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Salmonella is one of the most important foodborne pathogens worldwide. Its main

reservoirs are poultry and pigs, in which infection is endemic in many countries. Spain

has one of the largest pig populations in the world. Even though Salmonella infection

is commonly detected in pig farms, its spatial distribution at the national level is poorly

understood. Here we aimed to report the spatial distribution of Salmonella-positive pig

farms in Spain and investigate the presence of potential spatial trends over a 17-year

period. For this, data on samples from pigs tested for Salmonella in 2002–2013, 2015,

2017, and 2019 as part of the Spanish Veterinary Antimicrobial Resistance Surveillance

program, representing 3,730 farms were analyzed. The spatial distribution and clustering

of Salmonella-positive pig farms at the province level were explored using spatial

empirical Bayesian smoothing and global Moran’s I, local Moran’s I, and the Poisson

model of the spatial scan statistics. Bayesian spatial regression using a reparameterized

Besag-York-Mollié Poisson model (BYM2 model) was then performed to quantify the

presence of spatially structured and unstructured effects while accounting for the effect of

potential risk factors for Salmonella infection at the province level. The overall proportion

of Salmonella-positive farms was 37.8% (95% confidence interval: 36.2–39.4). Clusters

of positive farms were detected in the East and Northeast of Spain. The Bayesian spatial

regression revealed a West-to-East increase in the risk of Salmonella infection at the

province level, with 65.2% (50% highest density interval: 70–100.0%) of this spatial

pattern being explained by the spatially structured component. Our results demonstrate

the existence of a spatial variation in the risk of Salmonella infection in pig farms at

the province level in Spain. This information can help to optimize risk-based Salmonella

surveillance programs in Spain, although further research to identify farm-level factors

explaining this pattern are needed.
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INTRODUCTION

Salmonella infection is one of the most important foodborne
zoonoses worldwide. There were 91,662 confirmed human
salmonellosis cases in 2017 in the European Union (EU) (1)
and ∼1.2 million estimated cases occur every year in the
US (2). Salmonellosis, characterized by acute onset of fever,
abdominal pain, diarrhea, and nausea, is usually self-limiting.
However, sometimes it can be life-threatening, especially in
children, elderly and immunosuppressed patients, thus requiring
antimicrobial therapy (3). This can be further complicated by the
presence of antimicrobial-resistant strains (4).

Poultry is considered a major source of foodborne
salmonellosis globally (5), but pork and pork products are
also implicated in a large number of cases in many countries,
including Spain (6, 7). Two of the most common Salmonella
serotypes in pigs, S. Typhimurium and its monophasic variant
(1,4,[5],12:i:-), were among the top serotypes associated with
human salmonellosis in Spain (1). Moreover, the European Food
Safety Authority (EFSA) baseline reports on Salmonella infection
in fattening and breeder pig farms in Europe demonstrated that
Spain had one of the highest levels of infection in pigs among
EU countries, further highlighting their potential role in the
occurrence of human salmonellosis in Spain (8, 9).

Still, due to the absence of a national control/monitoring
program for Salmonella in pigs in Spain, little is known about
the spatial distribution of Salmonella infection in pigs in Spain.
The only available data came from specific studies with a
generally limited geographical and temporal scope (10–12).
The Spanish Veterinary Antimicrobial Resistance Surveillance
Network program (13), starting in 1997, has performed
nationwide surveillance of antimicrobial resistance originating
from foodborne bacteria, such as Escherichia coli, Campylobacter
spp., and Salmonella spp. Active surveillance of antimicrobial
resistance in Salmonella in healthy pigs has been conducted
through this program since 2002. Even though pigs from over
164 farms were sampled every year at the abattoirs since the
beginning of the program, the spatial distribution of positive
farms has never been evaluated.

Geographic information systems and some spatial statistical
analyses have been applied to epidemiological research on
Salmonella in farm animals. These approaches have allowed the
detection of patterns and clusters of infection and prediction of
occurrence and risk of infection of Salmonella under different
situations. K-function analysis (14, 15) and Moran’s I (16, 17)
have been used to detect spatial clustering in Salmonella infection
in farm animals, and a Gaussian kernel function has been used
to predict the occurrence of Salmonella-infected dairy cattle and
pig herds (18, 19). Using human cases, Simpson et al. (21) used
the Besag-York-Mollié (BYM) hierarchical model (20) to map
the cases of S. Wangata and S. Typhimurium in New South
Wales, Australia (21). However, the usefulness of this method to
better understand Salmonella infection in pigs seems not to be
explored yet.

