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African Swine Fever (ASF) is a viral disease that affects animals of the Suidae family, and

soft ticks from the genus Ornithodoros can also be infected by the ASF virus (ASFV).

The disease was first described in Africa at the beginning of the twentieth century

as an acute disease characterized by high mortality and fatal hemorrhages. ASF has

caused outbreaks in numerous countries and it continues to be devastating nowadays

for the porcine sector in those countries affected, and a massive threat for those free

of the disease. ASF can follow clinical courses from peracute to chronic in domestic

pigs (Sus scrofa) depending on a variety of factors, including the immune status of the

animals and the virulence of the ASFV strain. The key features of the pathogenesis of the

disease in domestic swine are a) a severe lymphoid depletion including lymphopenia

and a state of immunodeficiency, and b) hemorrhages. However, African wild swine

like bushpigs (Potamochoerus larvatus), red river hogs (Potamochoerus porcus), and

warthogs (Phacochoerus africanus) can be infected by ASFV showing no clinical signs

of disease and acting as natural reservoir hosts. In this article we review the key features of

the gross and microscopic pathology together with a description of the pathogenesis of

ASFV infection in domestic pigs following the different clinical courses. The pathogenesis

of ASF in wild and domestic swine is also described, what can provide important

information for the design of control strategies, such as vaccines.
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INTRODUCTION

African swine fever (ASF) is the most important infectious disease of swine and has proven to be
devastating for the pork industry worldwide. ASF was first observed in the early 1900’s in East
Africa, when European domestic pig breeds were introduced in the Kenya Colony and animals
developed a form of hemorrhagic disease with high morbidity and mortality (1). ASF was confined
to African countries until 1957 when it reached Portugal via contaminated waste containing
infected pork products that were used to feed local pigs. This outbreak was quickly controlled,
but ASF re-entered Portugal in 1960 and spread rapidly to the Iberian peninsula (2) and produced
sporadic outbreaks in several European countries, including Belgium, the Netherlands, Italy, Malta,
and France (3–6). ASF spread to the Americas, with sporadic outbreaks in Brazil, the Dominican
Republic, Haiti, and Cuba (7–11). ASF was eradicated from all these countries out of Africa, except
the Italian island of Sardinia, where the disease has persisted since 1978 (2, 12–14). The disease
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continued to persist and spread within Africa (15) and entered
the Republic of Georgia in 2007 through the port of Poti
(16), most likely via contaminated food used to feed domestic
pigs (17). ASF spread rapidly within the Caucasian region and
neighboring countries and continues to spread toWest, including
European Union countries (18, 19) and to the East, with the
disease causing abundant outbreaks and affecting dramatically
the pork industry in China, Vietnam, Cambodia, Philippines,
Laos, and East Timor (20–23).

ASF is caused by a large, complex, enveloped DNA virus
(ASFV), from the family Asfarviridae (24). ASFV is composed
of more than 50 structural proteins and can produce more than
150 proteins in the infected cells (17, 25–27), many of which
are highly immunogenic. The main target cell for ASFV is the
monocyte/macrophage in both domestic and wild swine (28–30),
but infection in lymphocytes has not been reported (30). ASFV
may also replicate in other cell types, including hepatocytes,
renal tubular epithelial cells, neutrophils, and endothelial cells
(31–33). The ASFV replication and the immune responses from
the host induce different clinical courses and pathology in
swine species. ASFV can also replicate in soft ticks from the
genus Ornithodoros, including O. moubata in Africa and O.
erraticus in the Iberian peninsula (34–37), which are involved
in the epidemiological cycles of ASF (38, 39). Other soft tick
species have also been reported to be susceptible to ASFV
infection and may play a role in the epidemiology of ASF in
other countries.

ASF has produced a high economic cost to the pork industry
and it is the most important porcine disease nowadays, mostly
due to the difficult prevention and control as no vaccine is
available and other strategies must be used to control the disease
from different territories. In this review article, we describe the
different clinical and pathological features of ASF in domestic
and wild suids together with the key pathogenic mechanisms that
induce the disease in the host species.

CLINICAL PRESENTATION AND GROSS
PATHOLOGY OF ASFV INFECTION IN
DOMESTIC PIGS

The clinical presentation and the gross pathological lesions of
ASF in domestic pigs may vary depending on the virulence
of the virus isolate, the route, and dose of infection and
host characteristics (17). ASFV isolates can be classified as
highly virulent, moderately virulent, and low virulent (40).
The clinical courses observed in ASF in domestic pigs can
be described as peracute (or hyperacute), acute, subacute,
or chronic.

