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Somatic cell count (SCC) is one of the most important and widely used mastitis

diagnostics. For detecting (sub)clinical mastitis, online SCC related measurements are

more andmore used in automatic milking systems (AMS). Sensors such as an automated

online California Mastitis Test (O-CMT) allow for high frequency screening of high SCC

cows within a herd, which makes it potentially powerful to identify episodes of mastitis.

However, the performance of O-CMT measurements, as compared to SCC determined

in the laboratory (L-SCC), has only scarcely been described. The aims of this study were

(1) to assess the agreement between the O-CMT measurement averaged over different

time windows and the corresponding L-SCCmeasurements; (2) to determine the optimal

time window for averaging O-CMT as compared to L-SCC; (3) to explore the added

value of time-series of frequent O-CMT measurements in individual cow udder health

monitoring compared to L-SCC measurements. Data were collected from 50 farms in 6

different countries that were equipped with AMS using O-CMT measurements and also

performed regular L-SCC testing. We found that the overall concordance correlation

coefficient (CCC) between O-CMT and L-SCC was 0.53 but differed substantially

between farms. The CCC betweenO-CMT and L-SCC improvedwhen averaging O-CMT

over multiple milkings, with an optimal time-window of 24 h. Exploration of time series of

daily O-CMT recordings show that this is an effective screening tool to find episodes

of high SCC. Altogether, we conclude that although O-CMT agrees moderately with

L-SCC, because of its high measurement frequency, it is a promising on-farm tool for

udder health monitoring.

Keywords: somatic cell count, online-California mastitis test, udder health monitoring, on-farm screening tool,

automatic milking machine, mastitis, dairy cow

INTRODUCTION

Mastitis is one of the main diseases in dairy cattle and leads to economic losses, usage of
antimicrobials, and reduced animal welfare (1, 2). Udder health monitoring programs including
regularly measured somatic cell count (SCC) have been widely used as a first step to improve
udder health (3). These monitoring programs create awareness of udder health problems which,
combined with mastitis prevention plans, motivate farmers to change on-farm udder health
management to decrease the incidence of mastitis (4, 5).
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The SCC of composite cow milk, as part of a dairy herd
improvement (DHI) program, is a key indicator for udder health
monitoring in current practice (6) and is generally measured
using flow cytometry-based laboratory techniques (7). This
routinely measured SCC in the laboratory (L-SCC) has long been
the standard for udder health monitoring (8). The collection
and shipping of samples for SCC measurement, however, is
costly and time consuming and therefore generally DHI testing
is done only every 3–6 wk. More frequent measurements would
allow for earlier diagnosis, but requires an on farm test that can
be performed at low per sample costs. The online California
Mastitis Test (O-CMT) measurement is an automated sensor for
mastitis monitoring in dairy farms with an automatic milking
system (AMS).

The principle of the O-CMT sensor evaluated in our study
is based on an automated CMT by taking a fixed volume of
well-mixed composite milk from a cow milking. The milk is
mixed with a fixed volume of reagent, after which the viscosity of
the mixture is measured. The measured viscosity is transformed
into a value, expressed in cells/mL, based on a calibration curve
(9). The O-CMT is not comparable to L-SCC in terms of test
characteristics, missing data, calibration and quality control, but
due to frequent measurements, it may serve as a useful on farm
screening tool. Although a single O-CMT measurement may
not be precise, averaging multiple O-CMT recordings within
different timewindowsmay be helpful in gaining precision. Thus,
we assume frequently measured O-CMT averaged over a certain
time window may yield a better correlation to L-SCC.

Until now, a number of comparisons between SCC measured
on farm and L-SCC have been published (10–15). Due to
the characteristics of the gelling process of the mixture, the
agreement between O-CMT and L-SCC was found to be poorer
in low SCC ranges (< 200,000 cells/mL; 9), while higher ranges
of SCC (> 500,000 cells/mL) show a fair to good correlation (12).
Hence, the performance of the O-CMT likely depends on the
udder health situation of the farm. However, the performance of
O-CMT in a large number of herds with varying udder health
status is unknown and thus the practical value of this frequent
O-CMT measurements in the field is unclear. Therefore, the
aims of this study were (1) to assess the agreement between
O-CMT measurements in different time windows and L-SCC
measurements under field conditions; (2) to determine the
optimal time window for averaging O-CMT as compared to L-
SCC; (3) to explore the added value of time-series of frequent O-
CMT measurements in individual cow udder health monitoring
compared to L-SCC measurements.