A BYM model contains two spatial random effects, often
called spatially structured and unstructured components. The
structured component has an intrinsic conditional autoregressive

(CAR) prior that takes the geographical contiguity into
account (correlated heterogeneity). The geographical contiguity
is described by the neighborhood relationships between each pair
of areas and a full spatial dependency. The unstructured one is
a random effect for non-spatial heterogeneity at the same area
level as the structured component. Riebler et al. (22) proposed a
parameterized BYM model—the BYM2 model to address some
limitations of the original BYM model. Briefly, the BYM2 model
adopts the penalized complexity framework that favors a model
whose parameters have clear interpretations and thus facilitates
the use of sensible hyperparameters in the model (23). The BYM2
model combines the two spatial components in the original BYM
model into a single spatial component and allows a parameter
to describe the proportion of the variance explained by the
structured component.

In the current study, we aimed to evaluate the spatial
distribution and potential spatial trends of Salmonella infection
in pig farms in Spain. To do so, we analyzed the data on
Salmonella detection in samples from pigs across a 17-year
period, derived from the Spanish Veterinary Antimicrobial
Resistance Surveillance Network program, using several spatial
analytical techniques, including a BYM2 model.

MATERIALS AND METHODS

Study Population and Data Collection
Data on samples collected for monitoring antimicrobial
resistance in Salmonella in pigs from 2002 to 2013, 2015, 2017,
and 2019 (sampling was conducted every two years since 2015)
were derived from the database of the Spanish Veterinary
Antimicrobial Resistance Surveillance Network program. In the
program, samples from fattening pigs were randomly collected
in abattoirs selected based on their slaughter capacity. Each year,
selected abattoirs altogether added up to more than 50% of the
national slaughter capacity and were located in no less than
half of the autonomous communities of the country. The total
number of pigs sampled from each abattoir was proportional
to their slaughter capacity and was randomly allocated to farm
batches being culled on the sampling date. Animal samples
consisted of at least 25 g of the content of caecum from two pigs
selected at random from those coming from the same farm,
except for 2011 when at least 15 g of ileo-caecal lymph nodes
of one animal per farm were collected. Samples were collected
by trained personnel, put in a clean container, and stored at
refrigeration (3–8◦C) until being sent to the laboratory within
the next 36 h. Salmonella culture was performed immediately
after reception.

Bacteriology
Salmonella isolation was performed according to ISO
6579:2002/Amd 1:2007, the method recommended by the
European Union Reference Laboratory for Salmonella in fecal
and environmental samples [15]. Briefly, samples were cultured
in buffered peptone water (BPW, 1/10 dilution; bioMérieux,
Marcy-l’Étoile, France), followed by incubation at 37 ± 1◦C for
18 ± 2 h. Modified semi-solid Rappaport-Vassiliadis (MSRV;
Becton Dickinson France, Le Pont-de-Claix, France) agar plates
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were then inoculated with three drops (i.e., 0.1ml) of BPW
culture. Plates were incubated at 41.5 ± 1◦C for 24 ± 3 h and, if
negative, incubated for an additional 24± 3 h. Suspected growth
of Salmonellawas confirmed by plating out to both Xylose Lysine
Desoxycholate agar (XLD; bioMérieux) and on chrom IDTM

Salmonella agar (SM ID2; bioMérieux) for incubation during 24
± 3 h at 37± 1◦C.

Columbia 5% sheep blood agar (bioMérieux) was used
for the incubation of colonies of presumptive Salmonella
that were subcultured for 24 ± 3 h at 37 ± 1◦C. All
Salmonella isolates were confirmed by a commercial, biochemical
method EnterotubeTM II (BD BBLTM; Becton Dickinson GmbH,
Heidelberg, Germany). Serological typing was performed based
on the White-Kauffmann-Le Minor scheme (24).

