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The development and utilization of nano-antibiotics is currently gaining attention as

a possible solution to antibiotic resistance. The aim of this study was therefore to

determine the pharmacokinetics of free oxytetracycline (OTC) and oxytetracycline loaded

cockle shell calcium carbonate-based nanoparticle (OTC-CNP) after a single dose

of intraperitoneal (IP) administration in BALB/c mice. A total of 100 female BALB/c

mice divided into two groups of equal number (n = 50) were administered with 10

mg/kg OTC and OTC-CNP, respectively. Blood samples were collected before and

post-administration from both groups at time 0, 5, 10, 15, and 30min and 1, 2, 6, 24,

and 48 h, and OTC plasma concentration was quantified using a validated HPLC-UV

method. The pharmacokinetic parameters were analyzed using a non-compartment

model. The Cmax values of OTC in OTC-CNP and free OTC treated group were 64.99

and 23.53µg/ml, respectively. OTC was detected up to 24 h in the OTC-CNP group

as against 1 h in the free OTC group following intraperitoneal administration. In the

OTC-CNP group, the plasma elimination rate of OTC was slower while the half-life, the

area under the curve, and the volume of the distribution were increased. In conclusion,

the pharmacokinetic profile of OTC in the OTC-CNP group differs significantly from that of

free OTC. However, further studies are necessary to determine the antibacterial efficacy

of OTC-CNP for the treatment of bacterial diseases.
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INTRODUCTION

Oxytetracycline (OTC) is one of the frequently used antibiotics in livestock production (1).
Its broad spectrum of activity and low cost compared to other antibiotics favor its use
among veterinarians. However, this widespread use and misuse has resulted in resistance of
bacterial pathogens to OTC (2). Recently, newer antibiotics have been favored over OTC
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in the treatment of infections in animals, but OTC is still used
non-therapeutically as a growth promoter (3). Bacteria develop
resistance to OTC through efflux pumps, ribosomal modification
to reduce effective OTC binding, and the production of
tetracycline inactivating enzymes (3, 4). An approach that
can be used to solve this problem is the development of
a nano-antibiotic delivery system. Nano-antibiotics delivery
systems improve the pharmacokinetics and therapeutics and are
able to bypass bacteria resistance mechanisms (5). Importantly,
previous studies have shown that tetracyclines could be stably
loaded and released from calcium-based nanoparticles (4, 6,
7) and also overcome the efflux pump antibiotic resistance
mechanism of Shigella flexineri when loaded into calcium
phosphate nanoparticles (CNPs) (4). The use of calcium-based
nanoparticles is increasing not only due to their biodegradable
and biocompatible properties but also because they can be
engineered to stably load and release drugs within them in
response to pH (7, 8). Calcium carbonate nanoparticles have
unique liquid phase characteristics that enable them to be
crystalline (stable) solids at pH 7.4 and disintegrate to form
biocompatible non-toxic ions at lower pH (9). This property
has been exploited to fabricate drug carriers in conditions
where reduced pH is important such as the micro acidic
environments created by biofilms, a major resistance mechanism,
in chronic bacterial disease conditions (10, 11). The lower pH
of the microenvironment within the biofilm extra polysaccharide
matrix is due to anaerobic glycolysis and ion transfer challenges
favoring the acidic medium within it (7, 12).

We hypothesized that loading OTC into a calcium carbonate
aragonite nanoparticle (OTC-CNP) would improve its
pharmacokinetics in BALB/c mice plasma compared to free
OTC. To test this theory, we investigated the pharmacokinetics
of 10 mg/kg of OTC-CNP and free OTC in female BALB/c mice.

MATERIALS AND METHODS

Experimental Animals
A total of 100 female BALB/c mice were used in this study. They
were housed in plastic cages with saw dust beddings, and clean
tap water and a standard pellets diet (Gold coin mouse) were
provided for the mice ad libitum throughout the time of the
experiment. The mice were acclimatized for 1 week prior to the
experiment. All procedures were done according to the research
ethics of the Institutional Animal Care and Use Committee
(IACUC) (UPM/IACUC/AUP/R050/2018).

