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Research using in vitro canine mammary cancer cell lines and naturally-occurring
canine mammary tumors are not only fundamental models used to advance the
understanding of cancer in veterinary patients, but are also regarded as excellent
translational models of human breast cancer. Human breast cancer is commonly treated
with radiotherapy; however, tumor response depends on both innate radiosensitivity
and on tumor repopulation by cells that develop radioresistance. Comparative canine
and human studies investigating the mechanisms of radioresistance may lead to novel
cancer treatments that benefit both species. In this study, we developed a canine
mammary cancer (REM-134) radioresistant (RR) cell line and investigated the cellular
mechanisms related to the development of acquired radioresistance. We performed
a comparative analysis of this resistant model with our previously developed human
breast cancer radioresistant cell lines (MCF-7 RR, ZR-751 RR, and MDA-MB-231
RR), characterizing inherent differences through genetic, molecular, and cell biology
approaches. RR cells demonstrated enhanced invasion/migration capabilities, with
phenotypic evidence suggestive of epithelial-to-mesenchymal transition. Similarities were
identified between the REM-134 RR, MCF-7 RR, and ZR-751 RR cell lines in relation to
the pattern of expression of both epithelial and mesenchymal genes, in addition to WNT,
PI3K, and MAPK pathway activation. Following the development of radioresistance,
transcriptomic data indicated that parental MCF-7 and ZR-751 cell lines changed
from a luminal A classification to basal/HER2-overexpressing (MCF-7 RR) and normal-
like/HER2-overexpressing (ZR-751 RR). These radioresistant subtypes were similar to the
REM-134 and REM-134 RR cell lines, which were classified as HER2-overexpressing. To
our knowledge, our study is the first to generate a canine mammary cancer RR cell line
model and provide a comparative genetic and phenotypic analysis of the mechanisms of
acquired radioresistance between canine and human cancer cell lines. We demonstrate
that the cellular processes that occur with the development of acquired radioresistance
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are similar between the human and canine cell lines; our results therefore suggest that the
canine model is appropriate to study both human and canine radioresistant mammary
cancers, and that treatment strategies used in human medicine may also be applicable
to veterinary patients.

Keywords: canine breast cancer models, human breast cancer, radioresistance, global gene analysis,

characterization of radioresistant cell lines, comparative oncology

INTRODUCTION

Naturally-occurring mammary tumors are the most frequently
diagnosed cancer in bitches. These neoplasms represent ∼50%
of all canine tumors (1), of which 50% are malignant (2–4).
Due to similarities in clinical features, relative age of onset, risk
factors and tumor biology, canine mammary tumors (CMT)
represent an excellent comparative and translational model for
human breast cancer (HBC) (5–7). Gene expression profiles of
primary (8) and metastatic (9) CMT have also shown similarities
with HBC profiles, providing evidence that canine models
can be utilized to help understand the genetic mechanisms of
carcinogenesis in humans and dogs (4, 10, 11).

HBC is routinely managed with surgery followed by
combinations of adjuvant chemotherapy, radiotherapy (RT),
endocrine therapy or targeted therapy. RT is a commonly used
breast cancer treatment; estimates indicate that curative or
palliative RT can benefit ∼83% of breast cancer patients (12).
The use of adjuvant whole-breast RT after breast-conserving
surgery has also been shown to deliver regional disease
control and overall survival rates comparable with patients
receiving a mastectomy, while also reducing side effects and
improving cosmetic outcomes (13–15). Although 5-year survival
rates for breast cancer patients following RT are ∼80%, 30%
will subsequently develop local recurrence and/or metastasis.
Unfortunately, the vast majority of these patients have a
poor prognosis and die within 5-years of disease progression
(16). Cancer cells that possess intrinsic radioresistance, or
develop acquired resistance during RT, can repopulate the
tumor site after treatment. This can lead to treatment failures
with the development of tumor recurrence and/or metastatic
disease. Multiple factors are associated with the ability of
cancer cells to develop acquired radioresistance, including
signaling pathway dysregulation (e.g., EGFR/PI3K/AKT/mTOR),
activation of DNA damage repair mechanisms, the existence
of cancer stem cells, alterations in cancer metabolism and
epithelial-to-mesenchymal transition (EMT). Hypoxic tumor
microenvironments can also drive cancer cells to adopt an
aggressive, treatment resistant phenotype (17). In order to
develop treatment strategies to overcome/target the clinical issue
of radioresistance, we require a detailed understanding of the
mechanisms underlying acquired radioresistance.

In HBC, accurate disease staging is a mandatory requirement
before beginning definitive treatment; classification systems
that provide both predictive and prognostic information are
commonly used to inform patient treatment (18). Histological
grading with assessment of human epidermal growth factor

2 (HER2), estrogen receptor (ER), and progesterone receptor
(PR) status provides an indication of the drivers of the disease
and influences endocrine and/or targeted therapy use (19, 20).
HBC can also be classified into intrinsic molecular subtypes that
can predict treatment responses, overall survival and disease-
free survival (21–24). These subtypes include: normal breast-
like, luminal A, luminal B, HER2+, basal and “claudin-low”
(21, 22, 24, 25). CMT can be solely epithelial (simple carcinoma
or adenoma) or mesenchymal (fibrosarcoma, fibroadenoma,
sarcoma, or osteosarcoma) in origin; however, a combination
of mesenchymal and epithelial (carcinosarcoma or benign
mixed tumors) or myoepithelial and epithelial tissues (complex
adenoma or complex carcinoma) can also occur (26). Canine
inflammatory mammary carcinoma is a rare CMT subtype
that carries a very poor prognosis (27, 28). In contrast to
human medicine, the diagnosis of CMT relies mainly on this
histological grading system without undergoing specific receptor
status evaluation or molecular subtype classification. The lack of
integration of these diagnostic tests into the treatment decision-
making process is largely because surgery alone is the main
treatment option for dogs.

The effects of estrogen on CMT development have been
previously established from a study that assessed the incidence
of CMT in spayed and intact bitches. This study showed
that only 0.5% of dogs spayed prior to their first season
developed mammary tumors. However, levels rose to 8% and
26% when bitches were neutered following their first or second
seasons, respectively. Additionally, no preventative effect was
observed on the risk of CMT development when bitches were
spayed following their second season (29). Although estrogen is
associated with CMT development, the utilization of endocrine
therapies, such as the selective ERmodulator tamoxifen, has been
reported in the literature only a limited number of times (30, 31).
Conflicting results produced from these studies, combined with
severe side effects associated with the use of anti-oestrogens in
dogs (vulvar oedema, vaginal discharge, pyometra, and retinitis),
have restricted their use in the treatment of CMT (31, 32). RT
is infrequently employed in CMT treatment but could be used
to improve regional disease control when cancer-free margins
cannot be obtained at surgery, or as a palliative therapy for
inflammatory mammary carcinomas or non-resectable tumors.
Additional studies to elucidate the future role of RT in CMT
treatment regimens are needed due to the impact it has in the
management of HBC patients (33).