Data on Potential Risk Factors (Covariates)
The potential of production-related characteristics to explain at
least part of the observed spatial patterns of the risk of Salmonella
infection in pig farms was assessed in the Bayesian spatial
modeling (22 variables, Table 1) at the province level. These
included (a) the number, the proportion, and the density (average
number per square kilometer) of pigs belonging to different
production categories (i.e., piglets, weaners, fattening pigs, gilts,
sows, and boars) in each province and (b) the number and density
of pig farms in each province. The pig-related information from
2005 to 2019 was collected from the website of the Ministry of
Agriculture, Fisheries, and Food of Spain, and averaged over the
study period for each province. The information about pig farm
distribution was only available for 2016.

Statistical Analyses
Data cleaning, manipulation, and analyses were performed in
Microsoft Excel 2013 (Microsoft Corp.), and R program version
3.5.2 (25) in RStudio interface version 1.2.1330 (26). Descriptive
analyses were facilitated by “tidyverse” package (27). The location
of all farms from which the sampled pigs originated was available
at the province level and used for the following analyses.

The overall, yearly and province-level proportion of
Salmonella-positive farms was calculated. Empirical Bayesian
smoothing was then performed on the proportion of Salmonella-
positive farms at the province level to incorporate information
on the sample size and the proportion of Salmonella-positive
farms of neighboring provinces by using the “spdep” package
(28). Gabriel Graph was used to describe the neighboring
relationships between the provinces throughout the study. In
addition, the overall and yearly proportion of farms positive to
specific Salmonella serotypes over the total number of positive
farms were calculated for serotypes with >50 isolates over the
study period. Empirical Bayesian smoothing, as previously
described, was also used to map the proportion of farms positive
to these Salmonella serotypes over the total number of positive
farms at the province level.

The presence of global and local spatial autocorrelation in the
spatial distribution of Salmonella positive farms was explored
using global and local Moran’s statistics (29, 30). A global and
local Moran’s I-tests were run on the standardized residuals of
a Poisson model using the number of positive farms in each

TABLE 1 | Univariable generalized linear regression results for the risk of

Salmonella infection in pigs at the province level in Spain from 2002 to 2013,

2015, 2017, and 2019.

Name Mean Standard

deviation

95% posterior

probability

Change in risk with

every specified unit

of increase (95%

credible interval)

Number of

farms

0.08 0.03 (0.03 to 0.13) 1.010 (1.004 to 1.016)1

Density of

farms (per km2 )