Study Design
One hundred female BALB/c mice were divided randomly into
two groups of 50 mice each. Group 1 was administered with
10 mg/kg OTC intraperitoneally, while group 2 was dosed with
10 mg/kg OTC-CNP intraperitoneally. Briefly, 10mg OTC was
dissolved in 1ml sterile distilled water, while 10mg of freshly
prepared OTC-CNP was dissolved in 1ml sterile PBS (pH 7.4) to
get the stock solution of 10 mg/ml. Then the weight of each mice
was measured to get the calculated dose per mice in milligrams
and the equivalent dose in milliliters (13). The choice of
intraperitoneal route of administration for the pharmacokinetics

of OTC in this study is justifiable because drug-nanoparticle
formulations administrated via intraperitoneal injection increase
the mean residence time of the drug in the peritoneal cavity,
which improves systemic absorption (14). Also, the primary
route of absorption for the IP route is through the mesenteric
vessels, which drain into the portal veins and pass through the
liver. Hence, this route could also be used to predict the oral
bioavailability indirectly (15).

At specified times of 0, 5, 10, 15, and 30min and 1, 2, 6, 24, and
48 h, five mice from each group were sacrificed after anesthesia
with ketamine (80 mg/kg) and xylazine (10 mg/kg) cocktail.
Blood was collected via cardiac puncture into heparinized tubes
and centrifuged at 10,000 × g for 10min to collect plasma.
The plasma was then aliquoted to sterile small centrifuge tubes,
labeled and frozen at −20◦C until analysis. The OTC-CNP used
in this work was synthesized and characterized as reported in our
previous study (6).

Chemical Reagents
The reagents used were OTC HPLC standard of 98.3% purity
(CAS Number 79-57-2) (TargetMol, Boston, USA), phosphoric
acid, acetonitrile, and methanol (Fisher Scientific, Malaysia).
Ultrapure HPLCwater was collected fromMilli-Q IntegralWater
Purification System (type 1) (MilliporeSigma, USA). All other
reagents used are of analytical grade.

Chromatographic Conditions
The plasma concentrations of OTC were measured using a
previously described HPLC method (16). This was performed
using an isocratic high-performance liquid chromatography
system (Agilent Technologies Series 1,200 Autosampler,
Agilent Technologies, Wilmington, DE, USA), with a variable-
wavelength UV detector (Agilent Technologies 1,200 Series
VWD, Agilent Technologies). The OTC in the sample was
separated by using a Zorbax stable bond SB C18 column
(250mm× 4.6mm, 5µm particle size) at a 1.0 ml/min flow rate.
OTC was eluted using mobile phase made up of distilled water,
acetonitrile, and methanol (7:2:1); 6.84 g of oxalic acid was added
to 1 L of the mobile phase solution. OTC detection was done at
350 nm and column temperature was set at 40◦C. The retention
time was 4.29 min.

Preparation of Plasma Samples
Plasma samples were prepared using the method described in
Ref. (16) with slight modifications. Briefly, 100 µl of releasing
solution consisting of 78% distilled water, 2% phosphoric acid,
and 20% acetonitrile was added into 100 µl of plasma. Then,
the sample containing plasma and the releasing solution was
vortexed for 2min and filtered using an Ultra-4 centrifugal filter
unit (Amicon R©). The filtrate was centrifuged at 10,000 rpm at
room temperature for 30min; the clear supernatant was collected
into an HPLC injection vial and 50 µl was injected into the
HPLC system.

Method Validation
The correlation coefficient (r) of the linear relationship in the
calibration curve was > 0.999 for OTC in plasma across the
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TABLE 1 | Validation data for OTC by high-performance liquid chromatography

(HPLC).

Sample ratio Average % recovery %RSD LOD(ng/ml)

2:1 (50) 91.30 1.052 0.03

1:1 (100) 90.10 0.295

1:3 (150) 98.40 0.611

n = 5 samples for each concentration used for the analysis.

10–0.156µg/ml range. Data for the recovery of OTC in plasma
using the HPLC method are presented in Table 1. The accuracy
and precision of the method were tested by preparing triplicates
samples from 50 to 150% of the target concentrations. The
percentage recovery of OTC ranged from 90.10 to 98.40% with
percentage relative standard deviation from 0.611 to 1.052%.
The limit of quantification and detection was ∼ 0.01 and
0.03 ng/ml, respectively.