MATERIALS AND METHODS

Data Collection
Routinely collected O-CMT data from January 1st, 2015 to April
29th, 2016 from AMS farms having an O-CMT sensor system

Abbreviations: SCC, somatic cell count; O-CMT, online California mastitis test;

L-SCC, somatic cell count determined in the laboratory; O-CMT 24 h, average of

multiple online California Mastitis Test measurements within a 24 h time window;

IMI, intramammary infection; DHI, dairy herd improvement.

produced by Lely Industries N.V. (Maassluis, the Netherlands)
and the DHI milk production recording data from the same
farms over the same period were provided by Lely Industries
N.V. Details of the data collection can be found in Jensen
et al. (16). The data consisted of the rough, non-validated
data that farmers also use. In all datasets, country and farm
identifications were transformed to non-traceable identifications
by Lely because of privacy concerns. The AMS data consisted
of country and farm identification, cow identification, parity,
calving date, date and time of milking andO-CMTmeasurement.
The default measurement frequency of O-CMT was every third
milking. When a cow had a high SCC (>200,000 cells/mL), the
measurement frequency became higher. Farmers were advised
to calibrate the sensor twice per year using standardized cow
milk sample provided by Lely. The DHI data consisted of farm
identification, cow identification, DHI test date and L-SCC. The
L-SCC were tested in different laboratories, depending from
which country the farm was. Because of the position of those
laboratories in the milk payment scheme, the laboratories were
certified (ISO 13366-1) to ensure the quality of measurements.
This study was carried out in accordance with the commitments
contained in the Basel Declaration and adhered to the General
Data Protection regulations of the EuropeanUnion. As no animal
experiments were performed, no ethical approval was required
for this study.

Data Preparation
In the dataset we observed a small proportion (0.009%) of O-
CMT being from milkings with an extremely low milk yield
(<1 kg). Incompletemilkings with O-CMTmight occasionally be
present in our dataset. The raw dataset contains 7,427,010 records
and was cleaned as follows:

1) records (n = 95,669) with composite milk yield per milking
<1 kg were deleted;

2) records (n = 153,735) within 7 days after calving were
deleted because of the confounding effect of early lactation on
the SCC;

3) records with no O-CMT values (n = 4,527,244) or O-CMT =

1,000 cells/mL (n = 39,455) were deleted; The latter records
were deleted, because the sensor automatically transforms all
O-CMT ≤ 1,000 cells/mL to 1,000 cells/mL;

4) records from cows on L-SCC test dates when no L-SCC was
available (n= 730) or with L-SCC ≤ 1,000 cells/mL (n= 377)
were deleted;

5) records (n = 358,985) from cows with an L-SCC < 2, 000
cells/mL were deleted;

6) records (n = 2,693) from farms with ≤ 100 L-SCC
measurements were deleted;

7) records from 7 days before until 7 days after the L-SCC test
dates were selected for each cow. Within these 15 days (7
days before and after DHI test date plus the DHI test day)
period, only records with valid O-CMT value for every day
were selected, which resulted in 1,816,144 deleted records.

The resulting cleaned dataset used for further analyses. After
cleaning the dataset, all SCC values were log10-transformed for
the purpose of obtaining approximate normal distribution.
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Assessment of Repeatability of O-CMT
Before the evaluation of agreement between the two tests, we
assessed the repeatability of the O-CMT measurements. We
defined an episode as being the period 48 h before and after an L-
SCC test date. Consequently, the records within 48 h before and
after the L-SCC test dates for each cow were selected from the
cleaned dataset. Only episodes with ≥ 1 O-CMT measurements
for every day were selected. A linear mixed regression model
was constructed using the O-CMT measurements as dependent
variable and episode, herd and cow as random effects. That
way we were able to estimate the variance in O-CMT within
each episode for each cow from every herd. Consequently,
the intraclass correlation coefficient (ICC), calculated from
the four variance components (episode, cow, herd, and the
residual) extracted from this linear mixed model, represents the
repeatability of O-CMT measurements (which equals to 1—
the underlying “true” variation and the measurement error of
O-CMT measurements within the episode).