Peracute ASF: Clinical Signs and Lesions
Highly virulent strains are typically responsible for this clinical
course, characterized by a very rapid clinical course, with high
fever (up to 42◦C), anorexia, lethargy, and sometimes sudden
death without signs of disease. This is often observed when the
virus enters a naïve farm causing death of some animals before
the explosion of clinical cases. Some animals can show respiratory

distress due to the high fever, but no gross lesions are usually
found at the post mortem examination.

Acute ASF: Clinical Signs and Lesions
This clinical form is cause by highly or moderately virulent
isolates, and it is the typical course observed in naïve farms
very quickly after the first fatal cases are reported. The clinical
course is characterized by high fever, with temperatures of 40–
42◦C, lethargy, anorexia, and inactivity (Figure 1A). The affected
animals tend to bunch up together. Many affected animals show
a centripetal cyanosis, easily found in the ears (Figure 1B), snout
(Figure 1C), limbs (Figure 1D), abdomen, tail, and perianal area.
Respiratory distress is usually observed, with severe pulmonary
oedema in animals affected by highly pathogenic isolates (41, 42).
Skin lesions are frequent, with presence of petechial hemorrhages
or ecchymosis (Figure 1E). Other clinical signsmay include nasal
discharges, sometimes stained with blood (epistaxis), vomiting,
and diarrhea, that can be also blood-stained (melaena) (17, 43–
45), causing black-colored stains in the perianal area of the
animal (Figure 1F). Abortions may occur in pregnant sows and
the mortality rates may reach up to 100% in affected farms within
7 days of the onset of the disease.

At the post mortem examination, the most characteristic
lesion of acute ASF is the hemorrhagic splenomegaly (28, 46, 47),
with a very enlarged spleen, dark in color and friable at
sectioning, occupying a large space within the abdominal cavity
(Figures 2A,B). The second most important lesion described in
acute ASF is a multifocal hemorrhagic lymphadenitis. Lymph
nodes can have multifocal or extensive hemorrhages that
can produce a marbled appearance (Figure 2D). The most
affected lymph nodes are the gastrohepatic (Figure 2E), renal
(Figure 2F), and other abdominal lymph nodes as ileocaecal
(Figure 2G), and mesenteric (Figure 2H). Hemorrhages
may also be observed with less frequency in other lymph
nodes, such as submandibular, retropharyngeal, or inguinal.
Petechial hemorrhages are often observed in the kidney surface
(Figure 3A) and at sectioning. Other lesions can also be
observed, mostly hemorrhages in the mucosa or the serosa
of other organs, as the large (Figure 3E) and small intestine
(Figure 3F), the epicardium in the heart (Figure 3G), or the
urinary bladder (Figure 3H) (17, 43, 44, 48–51).

Subacute ASF: Clinical Signs and Lesions
This clinical form is usually observed in animals infected by
moderately virulent isolates, with similar clinical signs as those
observed in acute ASF, although normally less marked (17).
Affected pigs show moderate to high fever and the mortality
rate ranges from 30 to 70% (17), with pigs dying at 7–20
after infection.

The vascular changes, mostly hemorrhages and oedema, in the
subacute form of the disease can be more intense than the acute
form (45, 52).

The death of affected animals may happen at two
different stages: (a) during an initial thrombocytopenia and
leukopenia (53–55), or (b) during a “recovery” phase, observed
in young animals, causing erythrodiapedesis induced by
vasodilation (53, 56).
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FIGURE 1 | (A) Lethargic animal in acute ASF. The animal show cyanosis ion the ears abdomen and limbs. (B) Severe cyanosis in an animal suffering from acute ASF,

associated to very high hyperthermia (41–42◦C). (C) Cyanosis in the snout and lips in acute ASF. (D) Cyanosis in the limbs in acute ASF. (E) Multifocal petechiae and

ecchymosis in the skin in acute ASF. (F) Blood-stained perianal area in a pig affected by subacute ASF. (G) Severe hydropericardium (arrow) in subacute ASF. (H)

Moderate to severe ascites (arrow) in subacute ASF.