Compared to chemoresistance, there is an inadequate
understanding of the mechanisms underlying radioresistance;
this partly results from a lack of model systems for both
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human and veterinary applications. To begin to address
this issue we have recently developed and characterized 3
novel HBC radioresistant (RR) cell lines (34). These included
hormone-dependent ER+/PR+/HER2− (MCF-7 and ZR-751)
and hormone-independent ER−/PR−/HER2− (MDA-MB-231)
cell lines that represented different molecular HBC subtypes.
In this new study we now go on to develop a novel CMT
radioresistant cell line (REM-134), investigate the mechanisms of
CMT radioresistance and perform a comparative analysis with
our HBC RR cell line models. Although multiple CMT cell lines
have previously been generated (35–38), the REM-134 cell line
was the first to be developed, derived from a canine mammary
carcinoma (39), a commonly occurring disease subtype with a
poor prognosis. Even though it is commonly used in research,
we chose to use the REM-134 cell line as it has yet to be
fully characterized, especially in terms of its hormone receptor
status. Its use in this study would therefore provide valuable
information. Through genotypic, phenotypic, and functional
analysis of our developed RR cell lines, we provide evidence
that the cellular processes that occur with the development of
acquired radioresistance are similar between human and canine
cell lines; this suggests that not only is our canine model
appropriate to study both canine and human radioresistant
mammary cancers, but that treatment strategies used in human
medicine may also be applicable to veterinary patients. To our
knowledge, our study is the first to generate a CMT radioresistant
model and provide a comparative analysis of the mechanisms
of acquired radioresistance between human and canine breast
cancer cell lines. We are also the first to report the use of canine
multicellular tumor spheroids (MTS) originating from RR cells
in immunohistochemical analysis and functional assays.

MATERIALS AND METHODS

Cell Culture
Unless otherwise stated, reagents used for cell culture were
acquired from Gibco Thermo Fisher Scientific (Paisley, UK).
The HBC cell lines MCF-7, ZR-751 and MDA-MB-231 were
cultured using Dulbecco’s modified Eagle’s medium (DMEM)
with 10% fetal calf serum, 50U ml−1 penicillin and 50mg
ml−1 streptomycin. The CMT cell line REM-134 was cultured
in DMEM (high glucose) with the same additions. All cells
were incubated at 37◦C in a humidified atmosphere with 5%
CO2. The HBC cell lines were obtained from the American
Type Culture Collection (LGC Standards, Teddington, UK); the
REM-134 cell line was a kind gift from Professor R.W. Else
(College of Veterinary Medicine, University of Edinburgh, UK).
All cell lines were authenticated at Health England (Porton
Down, Salisbury, UK) by short tandem repeat (STR) profiling.
All experiments were performed using cell lines maintained at
low passage numbers with new cells acquired from frozen stocks
after 10 passages.

Irradiation of Cells and Development of
Radioresistant Cell Lines
A Faxitron cabinet X-ray system 43855D (Faxitron X-ray
Corporation, IL, USA) was used to irradiate cells. Radioresistant

cells were established from parental cell lines through exposure
to weekly doses of radiation. Beginning with an initial dose
of 2Gy, cells were irradiated weekly with incremental doses of
0.5Gy for 12-weeks. After this development period cells were
maintained with additional doses of 5Gy given every week. Cells
were routinely passaged 24 h after each radiation dose.

Sulforhodamine B Proliferation (SRB)
Assay
Cells were seeded into 96 well plates (500 cells/well). After 24 h
of incubation, cells were irradiated and then fixed up to 120 h
post-treatment by adding 50 µl 25% trichloracetic acid (Sigma-
Aldrich, UK) at 4◦C for 1 h. Wells were washed in dH2O and
dried. Fifty microliter SRB dye [0.4% SRB dissolved in 1% glacial
acetic acid (VWR International)] was added to the wells and the
cells were incubated for 30min. The cells were then washed 4
times in 1% glacial acetic acid and incubated for 60min after
the addition of 150 µl 10mM Tris-NaOH buffer (pH 10.5). A
Biohit BP800 spectrophotometer (Biohit Ltd, UK) and Wallac
1,420 Manager program (PerkinElmer, UK) were used to analyze
optical density at 540 nm.

Colony Formation Assay
Cells were irradiated with varying doses 24 h after seeding into
75mm plates (1,000 cells/plate). 1,9-dimethyl-methylene blue
zinc chloride double salt (Sigma-Aldrich, UK) was used to fix
and stain the cells between 10 and 14 days after seeding, when
colonies consisting of at least 50 cells/colony had formed in the
untreated control group. The plating efficiencies and survival
fractions for treatment and control colony formation (CF) groups
were calculated (40).

Scratch (Migratory) Assays
Cells were seeded into 6 well plates at densities that led to
100% confluence after 24 h. Scratch assays were carried out as
previously described (41) following replacement of the media
routinely used for cell culture with 0.1% serum-supplemented
DMEM. Phase contrast images were taken (Axiovert DS100, x5
objective) up to 48 h post-scratch. The area lacking migrating
cells, expressed as a % of the initial scratched area, was calculated
at each time point using FIJI software.

Formation of Multicellular Tumor Spheroids
A single cell suspension of ∼15,000,000 cells was placed into
a spinner flask (Cellcontrol Spinner Flask, Integra, Switzerland)
containing 100ml of standard DMEM. The flask was placed onto
a magnetic stirrer platform (Cellspin, Integra, Switzerland) with
MTS forming over a period of 7 days under routine incubation
conditions. Hypoxyprobe-1 (Hypoxyprobe, USA) was used to
detect hypoxic areas within MTS. MTS were incubated with
100µM hypoxyprobe-1 for 1 h before fixation.

3D Invasion Assay Using Multicellular
Tumor Spheroids
MTS were transferred into the wells of a 24-well plate with
500 µl of collagen mix (0.22M NaOH (Sigma-Aldrich, UK),
fetal calf serum, 10x DMEM (Sigma-Aldrich, UK), cell matrix
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type 1-A (Alphalabs) and ice cold 0.1% filtered acetic acid at
concentrations of 10, 10, 10, 25, and 45% respectively). The plates
were incubated at 37◦C for 1 h to allow collagen polymerization,
after which 500 µl of routine DMEM was added. Phase-contrast
images were taken at 24 h time-points up to 96 h (Axiovert
DS100, x5 objective). Invasion was measured at each time point
with a FIJI macro developed by Matthew Pearson (IGMM
Advanced Imaging Resource, University of Edinburgh), with
invasion expressed as a % of the initial MTS area.