0.07 0.02 (0.03 to 0.12) 1.014 (1.005 to 1.023)2

Number of

fattening pigs

0.06 0.02 (0.03 to 0.10) 1.002 (1.001 to 1.003)3

Number of

sows

0.06 0.02 (0.01 to 0.10) 1.010 (1.002 to 1.018)3

Number of

piglets

0.05 0.02 (0.01 to 0.08) 1.002 (1.000 to 1.004)3

Number of

weaners

0.06 0.02 (0.03 to 0.09) 1.003 (1.001 to 1.005)3

Number of gilts 0.05 0.02 (0.01 to 0.09) 1.040 (1.009 to 1.068)3

Number of

boars

0.04 0.04 (−0.04 to 0.11) 1.262 (0.787 to 1.953)3

Total number of

pigs

0.06 0.02 (0.02 to 0.10) 1.001 (1.000 to 1.001)3

Proportion of

fattening pigs

0.08 0.04 (0.00 to 0.15) 1.009 (1.001 to 1.018)2

Proportion of

sows

−0.11 0.06 (−0.24 to 0.00) 0.989 (0.976 to 1.000)2

Proportion of

piglets

−0.08 0.03 (−0.15 to −0.02) 0.989 (0.981 to 0.997)2

Proportion of

weaners

0.09 0.03 (0.02 to 0.15) 1.016 (1.004 to 1.028)2

Proportion of

gilts

−0.06 0.06 (−0.19 to 0.04) 0.976 (0.929 to 1.017)2

Proportion of

boars

−0.09 0.06 (−0.22 to 0.03) 0.799 (0.566 to 1.091)2

Density of

fattening pigs

0.07 0.02 (0.04 to 0.11) 1.003 (1.002 to 1.005)4

Density of sows 0.05 0.02 (0.01 to 0.09) 1.011 (1.002 to 1.020)4

Density of

piglets

0.05 0.02 (0.01 to 0.08) 1.002 (1.000 to 1.004)4

Density of

weaners

0.08 0.02 (0.04 to 0.12) 1.005 (1.002 to 1.008)4

Density of gilts 0.06 0.02 (0.01 to 0.10) 1.050 (1.012 to 1.089)4

Density of

boars

0.05 0.03 (−0.02 to 0.11) 1.643 (0.813 to 3.211)4

Density of pigs 0.07 0.02 (0.03 to 0.11) 1.001 (1.000 to 1.002)4

1Every 100 farms of change.
2Every 1% of change.
3Every 10,000 animals of change.
4Every 1 unit of change.

province as the outcome and the expected number of positive
farms as the offset with the “spdep” package (28). The significance
of the global Moran’s I statistic was estimated through 999
Monte Carlo simulations in which the residuals were randomly
shuffled across provinces. For local Moran’s I, the P-values were
calculated using the expectation and variance and corrected with
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the method described in Benjamini and Hochberg (31). The
significance level for all the tests in the current study was set
at 0.05.

Additionally, the Poisson model of the scan statistic was also
applied to detect the presence of provinces with an increased
risk of Salmonella infection using the centroid of each province
as the point location, facilitated by the “SpatialEpi” package
(32, 33). The scan statistic detects the maximum likelihood ratio
between the value inside and outside a searching window over
the likelihood function under the null hypothesis of complete
spatial randomness (32). The search was performed using circular
spatial moving windows that contained up to 25% or 50% of
the total population alternatively. The pseudo P-values of the
most likely clusters were generated by comparing the observed
risk in the windows with the expected, generated through 999
Monte Carlo simulations in which the risks at each location were
randomly allocated.

Bayesian spatial modeling to assess the associations between
the risk of Salmonella infection at the province level and the
available covariates was performed in Rstudio using Stan and
associated packages (34). The number of observed Salmonella-
positive pig farms in different provinces was assumed to follow a
Poisson distribution, with the expected number of positive farms
in each province as the offset. Regression models were fitted
using the “brms” package (35). To explore the directionality of
the association between available covariates and the outcome,
univariable non-spatial models were first fitted introducing
alternatively each of the covariates. For covariate selection, the
predictive projection technique proposed by Piironen et al.
was implemented using the “projpred” package (36, 37). The
selection process contained two steps. First, a Bayesian penalized
regression model with a regularized horseshoe prior and all the
covariates was constructed as the reference model that warranted
a good prediction ability. Penalized regression is a statistical
technique designed to avoid overfitting, especially in cases of a
large number of covariates (38). This is achieved through the
introduction of a penalty term that shrinks small coefficients
toward zero while leaving large coefficients large. The implement
of penalized regression is rather intuitive within a Bayesian
framework as a penalty term can be included as a hyperprior,
also called shrinkage prior (38). Many shrinkage priors have been
proposed, and a regularized horseshoe prior was chosen for the
current study due to the advantages discussed in Piironen and
Vehtari (39). Second, the covariates in the best model for each
submodel size were identified by decreasing the Kullback–Leibler
divergence from the reference model to the projected submodel
using a forward stepwise addition. A submodel with the minimal
subset of these covariates which had similar predictive power as
the reference model, judged by the mean log predictive density
and the root mean square error, was selected.

The BYM2 Poisson model including the selected covariates
and the spatial components (Equation 1) was then fitted (22).
To examine the suitability of alternative distributions to fit the
data, another three BYM2 models were fitted with different
likelihoods (i.e., zero-inflated Poisson, negative binomial and
zero-inflated negative binomial) followed by model selection
using Bayesian leave-one-out cross-validation (40, 41). The

default priors specified in the “brms” package were used in the
current analyses. Sampling was drawn from four Markov chains
with 1,000 iterations. The results final model reported in the
next section were sampled from four Markov chains with 3,000
iterations. Half of the iterations were for warm-up (i.e., burn-in)
and not used for inference.

