lines originated
from the European cluster [reviewed by (78)]. Moreover,
commercial brown lines are based from the Rhode Island Red, an
originally dual-purpose breed (selected for both meat and eggs)
with medium genetic diversity, whereas commercial white lines
are based fromWhite Leghorn, a low genetic diversity breed (80).

Genetic selection for production traits may have also
affected the behavior of chickens if the traits are correlated or
genetically linked. Several quantitative trait loci (QTL) related
to fear response, for example, have been found on different
chromosomes in White Leghorns. More specifically, TI was
associated with three different QTLs on chromosome 1 that
coincide with the position of two major QTLs for growth and
bodyweight (81, 82). Therefore, genetic selection for body weight
may have simultaneously affected fearfulness in White Leghorn.
However, data for these studies were obtained exclusively from
one strain, and it would be important to measure if this is also
valid for lines expressing different genetics, such as brown strains.
An early study of genetic differences and behavior showed that
White Leghorns chicks displayed longer duration of TI than a
Production Red strain, and when the two strains were crossbred,
offspring showed intermediate durations (83), supporting the
hypothesis that behavioral differences between brown and white
strains are genetically dependent.

Contrary to our findings on vocalization (in both SI and TI)
and duration of TI, the measurement of the number of attempts
to attain a successful induction in TI showed that Brown 1 needed
more second attempts thanWhite 1, therefore suggesting that for
this particular trait, a brown strain was less fearful than a white
strain. Overall, results on anxiety and fearfulness found in the
literature are often inconsistent, and a bird’s motivation to engage
in certain behaviors remains unclear. For example, some studies
have found that brown strains lasted longer in TI (35, 36, 84, 85)
and vocalized less than white strains in an open field test (86).
The interpretation of these tests is thus difficult, with a multitude
of factors such as genetic selection (87), hormones (88), the
environment (89), and test methodology simultaneously affecting
the behavior of layers.

Effect of Sex
In accordance with previous research (25, 41, 90), the present
study did not show an interaction between treatment and sex
to affect measures of anxiety and fearfulness in the offspring.
Nevertheless, the current study suggests that female chickens
are more anxious than males, displaying a higher frequency of
distress calls during TI and a similar trend pattern in SI. These
findings corroborate with Jones (86), who observed that hens
were more active and vocalized more than cockerels in an open
field test.

The development of sexual dimorphism in behavior is mostly
related to the influence of gonadal hormones, androgens,
and estrogens on the nervous system (91). Individually and
combined, these hormones can organize and reorganize the
neuronal circuitry involved in neuroendocrine and behavioral
functions, including the serotonin system (91, 92) that is
responsible for anxiety traits (93, 94). Moreover, the environment
can also interact with sex to affect behavior. For example,
Vallorttgara and Zanforlin (95) found that social isolation
from cage companions was more stressful for female than
male chickens. In the current study, birds were separated
from conspecifics at both tests. Consequently, the hens might
have vocalized more due to an intensified emotional response
experienced during the tests.
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CONCLUSION

Our findings suggest that the effects of maternal stress on
measures of anxiety and fearfulness were contingent on genetic
strain, but only when stressors are applied directly to the mother.
The lack of CORT treatment effect suggests that maternal
stress may not be mediated by corticosterone. Additionally,
genetic strains responded differently to both behavior tests,
with brown birds displaying higher levels of fearfulness in
comparison to white strains, suggesting genetic differences in
fear behavior across the genetic lines of commercial layers.
These findings have important implications, since behavioral
variations can be decisive to determine the overall adaptability
of a strain to a specific production system. Moreover, in research
settings, researchers must take into consideration behavioral
differences when assessing different strains of laying hens, since
generalization might be misleading.
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