Protein Isolation and Detection
Whole cell lysates were prepared as described previously (42).
Equal protein amounts were separated by electrophoresis using
sodium dodecyl sulfate (SDS) polyacrylamide gels. Proteins
were transferred to Immobilon-P transfer membranes (Millipore,
UK). Membranes were blocked using Odyssey Blocking Buffer
(LI-COR Biosciences, UK) diluted 1:1 with PBS for 1 h.
Membranes were then incubated overnight at 4◦C with the
appropriate primary antibodies (Table 1). IRDye 680LT (Li-Cor
926-68021, 1:10,000) and IRDye 800CW (Li-Cor, 926-32210,
1:10,000) secondary antibodies were added, and signals detected
using a Li-Cor Odyssey Imager.

Immunohistochemistry
MTS were fixed in 4% formaldehyde (Genta Medical, UK)
for 24 h. After fixation, the MTS were placed in 2% agarose
and processed using the Thermo Scientific Excelsior AS Tissue
Processor (Thermo Scientific, UK) and embedded in paraffin.
Blocks containing MTS were cut with a Leica RM2235 rotary
microtome (Leica Microsystems Ltd, UK); 4µm sections were
placed on SuperFrost Plus glass slides (Thermo Scientific, UK)
and dried for 4 h at 53◦C.

MTS were deparaffinized and rehydrated before undergoing
antigen retrieval (Table 1). Incubation with 3% H2O2 solution
(Dako, UK) was performed for 10min to block endogenous
peroxidase activity. Total Protein Block (Dako, UK) was used
for 10min to block non-specific antibody staining with the MTS
subsequently incubated with primary antibodies for 1 h (Table 1).
Envision labeled polymer (Dako, UK) was added for 30min,
after which DAB and substrate buffer (1:50) (Dako, UK) were
added to visualize protein staining. Haematoxylin was used to
counterstain theMTS, which were then dehydrated andmounted
with coverslips using DXP mountant (Sigma-Aldrich, UK). A
NanoZoomer ER slide scanner (Hamamatsu Photonics, UK) was
used to scan all slides. The stained MTS were viewed using
NanoZoomer Digital Pathology software. Image analysis was
performed using QuPath version 0.1.2 (43).

RNA Extraction and Whole-Transcriptome
Gene Expression Analysis
Cells were seeded in triplicate into 75mm plates (3,000,000
cells/plate). After 24 h of incubation, pellets containing up to
10,000,000 cells were collected by trypsinisation, snap-frozen
on dry ice and stored at −70◦C for RNA extraction. The
RNeasy Mini Kit using QIAshredder technology (UK Qiagen,
Ltd) was used to extract RNA from the cells. Total RNA was
purified from animal cells using spin technology, as per the
manufacturer’s protocol. The NanoDropTM Spectrophotometer

ND1000 (Thermo Fischer Scientific) was used to quantify the
RNA and assess for contaminants. RNA quality was evaluated
by producing an RNA integrity number (RIN) for each sample
(Agilent Bioanalyzer); each of the samples had RIN values
above 9.7 (Supplementary Table 1). Lexogen QuantSeq 3’ FWD
sequencing technology was used to produce full genome
expression read-counts on an Illumina flow cell; this was
scanned with the Illumina HiScanSQ system (Edinburgh Clinical
Research Facility’s Genetic Core, University of Edinburgh).
Next generation sequencing reads were generated toward the
poly(A) tail with read 1 directly reflecting the mRNA sequence.
The BlueBee high-performance next generation sequencing
analysis software was used to pre-process the FASTQ files; this
implements poly(A) tail trimming and alignment to the Genome
Reference Consortium Human genome build 38 reference
genome (for human cell lines) and the Canis lupus familiaris
reference genome (for canine cell lines) using the Spliced
Transcripts Alignment to a Reference (STAR) algorithm (44).

Data were filtered, removing all genes with <5 reads
per sample in at least 90% of samples. Cell lines were
mapped to species-specific Ensembl gene identifiers and cross-
species matches were determined using Ensembl BioMART
(45). In total 17,243 genes were mapped to human Ensembl
gene identifiers and 13,703 were mapped to canine Ensembl
gene identifiers. Following cross-species mapping, 9,692 genes
were identified as common to both datasets. No significant
difference in variance of expression was observed across all
genes between both datasets (Supplementary Figure 1). Before
the analysis took place, data were log2 transformed and
quantile normalized in R (Bioconductor) software and packages
(46). Heatmap and cluster analysis were implemented with
the TM4 MeV (multiple experiment viewer) software (47).
Heatmap clustering was performed using Pearson correlation
with average linkage. Correction for batch effects was performed
to integrate gene expression data produced in this study with
public datasets; this was achieved using R with the ComBat
package, as described previously (48, 49). Gene enrichment
analysis was performed using the DAVID Functional Annotation
Bioinformatics Microarray Analysis tool (50). Hierarchical
clustering of both the parental and RR cell lines was accomplished
using a published list of genes; the expression profile of the
genes within this list denotes the breast cancer intrinsic subtypes
(luminal A, luminal B, normal-like, basal, and HER2) (24). The
genefu R package (51) was used to assign samples to the differing
intrinsic subtypes. This package applies a Single Sample Predictor
(SSP) algorithm which is a nearest-centroid classifier. Centroids
signifying the molecular subtypes of breast cancer were identified
through hierarchical clustering using the same intrinsic gene list
that was used for cluster analysis within this study. All datasets
generated and/or analyzed within this study are available in
the NCBI’s Gene Expression Omnibus (52) and are accessible
through GEO Series accession number GSE149988.

Statistical Analysis
Two-way ANOVA with Holm-Šídák multiple comparisons test
was employed in SRB, CF, and migration/invasion assays.
Unpaired (two tailed) t-test was employed in the IHC analysis.
P < 0.05 were deemed statistically significant. Data are shown as
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TABLE 1 | Primary antibodies used for western blotting (WB), immunocytochemistry (ICC), and immunohistochemistry (IHC).

Primary antibody target antigen Antibody details Dilutions Antigen retrieval

Anti-ERα Mouse mAb; Dako; M7047 1:50 (ICC, IHC) Sodium citrate

Anti-HER2 Rabbit mAb; Cell signaling technology; 2,242 1:50 (ICC, IHC) Sodium citrate

Anti-PR Mouse mAb; Dako; M3569 1:150 (ICC, IHC) EDTA

Anti-AKT Mouse mAb; Cell signaling technology; 2,920 1:1000 (WB) N/A

Anti-Phospho AKT Rabbit pAb; Cell signaling technology; 9,271 1:1000 (WB) N/A

Anti-ERK Rabbit pAb; Cell signaling Technology; 9,102 1:1000 (WB) N/A

Anti-Phospho ERK Mouse mAb; Cell signaling technology; 9,106 1:1000 (WB) N/A

Anti-ki67 Rabbit mAb; Abcam; 92,742 1:150 (ICC, IHC) Sodium citrate

Anti-hypoxyprobe-1 Mouse mAb; Hypoxyprobe; HP1-100Kit 1:2000 (IHC) Sodium citrate

Anti-E-cadherin Mouse mAb; BD transduction; 610,182 1:50 (ICC, IHC) Sodium citrate

Anti-N-cadherin Mouse mAb; BD transduction; 610,921 1:150 (ICC, IHC) Sodium citrate

Anti-vimentin Mouse mAb; Abcam; 8,069 1:50 (ICC, IHC) Sodium citrate

Anti-SNAIL Rabbit pAb; Abcam; 128,530 1:250 (ICC, IHC) Sodium citrate

Anti-WNT5a Mouse mAb; Thermo Scientific; MA5-15,502 1:500 (IHC) Sodium citrate

Anti-Frizzled Mouse pAb; R&D Systems; AF1120 1:50 (IHC) Sodium citrate

mean± SEM. Statistical analysis was performed and graphs were
generated with GraphPad Prism 8.