Markov chain Monte Carlo diagnostics for the final model
were performed with (a) the potential scale reduction statistic (R̂)
(42), (b) the ratio of the effective sample size to the total sample
size drawn from the posterior distribution, and (c) trace plots of
Markov chain Monte Carlo generated through the “bayesplot”
package (43). Residual check and posterior predictive checks
were also performed using the “bayesplot” package (43, 44).
The highest density interval of the posterior distribution was
estimated using the “bayestestR” package (45).

Equation 1. Spatial component in a BYM2 model.

T =
1

√
Tt

(
√

p/f ∗ S+
√

1− p)

• T : total spatial component,
• τt : precision for the total spatial component; 1√

Tt
is the overall

standard deviation,
• pǫ [0, 1]: the proportion of the variance explained by the

spatially structured component,
• f : scaling factor,
• S : spatially structured component,
• U: spatially unstructured component.

For the variables potentially associated with the Salmonella
detection (see below), the existence of major changes in their
spatial distribution over the study period was evaluated using
Friedman tests on the province-level yearly data, followed by
pairwise Wilcoxon rank sum tests with P-values adjusted for
multiple comparisons (46).

RESULTS

Up to 3,730 samples collected over the 15 years in which sampling
was conducted, representing the same number of farms, were
included in the current study, with an average of 249 (range:
163–384) samples per year. The number of abattoirs where the
samples were collected each year, except for 2019 when this
information was not available, ranged between 7 and 20. A
median of 18 samples (interquartile interval: 11–29, range: 1–
60) were collected from each abattoir each year during the study
period. Abattoirs were located in 11 out of the 18 autonomous
communities in Spain, and 977 (29.2%), 670 (20.0%) and 455
(13.3%) samples came from abattoirs in Cataluña, Castilla La
Mancha and Murcia, respectively (Supplementary File 1). The
sampled farms were located in 43 out of the 52 provinces in Spain;
502 (13.5%) were from Murcia, 371 (9.95%) from Huesca, and
334 (9.0%) from Lleida.

A total of 1,409 of the 3,730 samples were positive, yielding
an overall percentage of Salmonella-positive farms of 37.8% (95%
confidence interval [CI]: 36.2–39.4). This percentage peaked
between 2004 (54.2%) and 2006 (53.3%), declined to 29.7% in
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2012, and increased again to 54.1% in 2019 (Figure 1). The raw
and smoothed proportion of Salmonella-positive farms at the
province level is shown in Figure 2. In the eleven provinces with
more than 100 samples, the spatially adjusted proportion ranged
from 17.8 % (95% CI: 13.1–22.2) in Toledo to 44.8% (95% CI:
35.4–54.2) in Almeria.

The serotype of 1,360 (96.5%) out of the total 1,409 Salmonella
isolates recovered was determined, yielding 64 distinct serotypes
(Supplementary Table 1). The most represented were S. Rissen
(313, 22.2%), S. 1,4,[5],12:i:- (265, 18.8%), S. Typhimurium
(251, 17.8%), and S. Derby (207, 14.7%). The evolution of
the proportion of isolates belonging to specific serotypes over
the study period varied (Figure 3). The proportion of S.
Typhimurium decreased after 2010, while the proportion of
the S. 1,4,[5],12:i:- has consistently increased over the years.
The proportion of S. Rissen remained consistently around 0.3
after 2005, and, for S. Derby, a decreasing trend was observed
(from slightly lower than 0.3 to <0.2 from 2012 onwards).
After the empirical Bayesian smoothing, the proportions of
Salmonella isolates identified as the S. 1,4,[5],12:i:- and S. Derby

FIGURE 1 | Annual proportion of Salmonella-positive farms in Spain from

2002 to 2013, 2015, 2017, and 2019. The line was smoothed by a locally

estimated scatterplot smoothing with a span of 0.5.

were higher in the provinces of Northeast and South of Spain,
respectively (Figure 4). Both the proportions of S. Rissen and
the S. 1,4,[5],12:i:- were rather homogeneous across provinces in
Spain but slightly lower at the northwest corner and the South of
Spain, respectively.