Agreement Between O-CMT and L-SCC
Concordance correlation coefficient (CCC) between two
continuous measurements is one of the most commonly used
methods to evaluate the agreement between two tests (17). In
this study, we calculated the CCC between O-CMT and L-SCC
to evaluate the measurement performance of single O-CMT and
its averages calculated over multiple time windows.

Single Comparison
For the single comparison between O-CMT and L-SCC, all
L-SCC and a randomly sampled O-CMT record per cow on
the DHI test dates were selected. We first examined the CCC
between the selected O-CMT records and the corresponding
L-SCC records using the Bland-Altman plot (18) to display
the relationship between O-CMT and L-SCC. Meanwhile, we
calculated the CCC between these O-CMT and L-SCC records.

Because DHI test results only had a test date and no time
stamp, for each DHI test date, there were possibly multiple O-
CMT records. All of these O-CMT records were used in the CCC
calculation with equal weight in determining the optimal time
window that would result in the highest CCC between average of
multiple O-CMT and L-SCC.

Time Window for Averaging Multiple O-CMT
To determine which time window, using the average of O-CMT
measured within, resulted in the highest correlation between the
O-CMT and the L-SCC, 7 time windows centered around the
DHI test dates were created. Time windows were constructed
as multiples of 24 h before and after the center of the DHI test
date, leading to 7 time windows (spanning 24, 48, 72, 96, 120,
144, and 168 h). We first selected the records within the 168 h
time window (168 h before and after the DHI test date) for each
cow and each DHI test date from the dataset. The records within
the 168 h time window for each L-SCC record of each cow were
regarded as an episode. For each episode, the number of O-CMT
measurements per day was counted. Episodes were included
when they were from farms that had at least 100 episodes with
≥ 1 O-CMT measurement(s) on every day within the episode.

For each episode, the average of O-CMT for each of the 7 time
windows was calculated.

To calculate the CCC, a linear mixed model was applied
using the lme function in the nlme package [version 3.1–142;
(19)]. To calculate the overall CCC of all farms, the test method
(binary variable: O-CMT or L-SCC) was included in the model
as fixed effect; random herd and random cow effect were also
included in the model. To calculate the individual farm level
CCC, test method and individual cow were used as fixed effect
and random effect, respectively, by using the epi.ccc function
in epiR package [version 1.0–11; (20)]. The CCC between the
average of multiple O-CMT within different time windows and
L-SCC were calculated for 3 different ranges of L-SCC (L-SCC
within 1,000–9,999,000 cells/mL, 100,000–1,500,000 cells/mL
(the performance range of L-SCC), 200,000–9,999,000 cells/mL).

In addition to identify the optimal time window, we tried
to find potential factors associated with the individual herd
level CCC at the optimal time window using the available data.
A linear regression model was built using the individual herd
CCC as dependent variable and herd average parity, monthly
herd geometric mean of L-SCC and monthly herd milk yield
as independent variable. A full model, as well as a model using
backward selection based on AIC, were fitted. All analyses were
performed in R version 3.6.2 (21).

Case-Wise Evaluation of O-CMT and
L-SCC Measurements
The time window which resulted in the highest CCC in the
previous analysis was used for calculating the moving averages
for multiple O-CMT measurements over a longer time period.
Four different O-CMT 24 h patterns were selected, which were
representative of SCC patterns observed in field data. These
selected O-CMT patterns were plotted along with the L-SCC
measurements in the same time frame. In this way, the practical
relevance of frequent O-CMT measurements in detecting high
SCC episodes due to (sub)clinical manifestations of mastitis
was illustrated.