RESULTS

Development and Confirmation of
Acquired Radioresistance in Canine and
Human Breast Cancer Cell Lines
Parental cell line intrinsic radiosensitivity and confirmation
of acquired radioresistance in the developed cell lines were
investigated through CF and SRB assays. Using the survival
fraction of cells that were given a 2Gy dose of radiation (SF2, a
recognized experimental measure of radiosensitivity), a range of
intrinsic radiosensitivities was found to be present in the parental
cell lines, with the REM-134 cell line showing significantly
greater radioresistance compared with the human cell lines.
Within the parental human cell lines SF2 was not associated with
molecular subtype. The ability of RR cells to form colonies was
significantly higher than that of parental cells when subjected to
a single radiation dose of up to 2Gy, confirming the acquisition
of radioresistance (Figure 1A). Significantly less inhibition of
proliferation was also observed in RR cells in comparison to their
parental cells when exposed to radiation doses of up to 10Gy
(Figure 1B). REM-134 RR and REM-134 RR cells that had not
been exposed to radiation for 6 months (REM-134 rr) showed
similar levels of radioresistance; this suggested that the changes
involved in the acquisition of the RR phenotype are maintained
over a long period of time (Figure 1C).

Gene Expression Analysis Identifies
Differences Between the Canine Parental
and Radioresistant Cell Lines
Using an unsupervised analysis, a large number of genes were
found to be inherently differentially expressed (using DESeq2—

R, Bioconductor package) between the REM-134 and REM-134
RR cell lines (Figure 2). Higher expression of genes enriched for
EMT, cell adhesion/motility, and response to hypoxia (cluster 1),
with lower expression of genes involved in steroid biosynthesis,
HIPPO signaling, focal adhesion, negative regulators of cell
motility and proliferation (cluster 2) were evident in the REM-
134 RR cell line compared to its parental cell line. Cluster analysis
using these differentially expressed genes was performed using
all human and canine parental and RR cell lines. The relative
expression of key differentially expressed genes between the
REM-134 and REM-134 RR cells associated with EMT (Cluster
1: BMP2, WNT5A, and SNAI1) and HIPPO signaling (Cluster2:
WNT6, BMP4, FZD4, SNAI2) across all cell lines are shown in
Supplementary Figure 2.

Overall, results showed that the MDA-MB-231, MDA-MB-
231 RR, MCF-7, and ZR-751 cell lines clustered together with
similar expression patterns across all genes. The MCF-7 RR,
ZR-751 RR, REM-134, and REM-134 RR cell lines formed
a separate cluster. Interestingly, the MCF-7 RR and ZR-751
RR cells were found to have higher expression of cluster 1
genes compared to their parental lines, undergoing similar
radiation-induced changes in expression to the REM-134 cells,
with little change in expression of cluster 2 genes. These data
suggest a common link between the expression of genes in
cluster 1 and the development of radioresistance in the ER+

HBC and REM-134 cell lines. Cluster 2 expression appears
to be specific to the REM-134 cell line; the expression of
these genes does not appear to change in the MDA-MB-231
cells, suggesting that a different mechanism may underlie the
development of radioresistance in this triple-negative model
(Figure 2 and Supplementary Table 2). Analysis of these global
gene changes provided the basis for further investigation
of the key enriched pathways associated with the response
to radiation.
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FIGURE 1 | Confirmation of radioresistance using colony formation and SRB assays. (A) Colony formation assays comparing MCF-7, ZR-751, MDA-MB-231, and
REM-134 cell lines with their derived RR cell lines at 10–14 days post-radiation treatment. (B) SRB assays comparing MCF-7, ZR-751, MDA-MB-231, and REM-134
cell lines with their derived RR cell lines at 120 h post-radiation treatment. (C) SRB assays comparing REM-134, REM-134 RR, and REM-134 rr cell lines at 120 h
post-radiation treatment. The REM-134 rr is a radioresistant cell line that had not been radiated for 6 months (24 passages) before the experiment (2-way ANOVA with
Holm-Šídák multiple comparisons test; data expressed as mean ± SEM, n = 3, ****p ≤ 0.0001; ***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05).

FIGURE 2 | Global gene expression changes between the canine and human parental and RR cell lines. Heatmap showing log2 mean-centered gene expression
profiles between parental and RR cell lines in respect of differentially expressed genes (false discovery rate = 0.01). Differences between the REM-134 and REM-134
RR cell lines are shown in the heatmap on the left, and the expression of the same differentially expressed genes across all human and canine parental and RR cells
are shown in the heatmap on the right. Heatmap clustering was carried out using Pearson correlation with average linkage; red = higher expression, black = no
change, green = lower expression. The gene list and the order in which they appear in the heatmap are shown in Supplementary Table 2.

Canine Radioresistant Cells Have Lower
Expression of Cell Cycle-Associated
Genes and Decreased Proliferation
2D and 3D cell models were used to assess the proliferative
capabilities of parental and RR cells. MTS were the 3D model
system used; IHC showed the presence of hypoxic areas
both within and surrounding a central necrotic core, with a
proliferating layer of cells around the periphery. These are
recognized characteristics of MTS; therefore, their presence
validated the use of the REM-134 MTS within this study

(Figure 3). SRB assays were used to evaluate proliferation rates
of cells in 2D cultures (Figure 4A). A range of proliferation rates
were found to be present in the parental cell lines, with the REM-
134 cell line showing a significantly greater proliferation rate
compared with the human cell lines. Comparisons between the
parental and RR cell lines identified lower rates of proliferation in
MCF-7 RR, MDA-MB-231 RR, and REM-134 RR cells compared
to their respective parental cell lines. The opposite was seen
for the ZR-751 cell line, where the ZR-751 RR showed higher
proliferation rates compared to the parental cell line. Gene
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expression data showed that both MCF-7 RR and ZR-75-1
RR cell lines exhibited lower expression levels of genes related
to cell cycle regulation and G1/S-phase transition, including
MCM4, MCM6, and cyclin D1 compared to their parental
lines (Figure 4B and Supplementary Table 3). Expression levels
of these genes were similar across the parental and RR
MDA-MB-231 cell lines, both of which clustered together. In
accordance with the SRB results, overall expression levels of these
proliferation genes were higher in the REM-134 parental cells
compared to all others. Lower expression levels of some genes
were observed in the RR compared to the parental REM-134
cells, but overall expression remained higher than in the ER+ RR
cell lines. Subsequent investigation of proliferation was carried
out through IHC; MTS were stained for the proliferation marker
Ki67 (Figure 4C) (both parental and RR MDA-MB-231 cells fail
to generate MTS that withstood IHC processing). Quantitative
IHC analysis identified that there was a lower percentage of
Ki67-positive cells in the MCF-7 RR, ZR-751 RR, and REM-134
RR MTS compared with MTS formed from their parental cells.
Overall, these results suggested that the RR cells have lower basal
proliferation rates compared to their parental cells.