No global (Moran’s I = −0.02, p = 0.458) or local spatial
autocorrelation was detected in the standardized residuals of the
Poisson model. The spatial scan statistics identified local clusters
with an increased risk of Salmonella infection in the East and
Northeast of Spain (Figure 5). The observed-to-expected ratio
between inside and outside of the significant clusters identified
using a search window of maximum 25 and 50% population was
1.17 (P = 0.036) and 1.13 (P = 0.001), respectively.

According to the univariable models, provinces with a higher
number or density of pig farms showed a higher risk of
Salmonella infection (Table 1). In general, covariates related to
the population of fattening pigs, weaners, sows or piglets were

FIGURE 3 | Changes in the proportion of Salmonella isolates recovered

through the Spanish Veterinary Antimicrobial Resistance Surveillance Network

program belonging to one of the four most common serotypes collected in

pigs in Spain from 2003 to 2013, 2015, 2017, and 2019. The lines were

smoothed by a locally estimated scatterplot smoothing with a span of 0.5.

FIGURE 2 | Proportion of Salmonella-positive farms at the province level in Spain from 2002 to 2013, 2015, 2017, and 2019. (A) Raw proportion. (B) Spatially

adjusted proportion using empirical Bayesian smoothing.
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FIGURE 4 | Empirical Bayesian smoothed proportions of farms positive to the four most represented Salmonella serotypes collected through the Spanish Veterinary

Antimicrobial Resistance Surveillance Network program in pigs in Spain from 2002 to 2013, 2015, 2017, and 2019.

FIGURE 5 | Provinces included in the significant, high-risk Salmonella clusters detected by the Poisson model of the spatial scan statistics using data collected

through the Spanish Veterinary Antimicrobial Resistance Surveillance Network program in pigs in Spain from 2002 to 2013, 2015, 2017, and 2019.

positively associated with the probability of finding positive
Salmonella farms.

After predictive projection, only one covariate, the density of
weaners, was selected to be included in the final Poisson BYM2
model (Table 2). More results of Bayesian penalized regression
and predictive projection can be found in Supplementary File 2.

In the Poisson model including only the density of weaners
without the BYM2 component, the probability of finding positive
Salmonella farms at the province level increased by 0.5% (95%
credible interval [CrI]: 0.2–0.8%) with every increase in the
weaner density. However, the effect of this covariate shrank to
close to 0 after the inclusion of the BYM2 component (Table 2).
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TABLE 2 | Regression results from the final multivariable modeling for risk of

Salmonella infection in pigs at the province level in Spain from 2002 to 2013,

2015, 2017, and 2019.

Variable Mean Standard

deviation

95% posterior

probability

Change of risk with

very 1 unit of

increase (95%

credible interval)

Intercept −0.07 0.05 −0.17 to 0.02 –

Density of

weaners

−0.01 0.06 −0.13 to 0.10 −0.001

(−0.008 to 0.007)

Standard

deviation of the

spatial

component

0.23 0.05 0.14 to 0.35 –

Proportion

explained by

the structured

component

0.65 0.25 0.10 to 0.99 –

The spatial component in the final BYM2 model suggested a
West-East increasing risk of Salmonella infection at the province
level in Spain. The exponentiated means of the spatial effects are
shown in Figure 6. The mean of the standard deviation of the
spatial component was 0.23 (Crl: 0.14–0.35), and, on average,
65.2% (median: 70.2%, 50% highest density interval: 70–100%)
of the variance of the spatial component was explained by the
structured component. No specific pattern in the unstructured
spatial component was observed.

Markov chain Monte Carlo and model diagnoses are
presented in Supplementary File 3.

The density of weaners at the province level did not
experience major changes over the study period, with higher
values reported consistently for provinces in theNortheast corner
(Supplementary File 4). Still, the Friedman test revealed the
existence of significant (P< 0.001) differences in the yearly values
over time, although post-hoc tests revealed that differences were
only due to values recorded in 2017 and 2019The test became
non-significant (P = 0.071) when values from 2005 to 2015
were used.

DISCUSSION

Human salmonellosis outbreaks have been linked to pork and
pork products in the past (1, 5, 7). In many regions and countries
such as Northern and Western Europe and Japan, pork, and
pork products are the second most common source for human
salmonellosis after eggs and egg products (5). In Spain, pork and
pork products have been shown to be one of the top-ranked
sources for human salmonellosis (7). However, currently, there
is no official control program of Salmonella in pig production
in Spain (47). In the current study, we used several analytical
techniques to explore the spatial distribution of Salmonella
infection in pigs in Spain and generate information that can be
used for surveillance of Salmonella in pigs in the future.