At the post mortem examination, animals show
hydropericardium (Figure 1G), ascites (Figure 1H), and
multifocal oedema, very characteristic in the wall of the gall
bladder or in the perirenal fat (Figure 3B) (17). Some animals
may show hemorrhagic splenomegaly as described for the

acute form of the disease, but many animals will show partial
splenomegaly, with patches of spleen affected and other areas
unaffected (Figure 2C). A multifocal hemorrhagic lymphadenitis
can also be observed with multiple lymph nodes in all areas
of the body showing the hemorrhages and the “marble”
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FIGURE 2 | (A) Severe hemorrhagic splenomegaly observed at the opening of the abdominal cavity of an animal with acute ASF. The liver is severely congested. (B)

Very large, dark colored spleen with rounded edges (hemorrhagic splenomegaly), and occupying a large volume of the abdominal cavity in acute ASF. (C) Multiple

areas of partial hemorrhagic splenomegaly in the spleen from an animal with subacute ASF. (D) Multifocal hemorrhages in a lymph node with a marbled appearance in

acute ASF. (E) Severe hemorrhagic lymphadenopathy in the gastrohepatic lymph node (arrow) in acute ASF. (F) Severe hemorrhagic lymphadenopathy in the renal

lymph node (arrow) in acute ASF. (G) Severe hemorrhagic lymphadenopathy in the ileocaecal lymph node (arrow) in acute ASF. (H) Moderate hemorrhagic

lymphadenopathy in the mesenteric lymph node (arrow) in acute ASF.
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FIGURE 3 | (A) Multiple petechial hemorrhages in the cortical surface of the kidney in acute ASF. (B) Severe perirenal oedema (arrow) in a pig with subacute ASF. (C)

Multifocal areas of lung consolidation and pulmonary oedema in subacute ASF. (D) Multifocal pneumonia with dark color areas in the diaphragmatic lobe of the lung in

subacute ASF. (E) Severe extensive hemorrhagic colitis in subacute ASF. (F) Multiple petechial hemorrhages in the serosa of the small intestine in acute ASF. (G)

Multiple petechial ad ecchymotic hemorrhages in the epicardium (arrowhead) together with severe hydropericardium (arrow) in subacute ASF. (H) Multiple petechial

hemorrhages in the mucosa of the urinary bladder in acute ASF.

appearance (45). Petechial hemorrhages can also be observed
in the kidney (50, 51). Multifocal pneumonia is also observed
with patches of consolidation and dark color in the lung
(Figures 3C,D). This lesion can also be attributed to secondary
infections due to the state of immunosuppression induce by
ASFV (45, 57, 58).

Chronic ASF: Clinical Signs and Lesions
This clinical form is caused by the infection of low virulence
isolates and has been observed, quite infrequently, in the Iberian
Peninsula and the Dominican Republic (17, 54). It has been
hypothesized that this low virulence isolates, and the associated
chronic form, has evolved from ASFV isolates employed in early
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FIGURE 4 | (A) Toluidine blue stained semithin (1µm) section showing a

macrophage with margination of the nuclear chromatin and a juxtanuclear

clear intracytoplasmic inclusion body (arrowhead) in the spleen from a pig

experimentally infected with acute ASF (3 dpi). (B) Transmission electron

microscopy image of the nucleus (n) and cytoplasm (c) of a macrophage in the

spleen from a pig infected with ASFV showing margination of the nuclear

chromatin and a viral factory within the cytoplasm (arrow). (C) Apoptosis of

lymphocytes (arrows) in the spleen of from a pig experimentally infected with

acute ASF (5 dpi).

vaccine trials carried out in the Iberian Peninsula in the 1960’s
(17). The evolution of highly and moderately virulent isolates in
other areas where the virus has been present for long periods of
time has not produced this chronic form of the disease (17, 59).

This clinical form is characterized by multifocal necrosis in
the skin and arthritis, growth retardation emaciation, respiratory
distress and abortion (60, 61). No vascular changes are observed
in the chronic form of ASF, and many observed lesions are
associated with bacterial secondary infections, inducing fibrinous
polyserositis, necrotic, or chronic pneumonia, necrosis of the
skin, tongue, and tonsils (17, 43, 60).