Canine Radioresistant Cells Have
Increased Invasion and Migration Potential
Morphological changes that occurred with the acquisition of
radioresistance were identified through H&E staining of cells
grown in 2D cultures. The human parental ER+ cell lines (MCF-7
and ZR-751) exhibited an epithelial-like morphology, comprising
of tightly packed cells that form cobblestone-like monolayers,
typical of luminal subtypes. However, their RR derivatives
showed mesenchymal-type characteristics, with cells gaining a
spindle-shaped morphology that contacted neighboring cells
through focal points rather than the entire cellular circumference.
The parental human ER− (MDA-MB-231) and the canine (REM-
134) cell lines exhibited a mesenchymal-like phenotype, typical
of basal and HER2-overexpressing subtypes; morphological
changes in their RR derivatives were not as obvious as those
observed in the RR cell lines derived from ER+ cells (Figure 5A).

These observed changes in cell morphology provided evidence
that the cells were undergoing EMT. We therefore assessed the
protein expression levels of EMT markers through IHC. MTS
formed from MCF-7 RR and ZR-751 RR cells demonstrated
higher expression levels of N-cadherin, vimentin, and SNAIL,
in addition to a partial downregulation of E-cadherin. The
MDA-MB-231 cell line exhibited high levels of vimentin and
SNAIL along with low E-cadherin and N-cadherin expression;
no differences between the parental and RR MDA-MB-231
cell lines were identified (Supplementary Figure 3). Although
no differences between the REM-134 and REM-134 RR were
identified, the pattern of protein expression was similar to that
seen in the MCF-7 RR and ZR-751 RR cell lines, with all cell lines
showing expression of E-cadherin and vimentin (Figure 5B and
Supplementary Figure 3). Gene expression analysis looking at
the expression patterns for genes in a published EMT signature
produced similar results (53). This study produced a pan-
cancer EMT-associated gene expression signature by merging

bioinformatic expression data from both The Cancer Cell Line
Encyclopedia and The Cancer Genome Atlas (the lists of genes
used in our study are provided in Supplementary Table 4). In
our analysis, bothMCF-7 and ZR-751 parental cell lines exhibited
expression patterns consistent with an epithelial genotype,
while the parental and RR MDA-MB-231 cells displayed higher
expression of mesenchymal genes. The MCF-7 RR, ZR-751 RR,
REM-134, and REM-134 RR cell lines all demonstrated a diverse
expression pattern, with comparatively higher expression levels
of both mesenchymal and epithelial genes, suggestive of a hybrid
or transitional phenotype (Figure 5C). The expression levels of
key EMT genes (BMP2, WNT5A, and SNAI1) are shown across
all cell lines in Supplementary Figure 2. Expression levels of
these key genes were found to be increased in the ER+ HBC
RR and REM-134 RR cell lines compared to their parental lines.
A corresponding decrease in expression was observed in key
members of the HIPPO tumor suppressor pathway (WNT6,
BMP4, FZD4, and SNAI2) in ER+ HBC RR and REM-134 RR
cell lines compared to their parental lines.

Following the identification of cellular changes suggestive of
EMT, we investigated the invasive and migratory characteristics
of the cell lines. 2D migration assay results demonstrated that the
RR cell lines all had significantly increased migratory ability in
comparison to their parental cells. Similarly, using 3D invasion
assays, the MCF-7 RR, ZR-751 RR, and REM-134 RR cells had
increased invasive potential compared to their parental cells
(Figures 6A,B).

Canine Radioresistant Cell Lines Exhibit
Enhanced WNT Signaling
WNT signaling was studied due to its apparent role in
radioresistance and EMT (54); this pathway was investigated
using WNT signaling pathway gene expression signatures
and WNT signaling downstream targets, both acquired
from the KEGG database (55) (genes lists are provided in
Supplementary Table 5). The ZR-751 and MCF-7 parental cells
were found to have lower expression of WNT pathway and
target genes compared to the other cell lines. The MCF-7 RR,
ZR-751 RR, REM-134, and REM-134 RR cell lines clustered
together with a similar pattern of gene expression consistent
with WNT target gene activation. Interestingly, the pattern of
expression of WNT signaling pathway members was found
to be different between the ER+ HCB RR cell lines and both
the REM-134 parental and RR lines, potentially suggesting
that different WNT signaling pathways in these models may
be responsible for the downstream WNT target activation.
When the REM-134 and REM-134 RR cell lines were analyzed
separately for key differentially expressed (false discovery rate =
0.01) members of the WNT pathway represented in the dataset,
clear differences were observed, with the REM-134 RR cell line
showing overall higher expression of frizzled family members
1/3/6 and lower expression of frizzled members 2/4, in addition
to around 4-fold higher expression of WNT5a (Figure 7A).
These results were further investigated using IHC in REM-134
and REM-134 RR MTS. Results showed significantly increased
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FIGURE 3 | REM-134 MTS show hypoxic and proliferative gradients. The hypoxyprobe-1 compound was used to detect hypoxic regions within REM-134 MTS, while
ki67 was used identify proliferating cells.

FIGURE 4 | Radioresistant cell lines have modified basal proliferation rates relative to their parental cells. (A) SRB assays showing differences in proliferation rates
between MCF-7, ZR-751, MDA-MB-231, and REM-134 cell lines and their derived RR cell lines grown in 2D cultures (2-way ANOVA with Holm-Šídák multiple
comparisons test; data expressed as mean ± SEM, n = 3, ****p ≤ 0.0001; ***p ≤ 0.001). (B) Heatmap showing log2 mean-centered gene expression profiles of
proliferation genes in parental and RR cell lines showing key G1/S phase regulators taken from the KEGG database cell cycle pathway (55); red = higher expression,
black = no change, green = lower expression. Heatmap clustering was carried out using Pearson correlation with average linkage. The gene list is shown in
Supplementary Table 3. (Ci) IHC of MTS stained for Ki67 using MCF-7, ZR-751 [images reproduced from (34)], and REM-134 parental and RR cell lines. (Cii)
Quantitative analysis of the % of cells with Ki67 staining (unpaired, two tailed t-test; data expressed as mean ± SEM, n = 3, ****p ≤ 0.0001).

expression of WNT5a and pan-frizzled in the REM-134 RR
MTS compared to the parental MTS (Figure 7B). Increased
WNT5a expression was also identified in MCF-7 RR and ZR-751

RR MTS in comparison to their respective parental cell lines
(Supplementary Figure 4).