RESULTS

Descriptive Statistics
The descriptive statistics of the final dataset for the calculation
of CCC between O-CMT and L-SCC are provided in Table 1. In
total, 434,371 records from 4,829 cows at 50 farms in 6 countries
were used in the analysis. Large differences in herd size were
seen between farms and countries, with farms from country 2
and country 3 on average being larger than other farms. Overall,
O-CMT values were higher than L-SCC values. All the herd
average L-SCC values were below 200,000 cells/mL and only
farms from country 2 had a herd average O-CMT higher than
200,000 cells/mL.

Assessment of Repeatability of O-CMT
A total of 144,048 records from 14,504 episodes and 4,829 cows
at 50 farms in 6 countries were used for the estimation of
the repeatability of O-CMT measurements. The estimated ICC
was 0.58, which suggests that 42% of the variance within the
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FIGURE 1 | Bland-Altman plot displays the difference between single

log10-transformed online CMT (O-CMT) values and log10-transformed

laboratory measured SCC (L-SCC) against the average of both measurements

on the DHI test days. Most of the records are within the limits of agreement.

Overall, the differences between the two measurements are decreasing.

episode was due to the O-CMT measurement. However, it was
not possible to distinguish the “true” variation between O-CMT
measurements from measurement error of the O-CMT.

Concordance Correlation Coefficient
Between L-SCC and O-CMT
Single Comparison
In total, 29,008 O-CMT records of 4,829 cows in 50 farms from
6 countries could be linked to 29,008 valid L-SCC measurements
on the same day.

Figure 1 shows the Bland-Altman plot of the log10-
transformed single O-CMT compared with the L-SCC
measurement. The Bland-Altman plot suggests that the
correlation between O-CMT and L-SCC is non-linear. The
difference between these two measurements decreases in the
high SCC area.

Figure 2A displays a scatter plot of the L-SCC and the
randomly selected O-CMT measurement on each DHI test
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FIGURE 2 | Scatter plot of the log10-transformed online CMT (O-CMT) values for randomly sampled one O-CMT records on DHI test dates against log10-transformed

laboratory measured SCC (L-SCC) (A) and the average of multiple O-CMT within different time windows against L-SCC (B–I, corresponding to time windows from 0

to 168 h, increasing by steps of 24 h); ccc1 represents the overall concordance correlation coefficient between log10-transformed O-CMT and log10-transformed

L-SCC, ccc2 is the concordance correlation coefficient with L-SCC within the range of 100,000–1,500,000 cells/mL and ccc3 is the concordance correlation

coefficient with L-SCC in range of 200,000–9,999,000 cells/mL. Farms with ≥ 100 DHI tests with valid SCC results measured by O-CMT and L-SCC were included.

date per cow, and gives the CCC across several L-SCC ranges
(1,000–9,999,000 cells/mL, 100,000–150,000 cells/mL, 200,000–
9,999,000 cells/mL), showing that the agreement between L-
SCC and O-CMT is better in the higher SCC regions but not
necessarily with a higher CCC. The overall CCC between L-
SCC and the average of O-CMTmeasurement within a 24 h time
window was 0.53 (95% CI: 0.14–0.79).

Time Window for Averaging Multiple O-CMT
Figures 2B–I show that the CCC between averaged O-CMT
within different time windows and L-SCC increased from
Figures 2A–C (the 24 h time window) for all the 3 SCC ranges.
The CCC in the 3 SCC ranges only increased marginally,
when the time window was further expanded (Figures 2D–I).

Therefore, we considered 24 h as the optimal time window to
average the multiple O-CMT measurements in this study.

We found substantial variation in CCC between O-CMT 24 h
and L-SCC between farms. The farm-level CCC was positively
related to the farm’s geometric mean L-SCC (Table 2 and
Figure 3).