PATHOGENESIS OF LYMPHOID
DEPLETION

ASF is characterized by severe leukopenia, mostly associated with
lymphopenia, and a general state of immunodeficiency (58, 62).
Initially, the virus enters the pigs following an oral-nasal route of

after the bite of an infected soft tick. The virus replicates initially
in the tonsils or regional lymph nodes (63, 64), spreading through
the lymph and blood to secondary organs of replication within 2–
3 days (65), and then spreading to the rest of the organs, where
virus can replicate in a variety of cells (56, 66).

Monocytes and macrophages are the main target cell
for ASFV (28, 42, 45). ASFV is a DNA virus, but the
replication occurs within the cytoplasm and not in the nucleus
(67–69). The infected monocyte-macrophage appears swollen,
with margination of the nuclear chromatin (Figures 4A,B)
and showing an intracytoplasmic juxtanuclear inclusion body,
identifiable by its pale color when semithin (1-micron) sections
are stained with toluidine blue dye (Figure 4A). These inclusion
bodies show viral factories when studied under transmission
electron microscopy (Figure 4B). The virus replication induce
necrosis in the infected cells and virions are released by budding,
and can be observed free in the blood, lymph, and the interstitial
tissue (31, 70–72).

The destruction of monocytes-macrophages in ASF has
been attributed to apoptosis (73) or necrosis (74) due to the
action of ASFV (75). ASFV genome contain genes involved un
programmed cell death both in an inhibitory or an inducing
manner (64, 76–85). Some of these genes may promote the
survival of the infected cells, and apoptosis has been described
as the less likely cause of cell death in the infected monocyte-
macrophage population (52, 58, 86).

ASF is characterized by a massive destruction of the lymphoid
organs and tissues, including spleen, lymph nodes, thymus, and
tonsils (58, 86, 87). There is a large proportion of B and T
lymphocytes and macrophages undergoing cell death in acute
ASFV infection (58, 78, 86, 88).

The virus replication in the monocyte-macrophages
(Figures 5F–H) induces an activation in this cell population and
an increase in the secretion of proinflammatory cytokines have
been observed at the early stages of the disease (28, 42, 58). The
upregulation in the expression of proinflammatory cytokines,
including IL-1, TNF-α, and IL-6, and described as a “cytokine
storm” (89), is the responsible mechanism for the massive
induction of apoptosis in lymphocytes (Figure 4C) neighboring
the activated/infected monocyte-macrophages in tissues (58).

PATHOGENESIS OF VASCULAR CHANGES

ASF can be considered a hemorrhagic fever, with some
pathogenic mechanisms similar to those described for
hemorrhagic fevers affecting humans, as Ebola or Marburg
filovirus infection (90, 91). Among the typical vascular
changes observed in acute ASF, we can include petechial and
ecchymotic hemorrhages in multiple organs, hemorrhagic, or
hyperaemic splenomegaly, pulmonary oedema, and disseminated
intravascular coagulopathy (D.I.C.). In subacute ASF, we can
also observe these vascular changes together with a more marked
oedema, ascites, and hydropericardium.

The most typical lesion in ASF is the hemorrhagic or
hyperaemic splenomegaly (44, 46). The severity of this lesion
will vary depending on the virulence of the isolate. The
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histopathological appearance of the spleen will include a
hyperaemic red pulp, that can be completely filled with red blood
cells (Figure 5A), platelet thrombi and cell debris, producing
a disruption of the normal architecture of the organ (47, 58).
The porcine splenic red pulp contains a mesh of fibers and
smooth muscle cells surrounded by a population of macrophages
fixed in the splenic cords (92). The necrosis of the macrophages
in the red pulp is followed by a loss of intercellular junctions
with the smooth muscle cells and the exposure of the basal
lamina, inducing the activation of the coagulation cascade,
platelet aggregation, and fibrin deposition, giving rise to the
accumulation of red blood cells within the splenic cords (56, 93).

Hemorrhages are very common in the late phases of the
disease, mostly in organs without a fixed vascular macrophage
population, as the renal and gastrohepatic lymph nodes or the
kidney (Figures 5B,D) (56). Even though ASFV can replicate
in endothelial cells, this phenomenon has not been observed
in all the organs showing hemorrhages (Figure 5C), and more
importantly, this virus replication has only been reported
in endothelial cells in the last phases of the disease, while
hemorrhages may occur at earlier stages (33, 48). A different
pathogenic mechanism has been observed and proposed as one
of the main factors contributing to the hemorrhages in the
early phases of the disease: the phagocytic activation of capillary
endothelial cells, followed by endothelial cell hypertrophy that
may lead to the total occlusion of the capillary lumen and a severe
increase in the intravascular pressure (56). The subsequent loss
of endothelial cells results in the exposure of the capillary basal
membrane to which platelets can adhere, prompt the activation
of the coagulation system and induce the D.I.C. (54–56).