Canine Radioresistant Cell Lines Maintain
Their Original Intrinsic Breast Cancer
Subtype
Receptor status in the REM-134 and REM-134 RR cell lines was
investigated through IHC using MTS. No change in receptor
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FIGURE 5 | REM-134 and REM-134 RR exhibit signs of EMT, with gene expression profiles similar to the human RR cell lines derived from ER+ cells lines. (A) H&E
staining of cells grown in 2D cultures detailing the morphological differences between parental and RR cell lines. (B) IHC staining of EMT markers (vimentin,
E-cadherin, and N-cadherin) in REM-134 and REM-134 RR MTS. (C) Heatmap showing log2 mean-centered gene expression profiles in respect of a published
cancer cell EMT-signature (53); red = higher expression, black = no change, green = lower expression. The gene list and the order in which they appear in the
heatmap are shown in Supplementary Table 4.

expression was identified with the acquisition of radioresistance,
with both the REM-134 and REM-134 RR cell lines classified
as ER−/PR−/HER2+ (Figure 8A and Table 2). Although no
change was identified in receptor expression between the
parental and RR MDA-MB-231 cell lines (both classified as
ER−/PR−/HER2−), a difference was seen in the MCF-7 and
ZR-751 cell lines. Both MCF-7 and ZR-751 cell lines were
classified as ER+/PR+/HER2−; however, their RR derivatives
lost ER and PR expression, becoming ER−/PR−/HER2−

(Supplementary Figure 5). Further investigation of cell line
classification was performed through integration of the gene
expression data from this study with a public gene expression
dataset (GSE50811) of 51 breast cancer cell lines. Both the
REM-134 and REM-134 RR cell lines clustered tightly and
were classified, by correlation to centroids, as belonging
to the HER2-overexpressing subtype. They also clustered
near the MCF-7 RR and ZR-751 RR cell lines, which
were classified as basal/HER2-overexpressing and as normal-
like/HER2-overexpressing, respectively. The classification of the
MCF-7 RR and ZR-751 RR was different to their parental lines;
as anticipated, both of the parental cell lines were classified as
luminal A. Predictably, the parental and RR MDA-MB-231 cell
lines clustered near each other and were classified as the basal
breast cancer subtype (Figure 8B and Table 2).

ER signaling was investigated using a published ER signaling
gene expression signature (56). As expected, the human ER+

parental cell lines (MCF-7 and ZR-751) were characterized by

high expression of all of these genes, while in comparison their
RR derivatives, together with the REM-134 and REM-134 RR cell
lines, were found overall to have lower expression levels of these
genes (Figure 8C).

Canine Parental and Radioresistant Cell
Lines Show PI3K and MAPK Activity
After we identified that the canine cell lines expressed HER2,
signal transduction pathways downstream of the HER/ERBB
tyrosine-kinase receptor family were further evaluated. MAPK
pathway activity was assessed using a gene expression signature
that had previously been published (57). Using a combination
of FOXO-regulated genes (which, as downstream targets of
inhibition by PI3K, have the opposite pattern of expression to
PI3K activity) (58) and genes obtained from the KEGG pathway
database (55), PI3K activity was assessed. Results from supervised
gene expression analysis were consistent with PI3K and MAPK
signaling activity in the REM-134, REM-134 RR, MCF-7 RR and
ZR-751 RR cell lines, whereas the MCF-7 and ZR-751 cell lines
exhibited inactive PI3K and MAPK activity. Inactive PI3K and
activeMAPK signaling were also observed in the parental and RR
MDA-MB-231 cell lines (Figures 9A,B). Western blot analysis of
untreated lysates from all cell lines confirmed the presence of
phosphorylated ERK1/2 (MAPK activation) and phosphorylated
AKT (PI3K activation) (Supplementary Figure 6).
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FIGURE 6 | Radioresistant cell lines have increased migration and invasion potential. (A) Images of 2D migration and 3D MTS invasion assays comparing the parental
and the derived RR cell lines [MDA-MB-231 image reproduced from (34)]. (B) Graphs exhibiting the migration (Bi) and invasion assay (Bii) results. For the migration
assays the relative migratory distance was calculated at each time point up to 48 h and expressed as a % area devoid of cells based on the initial scratched area at
day 0. Invasion was assessed up to 96 h post-seeding. Area of MTS at each time point was calculated and expressed as a % of initial MTS area at day 0 (2-way
ANOVA with Holm-Šídák multiple comparisons test; data expressed as mean ± SEM, n = 3, ****p ≤ 0.0001; ***p ≤ 0.001; *p ≤ 0.05).

DISCUSSION

Radiotherapy is a frequently used curative and palliative
treatment for a wide range of human and canine tumors.
Unfortunately, intrinsic and acquired radioresistance can
significantly limit its efficacy and ultimately leads to local
recurrence, disease progression or metastasis. In this study, we
developed a canine mammary cancer radioresistant cell line and
investigated the cellular mechanisms related to the development
of acquired radioresistance. We subsequently performed a
comparative analysis of this resistant model with our previously
developed HBC radioresistant cell lines, characterizing their
inherent differences through genetic, molecular and cell
biology approaches.

Intrinsic radiosensitivities of the panel of cell lines was first
investigated through CF assays. The REM-134 cell line showed
significantly greater radioresistance than that of the human cell
lines. Intrinsic radioresistance of the 3 human cell lines was not
related to subtype, with the ER+ and ER− cell lines showing

a similar response to doses of radiation up to 2Gy. Clinical
research studies have identified that HBC subtype is associated
with tumor radiosensitivity. One such study investigated invasive
breast cancer local recurrence rates following breast-conserving
surgery with subsequent adjuvant RT. Their results identified
recurrence rates of 0.8% for luminal A, 1.5% for luminal B, 7.1%
for basal and 8.4% for HER2-overexpressing HBC subtypes (59).
Other studies indicate that triple negative breast cancers and
HER2-overexpressing breast cancers that are treated with post-
mastectomy RT have increased risks of locoregional recurrence
and metastasis, along with significantly reduced overall survival
(59–61). However, our results are in accordance with an in
vitro cell line study which showed that there was no association
between HBC subtype and their intrinsic radiosensitivity (62).