We detected an overall percentage of Salmonella-positive
farms of 37.8% with great variation across the years. Several

studies have reported even higher values of farm-level Salmonella
prevalence in Catalonia (77.3% in 2000–2003), northeast Spain
[94.1% in 2008–2009 (12)], and the entire country [43.1% in
Spain in 2003–2004 (11)]. The lower values suggested by the
current study could be partially due to the inclusion of feces from
only two pigs per farm. Thus, the probability of detecting the
presence of Salmonella at the farm level, particularly in farms
with a low within-farm prevalence, was not as high as in the
aforementioned studies. Nonetheless, the spatial heterogeneity
found in the current study agrees with these previous results
reporting higher prevalence values in the Northeast of the
country, where a large proportion of Spanish pig population
is located.

Our results indicated that the recent increase in the percentage
of Salmonella-positive farms could be related to the increasingly
reported S. 1,4,[5],12:i:-. During the study period, the proportion
of isolates belonging to this serotype steadily rose and reached
0.47 in 2019, in parallel to the increase in the yearly percentage
of Salmonella-positive farms (from 29.4 in 2012 to 54.1 in 2019).
The importance of the S. 1,4,[5],12:i:- in public health highlights
the need for continuous monitoring on its prevalence in pigs in
Spain and the EU at large (48).

Several factors may affect the determination of the Salmonella
status of a farm when samples are collected at the abattoir.
Many studies have shown a noticeably higher prevalence of
Salmonella in samples from slaughtered pigs than the prevalence
of the samples from the farm (49, 50). This could be due to
the stress generated by the process of harvest, transportation,
and retention in the lairage, resulting in the recrudescence of
latent carriers and/or an increase in the susceptibility of pigs
to new infections (49). Moreover, the long feed withdrawal
normally performed before transport might change the gut
microbiota and increase the number of Salmonella in the fecal
content (51). On the other hand, an increase in the diversity of
serotypes detected in the abattoir compared to those recovered
from the farms of origin has been also described. This could
suggest exposure to additional contaminated environments such
as trucks and lairages (49, 52). Therefore, the true prevalence
of Salmonella infection at the farm level may be lower than
the detected/apparent prevalence based on samples collected
at abattoirs, and the diversity of serotypes could be the result
of Salmonella from both pig farms and places involved in the
process between harvest and slaughtering.

Our results showed a clear pattern suggesting a higher risk
of Salmonella infection in the (North-)east than in the rest of
Spain (Figure 6). The BYM2 model showed that, on average,
65.2% of the spatial effect could be explained by the underlying
geographical location of the provinces, and the highest density
interval included even higher values. We considered several pig
population-related covariates in the analysis given that their
heterogeneous spatial distribution was in agreement to some
extent to the results of the spatial scan statistic (i.e., more pigs
and higher densities in the Northeast of Spain). The univariable
modeling results showed that many covariates, especially the
number of farms and those related to fattening pigs and weaners,
were indeed positively associated with the risk. However, only
one covariate, the density of weaners, was retained after the
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FIGURE 6 | The total (left) spatial risk of Salmonella infection in pigs at the province level in Spain from 2002 to 2013, 2015, 2017, and 2019 according to the Poisson

BYM2 model and the risk explained by the structured (center) and unstructured (right) spatial components.

variable selection process. This was expected as many covariates
were correlated. Nonetheless, the effect of the density of weaners
became close to 0 after the inclusion of the BYM2 component.
This suggested that the observed spatial distribution of risk was
better explained by the geographical contiguity of the provinces
than by the density of weaners and other pig-related factors.

The software used here, Stan, is a highly-expressive
probabilistic programming language that allows full Bayesian
inference using Hamiltonian Monte Carlo samplers (34),
which have been shown more efficient and robust than Gibbs
and Metropolis samplers (53). Although many R packages
to facilitate Bayesian modeling in Stan have been developed
(35, 54), it is yet to be much explored in the field of veterinary
epidemiology. With Stan and “brms” package (35), BYM2 model
can be performed by regular R users (22).