Figure 4 gives the number of O-CMT records per L-SCC
record in different SCC ranges for the 7 time windows. It is
obvious that the number of O-CMTmeasurements does increase
with longer time windows. Moreover, it is also visible that more
O-CMT measurements are made when O-CMT is higher (>
200,000 cells/mL). A 0 h time window averages about 2 O-CMT
values, whereas a 24 h time window contains on average about 5
O-CMT records.
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TABLE 2 | Correlation between online SCC estimation and the SCC measured in the laboratory in different studies.

Study SCC estimation

method

Country Number of

farms

Number of AMS or

SCC sensorsa
Number of

cows

Number of

records

Correlation

Casura et al. (10) CMTb NAc 1 NA 298 2,331 0.57

Leslie et al. (11) CMT Canada 1 2 140 1,000 0.71

Kamphuis et al. (12) CMT New Zealand 1 2 200 456 0.76

Mollenhorst et al. (13) CMT Netherlands 3 6 191 3,191 0.47

Neitzel et al. (14) CMT Germany 1 7 165 1,357 0.2–0.57

Sørensen et al. (15) Flow cytometry Denmark 7 >16 2,325 713,326 0.93d

Current study CMT 6 countries 50 113 4,829 434,671 0.53e

aAutomatic milking system or online somatic cell count sensor.
bSCC estimated based on the California mastitis test principle.
cNot found.
dThe square root of R squared from regression using log-transformed L-SCC as dependent variable and log-transformed O-CMT as independent variable.
eConcordance correlation coefficient between average of online-SCC within a 24 h time window and the SCC measured in laboratory.

FIGURE 3 | Scatter plot of concordance correlation coefficient between the

average of multiple log10-transformed online measured CMT (O-CMT) values

over a 24 h time window and log10-transformed laboratory measured SCC

(L-SCC) against the log10-transformed geometric mean herd SCC per farm on

50 farms. The regression line has a beta estimate of 0.54 and the R-squared is

0.64.

Case-Wise Comparison of O-CMT With
L-SCC Measurements
Figure 5 displays 4 different SCC patterns from 4 different
cows that were representative of our data. Overall, the O-CMT
48 h patterns were corresponding to the L-SCC patterns for
each cow, Figure 5A shows a healthy udder before 130 DIM,
with indication of two short (new) intramammary infection
(IMI) occurring around 134 and 162 DIM, and of a chronic
persistent IMI starting around 190 DIM; Figure 5B shows an
IMI in early lactation that seemed to have cured between 64
and 180 DIM with indications of a new IMI in late lactation;
Figure 5C presents an udder with a chronically persistent IMI
with large variation in day-to-day O-CMT 48 h; Figure 5D

indicates a healthy udder with a brief IMI in the late stage of
lactation.

DISCUSSION

In this study, we aimed to evaluate the performance of O-CMT
measurements in comparison to L-SCC. The value of O-CMT
measurement is an estimation of SCC within ranges instead of
an exact measurement of SCC (9). Hence the O-CMT values
should be interpreted with caution. The overall CCC between
O-CMT within a 24 h time window and L-SCC in 50 farms
was 0.53 (95% CI: 0.14–0.79). The CCC increased most when
averaging O-CMT over a 24 h time window. Our results suggest
that frequent O-CMTmeasurement is a valuable on-farm tool for
monitoring udder health of individual cows, despite the fact that
a single O-CMT measurement may be less accurate than a single
L-SCC measurement.

The data we used in this study consisted of rough, non-
validated data, representative of how the data arises in practice.
The samples from the O-CMT differed from the samples for
the L-SCC. Besides that, it is clear that there is a lower level
of quality control for the O-CMT measurements, for instance
by non-optimal calibration procedures, in comparison to the L-
SCC measurements. This may jeopardize the agreement between
the two tests. Therefore, a direct comparison between the
measurement systems in order to establish the preciseness of
the O-CMT measurement is impossible with our data. However,
by comparing the O-CMT measurements with the L-SCC
measurements on milk from the same cow on the same day,
we were able to provide insight in the practical usability of the
O-CMT measurements.