An intense transient thrombocytopenia is frequently observed
during subacute ASF, when hemorrhages are very frequent and
severe (54, 55). This phenomenon may play an important role
in the development of hemorrhages in the middle stages of the
disease and is associated to structural changes of megakaryocytes
in the bone marrow, with the presence of frequent denuded
megakaryocytes (94), a feature also observed in relationship to
hemorrhages in Classical swine fever (95).

The pathogenesis of the pulmonary oedema starts with
the severe infection of pulmonary intravascular macrophages
(PIMs), that is the main target cell for ASFV in the lung (31).
Infected and non-infected PIMs tend to be enlarged and show
signs of secretory activation. The production of proinflammatory
cytokines such as IL-1α and TNF-α induce chemotactic activity
and increase the endothelial permeability, leading to the leakage
of fluid into the interalveolar septa and the alveolar spaces (42).

The marked anorexia in infected animals reduces dramatically
the food/protein intake and accelerate the presence of hypo-
oncotic oedema leading to internal fat consumption, ascites,
hydrothorax, and hydropericardium, very typical in subacute
ASF. Moreover, the liver of infected animals show a marked
congestion, but also histopathological lesions, including
multifocal periportal inflammatory infiltrates (Figure 5E),
infection of Kupffer cells, which show severe secretory activation,
and hepatocytes in the late stages of the disease (32, 49, 70, 96, 97).
Hepatic malfunction may also contribute to the development of
the multifocal oedema.

ASF IN THE EURASIAN WILD BOAR

The Eurasian wild boar (Sus scrofa) is a native suid species of
most of Europe and Asia and Northern Africa, but has also
been introduced in other continents, including many islands.
It is considered the natural ancestor of the domestic pig and
both are classified as the same species. At present, the wild boar
play a very significant role in the spread of ASF infection in
Europe, and probably also in Asia, being also considered themain
source of infection in the recent outbreaks in Central and Eastern
Europe (98–102).

Due to the close taxonomic relationship between Eurasian
wild boar and domestic pigs, many similarities in terms of
immune responses to infections can be observed. However, even
though they are the same species (Sus scrofa), they belong to
different subspecies (101). Moreover, domestic pigs, and in some
instances also wild boar, are managed with a close control on
the health, reproduction and nutrition, whereas free-ranging wild
boar are subjected to many natural variations on reproductive,
sanitary, and nutritional conditions (101).

Before the outbreak of ASF in Georgia in 2007 and its
further expansion, several studies were conducted to study the
pathology and pathogenesis of ASFV infection wild boar, both
in natural and experimental conditions [reviewed by Sanchez-
Cordon et al. (101)]. No significant differences were found in
the clinical presentation of ASF in wild boar compared with
the domestic pig, with very similar acute, and subacute clinical
courses, and associated lesions (17, 24, 103, 104). After 2007, a
major emphasis has been put on the study of ASF in wild boar
after the reports of infected individuals in relationship to the
spread of the virus (105–109).

Several studies have been carried out in wild boars with
low and high virulent isolates, in different settings and
conditions. Highly pathogenic isolates from genotype II (110)
induce hemorrhagic/hyperaemic splenomegaly, hemorrhagic
lymphadenitis, pulmonary oedema, and multifocal petechial
hemorrhages (64, 107, 111), sometimes described as even more
severe than in the domestic pig (101). The mortality in is
also very high (90–100%) in these infected animals. However,
there are attenuated variants of the genotype II circulating in
some parts of Europe (112–114). Infected wild boar with low
virulent isolates and surviving the infection may transmit the
virus to naïve contact animals for months, although current non-
haemadsorbing genotype II isolates do not induce long-term
carriers as a major outcome for recovery pigs isolates (111).

ASF IN AFRICAN WARTHOGS AND
BUSHPIGS

In East Africa, ASFV is maintained in an ancient sylvatic cycle
involving the common warthog (Phacochoerus africanus) and the
arthropod vector (soft tick), Ornithodoros moubata, that inhabit
their burrows (24, 85).