To our knowledge, the BYM2 model has been little utilized in
the field of veterinary science. The BYM2 model has advantages
over the original and some of the reparameterized BYM models
(22). Firstly, the two components in a BYM2 model can be seen
independently from each other, resulting in better estimation for
both of them (55). Secondly, BYM2 models facilitate parameters
that have clear interpretations and thus the use of sensible
hyperparameters (23). Additionally, as the scaling factor in
BYM2 models is placed to take into account the underlying
neighborhood structure, studies with different neighborhood
structure now can use the same hyperprior in the models
(22). Therefore, the future application of the BYM2 model in
veterinary epidemiology may be encouraged. A BYM2model can
also be performed with INLA (22).

In the current study, we employed a relatively unexplored
approach for variable selection in veterinary epidemiology—
predictive projection with a Bayesian penalized regression
model as the reference model. Shrinkage methods have been
recommended when the ratio of the number of observations to
the number of variables is ≤10 (56), and predictive projection
is useful in determining the number of variables to be included
in the model (36). This technique has several advantages. First,
it requires less computational power than cross-validation and
is less time-consuming than using either cross-validation or
information criteria. Second, selection among many models

using cross-validation may tend to overfit and thus result in
choosing a suboptimal model (36).

Here, a number of different spatial analytic tools were applied,
offering different results. While the global and local Moran’s I-
tests ran on the residuals of a Poisson model did not suggest
the existence of a spatial pattern in the distribution of the
Salmonella risk at the province level, the spatial scan statistic
and the Bayesian spatial model showed the opposite. This
finding suggests that, rather than making a conclusion of spatial
independence based on one test, the application of more than
one spatial analytic test, based on different hypotheses and
assumptions, can provide a more complete picture.

The current study has some limitations. First, as the sample
collection was conducted in abattoirs that have high slaughter
capacity, the results might not be necessarily representative of the
farms that did not (usually) send their pigs to those abattoirs.
Second, the current study was conducted using secondary
data. Therefore, it may face some common issues of using
secondary data, such as out-of-date information, suboptimal
sampling procedure for answering specific research questions,
insufficient sample size, and lack of information that would
be, otherwise, included. For example, the individual or within-
farm prevalence of Salmonella infection could not be determined
in the current study. Also, farm-specific information was not
available so could not be included in the models. Farm-specific
covariates such as farms types, and management and biosecurity
information, will likely be associated with the outcome and
allow prediction of the risk. Furthermore, for the multivariable
modeling exercise, farm-related information was only available
for 2016, and data of pig distribution was averaged across all
years under study. Still, the exploration of the evolution of
the pig distribution in Spain revealed no significant variation
between provinces for at least most of the study period (2002–
2015), suggesting that aggregating values across such a period
would not result in a major loss of information. Lastly, it
has been shown that the inclusion of a spatially-correlated
component only after the covariate selection process may affect
the results of the covariates in the model (57). This is observed
in the current study. Ideally, the predictive projection should be
conducted with the BYM2 component included. However, this
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is currently unavailable in the “projpred” package and thus was
not done.

CONCLUSION

The current study shows a notable increasing trend in the risks
of Salmonella infection in pig farms located in provinces from
West to East in Spain, evident still after the possible effect of the
heterogeneous distribution of pigs in the country was accounted
for. The increase in the percentage of Salmonella positive farms
from 2012 and the S. 1,4,[5],12:i:- in Spain demonstrates the
usefulness of surveillance to detect changes in the epidemiology
of this foodborne pathogen in the animal reservoirs. We
demonstrated the usefulness of Stan for various applications
that are commonly pursued in a veterinary epidemiological
study, such as covariate selection, model selection, and model fit
assessment, as well as fitting a BYM2 model. The information
generated by the current study can be used for risk-based
Salmonella antimicrobial resistance surveillance programs in the
future, so the probabilities of selecting positive farms and specific
serotypes can be optimized. Although some temporal trends in
the risk of Salmonella are shown in the current study, more data
is needed to allow a better understanding of the spatial-temporal
distribution and the evolution of Salmonella infection in pigs
in Spain.
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