Pharmacokinetic Analysis
The concentrations derived from HPLC analysis were used to
calculate the composite pharmacokinetic parameters. Following
destructive testing methods, the average plasma concentration at
each time point was pooled for each group, and this was used
to generate pharmacokinetic parameters by non-compartmental
analysis using the PK solver software for pharmacokinetic
data analysis “add-on” for Microsoft Excel 2010 (17). Cmax
(maximum plasma concentration) and Tmax (time to maximum
plasma concentration) were directly obtained from the observed
data. The terminal slope (λz) was determined by linear regression
of the terminal phase of the log-linear concentration-time
profile (using the last three time points). The terminal half-life
(T1/2_λz) was calculated using the formula 0.693/λz. The AUC
was calculated as described in Ref. (18), while the SD of the AUC
was calculated using Yuan’s method (19) to compare the AUC
of the OTC and OTC-CNP groups. Clearance (CL/F) and the
apparent volume of the distribution (Vd/F) were calculated using
the formula: (dose)/AUC(0−∞) and (dose)/(λz × AUC(0−∞)),
respectively (20).

Statistical Analysis
All results are presented as mean ± SD. Plasma OTC
concentrations at each time point were subjected to Student’s
t-test (Graph pad prism version 8.0). Statistical comparisons
between the AUC values of OTC andOTC-CNP groups were also
determined using unpaired t-test (Graph pad prism version 8.0).
P < 0.05 was considered significant.

RESULTS

IP administration of 10 mg/kg OTC-CNP gave plasma
concentrations of OTC quantifiable from 0.083 to 24 h while
free OTC administration at the same dosage was detected for
up to 1 h only (Figure 1). The plasma concentrations (mean ±

SD) of OTC and OTC-CNP across the time points are shown in
Table 2. The plasma concentration obtained for OTC at 0.083 h
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FIGURE 1 | Semilogarithmic (means ± SD) plot of OTC plasma concentration

following intraperitoneal (IP) administrations of OTC-CNP and OTC at the dose

of 10 mg/kg in BALB/c mice (n = 5).

TABLE 2 | Plasma concentration (mean ± SD) of OTC and OTC-CNP in BALB/c

mice after 10 mg/kg administration.

Time (h) OTC (µg/ml) OTC-CNP (µg/ml)

0.00 0 0

0.083 23.53 ± 1.21*** 6.14 ± 0.14

0.167 12.26 ± 0.42 64.99 ± 2.74***

0.25 12.16 ± 0.72 36.73 ± 3.37**

0.5 6.53 ± 0.41 8.52 ± 1.14*

1 3.94 ± 0.85 4.91 ± 0.49

2 0.00 ± 0.00 3.38 ± 0.33***

6 0.00 ± 0.00 1.33 ± 0.29**

24 0.00 ± 0.00 0.22 ± 0.03**

48 0.00 ± 0.00 0.00 ± 0.00

(*, **, and *** represent statistical difference between OTC-CNP and OTC at p < 0.05,

p < 0.001, and p < 0.0001, respectively).

was significantly higher (P < 0.05) compared to OTC-CNP.
However, at 0.167 to 24 h, concentrations from OTC-CNP was
higher than that of free OTC (Table 2).

The pharmacokinetic parameters are presented in Table 3.
The maximum plasma concentration (Cmax), time to maximum
plasma concentration (Tmax), half-life (T1/2), mean residence
time (MRT), and apparent volume of distribution (Vd/F) of OTC
in the OTC-CNP group were significantly higher (p < 0.05) than
those of the free OTC. However, the elimination rate constant
(Kel) and the apparent total body clearance (CL/F) were lower in
the OTC-CNP treated group (Table 2).

DISCUSSION

The method developed for the determination of OTC by HPLC
was verified based on linearity, recovery, precision, LOQ, and
LOD in line with the standard bioanalytical method validation
(21). The average percentage recovery of OTC between 90.10
and 98.40% shows that the method developed is accurate and
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TABLE 3 | Pharmacokinetics parameters (mean ± SD) of OTC from

non-compartmental analysis after a single dose of 10 mg/kg IP administration of

OTC and OTC-CNP in BALB/c mice.