Following the 12-week radiation exposure protocol,
radioresistance development was verified using CF and SRB
proliferation assays. All developed RR cell lines showed greater
resistance to a single fractionated radiation dose compared
to their parental cells. These results validated their utility

Frontiers in Veterinary Science | www.frontiersin.org 10 July 2020 | Volume 7 | Article 439

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Gray et al. Canine Radioresistant Mammary Cancer Model

FIGURE 7 | WNT signaling is increased in MCF-7 RR, ZR-751 RR, and REM-134 RR cell lines. (A) Heatmap showing log2 mean-centered gene expression profiles
between parental and RR cell lines in respect of the WNT signaling pathway (left heatmap) and WNT target genes (right heatmap). WNT5a and represented FRIZZLED
genes are shown separately for REM-134 and REM-134 RR cell lines (center heatmap). Genes taken from the KEGG pathway database (55); red = higher expression,
black = no change, green = lower expression. The gene lists are shown in Supplementary Table 5. Heatmap clustering was carried out using Pearson correlation
with average linkage. (B) IHC of pan-Frizzled and WNT5a expression in REM-134 and REM-134 RR MTS with quantitative analysis of the % of positively stained cells
(unpaired, two tailed t-test; data expressed as mean ± SEM, n = 3, ****p ≤ 0.0001).

as an in vitro model system to characterize their resistant
phenotype and examine the mechanisms associated with the
development of acquired radioresistance. Our protocol was able
to generate RR models that exhibited significant differences in
CF ability compared to parental cells when exposed to 2Gy, a
standard treatment dose routinely used in HBC patients. This
is an important consideration for any resistance development
protocol, as differences seen between radiosensitive and
radioresistant cells at doses comparable to those used in the
clinic will produce more translational data. Our development
protocol therefore has significant advantages over others used
in the literature, which only managed to generate HBC RR cell
lines that had significantly different CF ability compared to
their respective parental cells at considerably higher radiation
doses (8–10Gy) (63). Our protocol was also able to produce
a radioresistant phenotype that was maintained in REM-134
RR cells that had not received radiation for 6 months. This
result is similar to that observed with our previously developed
MCF-7 RR cell line (34); this indicates that the acquisition
of radioresistance in both our human and canine RR cell
line models was not transient. Our results differ from those
of other studies which were unable to generate stable HBC
radioresistant models (64). These differing results are likely due
to the use of different radioresistance development protocols
in each study and highlights the need to perform frequent CF

and/or SRB proliferation assays to verify maintenance of the
radioresistant phenotype.

Following the generation of the REM-134 RR cell line,
we evaluated the ability of both the parental and RR cells
to generate MTS for use within the study. The HBC MTS
used in this study have been previously validated for use
as 3D tumor models (34). Using the spinner flask method,
we successfully generated MTS from both canine cell lines.
This result, to our knowledge, is the first time that REM-134
MTS have been generated. MTS reproduce various aspects of
the in vivo tumor microenvironment, including low oxygen
levels, creating necrotic, peri-necrotic, and hypoxic regions.
Proliferative gradients found within cancers are also present in
MTS (65). These characteristics were present within the REM-
134MTS produced in this study. Hypoxyprobe-1, a chemical that
has been used to detect hypoxic regions in various cancer models
(66–68), was used in our MTS model. Hypoxyprobe-1 staining
showed that low oxygen regions were present predominantly in
the more central areas of MTS, both within and surrounding the
necrotic core. Proliferating cells, identified throughKi67 staining,
were largely located around the periphery.

Transcriptomic data was initially used to distinguish genes
whose expression was significantly changed between the REM-
134 and REM-134 RR cell lines following the generation of the RR
models. Enriched pathways identified from this analysis, which
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FIGURE 8 | Breast cancer receptor status, ER signaling and intrinsic breast cancer subtype in the canine and human parental and RR cell lines. (Ai) IHC of ERα,
HER2 and PR expression in REM-134 and REM-134 RR MTS. (Aii) Quantitative analysis of the % of ERα, PR and HER2 positively stained cells (unpaired, two tailed
t-test; data expressed as mean ± SEM, n = 3). (B) The data generated within this study was integrated with a public gene expression dataset (GSE50811) of 51
breast cancer cell lines. Hierarchical clustering of parental and RR cell lines was based on the Sørlie 2003 intrinsic genes (24); subgroup classification was based on
correlation to centroids and was performed using the genefu packaging in R; red = basal, dark blue = luminal A, light blue = luminal B, purple =

HER2-overexpressing, green = normal-like. (C) Heatmap showing the log2 mean-centered expression profile of a published ER signaling gene signature (56); red =

higher expression, black = no change, green = lower expression. Heatmap clustering was carried out using Pearson correlation with average linkage.

TABLE 2 | Immunohistochemical and molecular subtype classification of the
canine and human parental and RR cell lines.

Cell line Immunohistochemical

classification

Molecular classification

MCF-7 ER+/PR+/HER2− Luminal A

MCF-7 RR ER−/PR−/HER2− Basal/HER2-
overexpressing

ZR-751 ER+/PR+/HER2− Luminal A

ZR-751 RR ER−/PR−/HER2− Normal-like/HER2-
overexpressing

MDA-MB-231 ER−/PR−/HER2− Basal

MDA-MB-231 RR ER−/PR−/HER2− Basal

REM-134 ER−/PR−/HER2+ HER2-overexpressing

REM-134 RR ER−/PR−/HER2+ HER2-overexpressing

had previously been linked with radioresistance in studies using
human samples, were taken forward for further investigation;
these included proliferation, EMT andWNT signaling pathways.

Differences in proliferation between the cell lines were
investigated through SRB assays, transcriptomic and IHC
analysis. Although the SRB data showed that the ZR-751 RR
cell line had an increased rate of proliferation compared to
its parental cell line, all of the other analyses, including the
gene expression profiles and IHC for the other cell lines,
suggested that both the human and canine RR cell lines had

reduced proliferation rates. These results are in line with a
previous study which identified reduced proliferation rates in
human prostate cancer RR cell lines (69). Clinical effects of
RT are largely due to the direct and indirect DNA damage it
causes. In rapidly-dividing cells there is little time for DNA
damage to be repaired by processes such as non-homologous
end joining and homologous recombination. If a damaged cell
enters cell division with uncorrected DNA damage, then the
cell will likely die due to various radiation-induced cell death
mechanisms such as mitotic catastrophe, apoptosis, autophagy,
necrosis, or senescence. Lower proliferation rates may therefore
provide these RR cells with greater time to repair these sites of
DNA damage.

Among CMT patients, ∼50% of carcinomas will metastasize
to local lymph nodes, leading to distant metastases (lung and
bone) and death (70, 71). A similar situation occurs in HBC
patients; studies indicate that ∼7% of patients present with
metastatic tumors, while ∼20% of patients that are initially
diagnosed with local disease subsequently go on to develop
metastatic disease (72). Studies that investigate the molecular
mechanisms involved in cancer metastasis are therefore of
significant clinical importance. In our study, all our RR cell lines
showed increased migration and invasion abilities, suggestive
of a more aggressive phenotype; this phenotypic change could
indicate that RR cells have greater locally invasive and metastatic
potentials, factors which are poor prognostic indicators for
clinical patients.
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FIGURE 9 | MAPK and PI3K pathway activity in the canine and human parental and RR cell lines. (A) Heatmap showing log2 mean-centered gene expression profiles
between parental and RR cell lines in respect to a MAPK pathway activity gene signature (57). Heatmap clustering was carried out using Pearson correlation with
average linkage, red = higher expression, black = no change, green = lower expression. (B) Heatmap showing log2 mean-centered gene expression profiles
between parental and RR cell lines in respect of the PI3K pathway [associated genes taken from the PI3K KEGG pathway (upper heatmap) and FOXO-regulated
genes (lower heatmap) (55)]. Heatmap clustering was carried out using Pearson correlation with average linkage, red = higher expression, black = no change, green
= lower expression.