Prior to the correlation analysis, we evaluated the repeatability
of the O-CMT measurements within a 48 h time window
assuming that the underlying SCC of a cow was stable within this
48 h time window (5 days). The repeatability, as represented by
the ICC, was 0.58. Since natural daily variation in SCC exists,
we consider the repeatability of O-CMT measurement to be
acceptable within the period of 5 days.

We found an overall CCC between O-CMT and L-SCC of
0.53, which is in line with previous studies, that found values
somewhat higher or lower than our estimate (Table 3). Previous
studies, however, only used a small number of farms to assess
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FIGURE 4 | Farm average number of online CMT (O-CMT) values per SCC value measured in the laboratory (L-SCC) for all O-CMT and for L-SCC performance range

(100,000–1,500,000 cells/mL) as well as high SCC range (> 200,000 cells/mL) separately for different time windows.

FIGURE 5 | Four different SCC patterns to demonstrate the value of frequently measured online SCC in individual cow udder health monitoring. (A) Indicates a

chronic intramammary infection; (B) suggests an infected udder that cured followed by a re-infection; (C) displays a cow likely with chronic IMI that shows a

fluctuating SCC pattern and (D) probably is a healthy udder with one brief high SCC episode. The triangles represent laboratory measured SCC results and the dots

connected by a line represent the online CMT measurements averaged over a 24 h time window. The dashed horizontal line represents 200,000 cells/mL.

these correlations. In our data, we found a large variation in
CCC between farms. This between-farm variation was largely
explained by the farm level L-SCC (Figure 3), likely due to the
fact that the correlation is higher in the higher SCC ranges. In
other words, the CCC might depend on the prevalence of high
SCC cows on farms. As displayed in Figure 1, the difference
between O-CMT and L-SCC was deceasing as the herd average
L-SCC increases. There are several other reasons for the fact that
the CCC between O-CMT and L-SCC differs between farms.
First, although the sensor are “factory calibrated” and farmers
are advised to perform the calibration twice per year, not all
farmers may actually have done this. Neitzel et al. (14) reported

a significant difference between sensor devices in measuring the
O-CMT and showed that the Pearson’s correlation coefficient
between O-CMT and L-SCC was higher after calibration. These
differences in calibration between farms or sensors will likely
have led to an underestimation of the true overall correlation
between both SCC measurement methods relative to using well-
calibrated sensors.

Although CCC between O-CMT and L-SCC was rather not
sufficient, we consider there are several reasons for this imperfect
agreement between O-CMT and L-SCC. First, the O-CMT
evaluated in our study uses a different technique, based on a
CMT derived method to quantify the O-CMT whereas L-SCC
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TABLE 3 | Estimates from linear regression model using the herd level

concordance correlation coefficient between online CMT and SCC measured in

laboratory as dependent variable and the herd average of monthly geometric

somatic cell count (SCCherd), herd average parity (Parityherd ), as well as herd

average monthly milk yield (Milk yieldherd ) as independent variables.

Variable Estimate

Full model Backward selection model

Intercept −2.33 −2.16

SCCherd 0.55 0.54

Parityherd 0.05

Milk yieldherd 0

Backward selection using AIC was applied for model selection. The full model included

all the independent variables and the final model only with the variable remained in the

model after model selection.

actually counts the number of cells using flow cytometry. The
online sensor has an algorithm that transforms the viscosity
of the gel formed by DNA and test reagent, to an O-CMT
value based on calibration against L-SCC. Thus, by definition,
the indirectly measured single O-CMT is less accurate than
a single L-SCC measurement. Second, the performance range
of L-SCC (the range in which its accuracy is guaranteed) is
100,000–1,500,000 cells/mL (22) while we noticed that more than
half of the L-SCC measurements in our dataset were <100,000
cells/mL. Measurements outside the range in which the two
tests perform well-contributed substantially to the imperfect
correlation between these two measurements (Figure 2A). The
scatter plots in Figure 2 display weak S-shape, suggesting that
the algorithm that transforms viscosity to an SCC value can be
further optimized to better correlate to the L-SCC reference test.
By adapting the transformation, the association between O-CMT
and L-SCC can be made more linear, which should result in a
higher (linear) correlation between the two. Lastly, although we
did not evaluate that in this study, farmers may not re-fill the
CMT reagent in time. Field experience learns this occurs and thus
it may also affect the correlation between O-CMT and L-SCC.