Pharmacokinetic parameter OTC OTC-CNP

λz (1/h) 1.163 0.135

T1/2/ λz (h) 0.596 5.133

Tmax (h) 0.083 0.167

Cmax (µg/ml) 23.53 64.99

AUC 0 -∞ (µg/ml*h) 10.42 (9.43–11.4) 46.68 (40.30–53.07)*

MRT 0 -∞ (h) 0.852 4.287

Vd/F (mg/kg)/(µg/ml) 0.825 1.587

CL/F (mg/kg)/(µg/ml)/h 0.959 0.214

Bailer’s and Yuan’s method was used to calculate AUC 0-∞ and variance (95% C.I.).

*p = 0.05 (unpaired t-test).

where λz, terminal slope; T1/2/ λz , terminal half-life; Tmax , time to maximum plasma

concentration; Cmax , maximum concentration; AUC, area under the curve; MRT, mean

residence time; Vd/F, apparent volume of distribution; CL/F, apparent total body clearance.

acceptable since the recovery of the analyte from a sample
must not necessarily be 100%, but it should be consistent and
reproducible (21, 22). The analytical method used in this study is
precise as the relative standard deviation (coefficient of variation)
is <15% (23). This implies that the analytical method can detect
OTC at the stated retention time without interference with other
constituents present in the plasma. The LOD and LOQ for OTC
suggest that the method is sensitive for detecting OTC, and this
agrees with the LOD and LOQ of OTC published earlier (16, 24).
The linearity of the calibration curve of the analytical method is
excellent with regression coefficient > 0.999, and all the samples
measured in this study were above the LOQ.

The pharmacokinetics of OTC in this study was performed
using a non-compartmental model (25, 26). Its simplicity,
objectivity, and practicability favor its use for description of the
time course of drug concentrations in the body (17, 27).

Both drugs were absorbed progressively; free OTC lasted only
for an hour while OTC-CNP formulations presented a longer
time-plasma profile lasting for up to 24 h.

The fast clearance of OTC disagrees with the findings in
Ref. (26) where the absorption of OTC was slow and plasma
concentrations lasted for up to 12 h, and this may be because of
species differences and the pharmaceutical form of OTC used.
On the other hand, the prolonged detection of up to 24 h in
the OTC-CNP group indicates slow and sustainable release of
OTC from CNP (28). Furthermore, the delivery of antibiotics
in nanoparticles is known to cause the sustained release of
antibiotics, usually seen as an increase in the half-life of the drug
in plasma (29).

The Tmax for free OTC was obtained quickly at 0.083 h.
This rapid absorption of free OTC can be explained based on
earlier reports where quick absorption of OTC following IP
administration in rodents was linked with numerous mesenteric
vessels, which allows rapid passage into the bloodstream and
after which the blood concentration declines as it distributes to
other organs (30). The longer time taken to reach the Tmax of
OTC-CNP at 0.167 h may be because of the slow release of OTC

from CNP (29). In addition, the absorption of calcium carbonate
nanoparticles following administration can be attributed to its
size (62.4 ± 20.68 nm) and negative charge (6, 31). At this size,
it is easily transported from the peritoneum via the stomata
and lymphatic system. Furthermore, the negative charge also
facilitates its higher lymphatic vessel uptake rather than being
retained in the peritoneum (32).

The significant elongation in T1/2 (8.6-fold) with the increase
in Tmax (2-fold), Cmax (2.8-fold), and AUC (4.5-fold) of OTC-
CNP compared to free OTC observed in this study is attributed
to the ability of nanoparticles to avoid P-gp-mediated-drug efflux
and hepatic first-pass metabolism by cytochrome P450 (CYP450)
enzymes (29, 33).

The improved pharmacokinetic parameters of OTC-CNP
are an indication that loading OTC into CNP could increase
its therapeutic usefulness in diseases caused by intracellular
pathogens and biofilm-related infections where maintenance of
the antibiotic therapeutic level needs to be sustained for longer
period before the next dose is administered (7, 11). Encapsulation
of drugs in CNP has been proven to be effective for IP drug
delivery (34, 35).

CONCLUSION

The study investigated the pharmacokinetics of OTC-
CNP and OTC in female BALB/c mice at a single dose
of 10 mg/kg. The plasma pharmacokinetic parameters
of OTC were improved when loaded into CNP. Further
studies are necessary to clarify the efficacy and safety
of OTC-CNP.
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