Since very early experimental studies, it was demonstrated that
warthogs were very resistant to ASFV infection (1, 115), showing
no clinical signs of the disease, except in young animals, which
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FIGURE 5 | (A) H&E stain of the spleen from a pig with acute ASF showing abundant red blood cells within the red pulp and severe lymphoid depletion, with very

small lymphoid follicles (arrow) in the white pulp. (B) H&E stain of the gastrohepatic lymph node from a pig with subacute ASF showing hemorrhages in the

perifollicular lymphoid tissue and the medulla, together with a moderate lymphoid depletion. (C) H&E stain of the lung from a pig with subacute ASF showing severe

hemorrhages in the septa and the alveolar spaces. (D) H&E stain of the kidney from a pig with acute ASF showing interstitial hemorrhages within the renal cortex. (E)

H&E stain of the liver from a pig with acute ASF showing periportal inflammatory infiltrates (arrow) composed of lymphocytes, macrophages and plasma cells. (F) IHC

detection of ASFV p72 in the spleen showing strong positive reaction in macrophages in the red pulp and cell debris within the necrotic areas. (G) IHC detection of

ASFV p72 in the gastrohepatic lymph node showing strong positive reaction in macrophages within the perifollicular areas and the medulla. (H) IHC detection of ASFV

p72 in the tonsil showing strong positive reaction in macrophages within the perifollicular areas.
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develop a transient viremia (116, 117). Viremia in adult warthogs
is very rare with infectious virus mostly restricted to lymph nodes
(85). The infectious ASFV may persist in warthog tissues for up
to 25 weeks post infection, but is cleared by 56 weeks (118), what
could explain the repeated re-infection of warthogs by ticks with
the same virus strain (85).

Several genetics differences have been described between
warthogs and domestic pigs (85). A difference between tolerance
to infection and severe pathology may be due to a polymorphic
RELA (p65; v-rel reticuloendotheliosis viral oncogene homolog
A) variant found in warthogs (119).

ASFV has also been isolated from bushpigs (Potamochoerus
larvatus) and red river hogs (Potamochoerus porcus), wild suid
species found in sub-Saharan West and Central Africa (85, 116,
120, 121). ASFV infection does not induce clinical signs in these
species, but moderate viremia can be observed (118, 120). ASFV
can replicate in tissues without causing histological lesions, and
mostly restricted to the B cell areas of the lymph nodes (85).
Infected animals may transmit ASFV to feeding ticks but also to
in-contact domestic pigs, although the role in the epidemiological
maintenance of ASFV as a reservoir in unclear since these species
do not inhabit burrows like warthogs and they are not in close
contact with the Ornithodoros spp. ticks (85).

CONCLUSIONS AND FUTURE
CONSIDERATIONS

ASF is spreading very rapidly worldwide, and current control
strategies rely on rapid detection, strict biosecurity, and
implementation of quarantine and slaughter policies, in the
absence of a commercial secure, and efficacious vaccine.
These measures are not always implemented correctly or are
insufficient, leading to culling large numbers of animals. The
rapid detection is very important when ASF enters a new
territory, and education, and communication are crucial tools
to detect the first cases of the disease and follow up the official
measures implemented to control the outbreaks. The clinical
course and associated lesions of the disease may vary, and
farmers and veterinarians must be always aware of the different
presentations of ASF.

The pathogenesis of this disease is very complex, and more
research is required to understand some of the pathogenic
mechanisms, including how ASFV modulates the host immune

responses and the role of the multiple proteins encoded by
the virus. Several research groups are developing prototype
vaccines mostly based on subunits or live attenuated isolates.
More information is also needed to understand the correlates of
protection to help with the development of these vaccines.

Finally, the presence of wild suids in the epidemiological
cycles in Africa and Eurasia, makes the control of the
disease very complicated, with the added problem of soft
tick species as potential arthropod reservoirs in different
countries. Moreover, the population of wild boar is increasing
dramatically in Europe, but also in some parts of Africa
and America, adding more problems to the control of ASF
when outbreaks are reported. The rapid expansion of ASF in
South Asia also raises the concern about the possibility of
transmission into local wild suid species and the establishment
of potential new epidemiological cycles in this and other areas of
the world.
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