With the availability of novel on-farm milk quality sensors,
quality control of suchmeasurements also has to be implemented
on-farm. For decades, laboratories have calibrated their methods
and compared their results, for instance by the use of ring trials.
In contrast with these highly controlled laboratory systems, there
is no systematic quality control system in place for automated on-
line milk quality measurements. Since these on-farmmilk quality
systems become more and more important, it would be good if
quality control programs for on-farmmilk quality systems would
be developed.

The L-SCC in our dataset were measured in different
laboratories. Potentially there may be differences in L-SCC
measurement between laboratories. However, data quality
control in the laboratories for L-SCCmeasurements was assumed
to be good because these laboratories are also involved in quality-
based milk payment schemes and work under ISO certification
(ISO13366-1).Meanwhile, by using a randomherd effect in linear
mixed models, potential laboratory effects were corrected for in
the statistical modeling.

In Figure 2, we showed that the overall CCC between O-
CMT and L-SCC in the range of 1,000–9,999,000 cells/mL,
increased mostly at a 24 h time window. The overall CCC
between O-CMT and L-SCC was increasing only slightly
with longer time windows. There seems to be an optimum
time window for averaging O-CMT, and we suggest 24 h
as the optimal time window, in which the random error
present in single measurements is strongly reduced, but
the capacity to monitor infection dynamics over time is
still acceptable.

The number of milkings with an O-CMT measurement per
L-SCC measurement is substantially higher for high L-SCC
(> 200,000 cells/mL) than for all SCC range, because of the
algorithm that prescribes to measure O-CMT every milking after
a high measurement is recorded, while the sensor only measures
O-CMT every third milking in low SCC cows.

Figure 5 illustrates that the O-CMT measurements present
the same trend as L-SCC, while giving more information on
short high SCC episodes. This information is missed by L-
SCC, given that DHI test is normally performed every 3–6
weeks, which limits the power of L-SCC in detecting high
SCC episodes. Thus, O-CMT seems more valuable in individual
cow udder health monitoring. In addition, there may be
pathogen species that cause specific SCC patterns. De Haas
et al. (23) found that clinical mastitis caused by Escherichia
coli was significantly associated with a short peak in SCC
while Staphylococcus aureus was significantly associated with
longer increased SCC, whilst no clear patterns were found for
Streptococcus dysgalactiae or Streptococcus uberis. Compared to
traditional methods (e.g., bacteriological culturing), the use of
frequent O-CMTmeasurements can serve as a cheap and fast on-
farm screening method for mastitis. It is fully automated and can
be executed for almost every milking. These characteristics make
O-CMT and other on-line SCC measurement methods a suitable
tool for on-farm individual udder health monitoring. The
measurements may also be used to identify subclinical mastitis
cases that warrant further diagnostics such as bacteriological
culture to explicitly identify the mastitis-causing pathogens.
Further research to link the O-CMT patterns to pathogen species
would be useful and highly relevant to develop tailor-made
treatment plans to further optimize treatment strategies and
reduce antimicrobial usage. Our results show added value of O-
CMT measurement, but to further quantify the added value of
O-CMT in detecting high SCC episodes, more work is needed.
Specifically, work should be carried out on algorithms to mine
these intensively measured O-CMT for early detection of high
SCC as well as to quantify long term udder health related effects
(such as incidence rate of clinical mastitis, milk production,
total antimicrobial usage) and the economic value of the use of
O-CMT measurements.

CONCLUSION

The overall concordance correlation coefficient between O-
CMT and L-SCC of all farms was 0.66, and increases when
the farm level SCC is higher. The average of multiple O-CMT
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measurements over a 24 h time window was found to provide
an optimum between correlation between O-CMT and L-SCC
and the capacity to capture udder health dynamics. The O-
CMT measurement shows to be a promising on-farm tool for
individual cow udder health monitoring, specifically because of
its high measurement frequency.
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