Using an initial unsupervised analysis, downregulation
of genes involved in HIPPO signaling was identified in
the REM-134 RR cell line. This pathway regulates cellular
proliferation and apoptosis and has multiple family members
that act as tumor suppressors (73). Activation of the HIPPO
signaling pathway has also been shown to antagonize WNT
signaling, whereas inhibition of HIPPO signaling (causing YAP
hypophosphorylation and nuclear localization) can induce EMT
(74, 75). Downregulation of HIPPO signaling may therefore be
involved in the increase in WNT signaling and EMT seen in the
REM-134 RR cell line.

Malignant cellular transformation that leads to loss of
epithelial morphology, reduced cellular contact and increased
cell migration/invasion is an important feature of EMT (76–
78) and is associated with poor prognosis (79). Significant
morphological changes were observed in the MCF-7 RR and
ZR-751 RR cell lines compared with their parental cells, with
the RR cells gaining a more mesenchymal phenotype. The
morphology of the MDA-MB-231 and REM-134 cell lines was
quite different to that of the parental ER+ cell lines, with the
former exhibiting a typical mesenchymal phenotype. Although

no significant differences were seen in their RR derivatives, their
morphology was similar to the MCF-7 RR and ZR-751 RR cell
lines. IHC and gene expression analysis were used to investigate
these results further. Firstly, using IHC to investigate established
EMT breast cancer biomarkers (80), we demonstrated that the
MCF-7 RR and ZR-751 RR cell lines exhibited downregulated
E-cadherin expression and upregulated vimentin, N-cadherin
and SNAIL expression compared to their parental cells. In
contrast to these results, the parental and RR MDA-MB-231 cell
lines exhibited low E-cadherin and high vimentin expression.
Interestingly, the REM-134 and REM-134 RR cell lines showed
a hybrid/intermediate epithelial-mesenchymal phenotype, with
E-cadherin and vimentin both being expressed. These results
were supported by identifying gene expression profiles in our cell
lines through the use of a previously published cancer cell EMT-
signature (53). Similarities were seen in the MCF-7 RR, ZR-751
RR, REM-134, and REM-134 RR cell lines, which all showed a
mixed expression pattern with high expression of mesenchymal
and epithelial genes. These results again suggested that these RR
cell lines possess a hybrid/transitional phenotype that traverses
the epithelial and mesenchymal states (77). Previous studies have
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suggested that a hybrid EMT state is linked with the presence of
stem-like properties, increased cellular plasticity and enhanced
migratory/metastatic abilities. It is thought that this state may
represent a cellular survival response to stressful environments
(81, 82). A multitude of signaling cascades can stimulate EMT
in non-cancerous and cancerous cells, including various receptor
tyrosine kinase pathways, Wnt-β-catenin and Notch signaling
(83, 84). RT can also activate EMT through increasing the
expression of TGFβ (85, 86). In our cell lines, WNT signaling was
activated in the MCF-7 RR, ZR-751 RR, REM-134, and REM-
134 RR cell lines, suggestive of a potential mechanism through
which the cells underwent EMT. These results also showed that
the acquisition of radioresistance in the human ER+ cell lines led
to the development of a phenotype similar to that of the canine
cell lines.

Previous research studies have investigated the value of
CMT as a metastatic model for HBC. Metastatic CMT, in
comparison to non-metastasizing tumors, have been shown
to exhibit upregulation of genes associated with cell cycle
regulation, DNA damage repair, extracellular matrix remodeling,
proteasomal degradation and protein folding, while genes
involved in cellular differentiation, growth factor signaling and
actin organization are downregulated. Of these differentially
expressed canine genes, 25% were discovered to be linked
to HBC (9). Comparable results to these reported at gene
level have also been observed at the intracellular protein level.
One study detected 21 proteins (predominantly associated with
cell adhesion, extracellular matrix remodeling and hypoxic
resistance) that were differentially expressed in canine mammary
carcinomas which were classified as either metastasizing or non-
metastasizing. The majority (19/21) of these proteins were linked
with metastasis or malignancy in a range of human cancers,
of which 9 had comparable expression patterns to that seen
in HBC patients (87). The partly overlapping transcriptome
and proteome of metastatic CMT and HBC indicates that
there must be similar pathways/mechanisms involved in breast
carcinogenesis and pathogenesis between the two species. These
studies also demonstrate that metastatic CMT are an appropriate
translational model for metastatic HBC. Similarities between the
REM-134 and REM-134 RR transcriptomic data produced in this
study and the results from the previous studies discussed here
provides further evidence of the value of using these cell line
models as a metastatic model of human and canine disease.

HBC is typically graded and characterized through IHC
with analysis of expression levels of various receptors such
as HER2, ER and PR. Additionally, gene expression profiling
has been successfully employed to classify breast tumors into
luminal A, luminal B, HER2-overexpressing, basal and normal-
like intrinsic subtypes (21, 22). As previously mentioned, these
varying subtypes exhibit differing inherent sensitivities to RT,
indicate prognosis and can influence which patients receive
endocrine and/or targeted therapies (61, 88). To characterize
the REM-134 and REM-134 RR cell lines within the context of
HBC, we investigated the expression of HER2, ERα, and PR and
performed molecular profiling. IHC showed that both parental
and RR REM-134 cells expressed HER2, with these cell lines also
classifying as HER2-overexpressing through their transcriptional

profiles; receptor expression and subtype classification did not
change with the acquisition of radioresistance. Similarities again
were seen in the RR models produced from ER+ cell lines,
with a change from luminal A for the MCF-7 and ZR-751 cells
to a non-luminal classification for their RR derivatives. The
MCF-7 RR cells correlated with the basal/HER2-overexpressing
subtypes, while the ZR-751 RR cells correlated with the normal-
like/HER2-overexpressing subtypes. Prior to the introduction of
HER2-targeted therapies, HER2-overexpressing breast cancers
carried a high locoregional recurrence risk and poor overall
prognosis (22–24, 89). Luminal A breast cancers typically have
an excellent response to RT and endocrine treatments (89); a
move away from this subtype classification, as seen in our cell
lines, would be consistent with an aggressive, treatment-resistant
phenotype. These results indicate that acquired radioresistance
can be associated with cellular plasticity, and that gene expression
changes can lead to an alteration in molecular subtype. Our
results also demonstrate that the RR cells derived from ER+ cell
lines again show significant similarities to the canine cell lines.

HER2 expression occurs in∼15–30% of all HBC patients (90–
92). HER2 protein overexpression has been determined to be
both predictive for tumor response to HER2-targeted treatments
and prognostic for disease outcome in human patients (93).
Several studies have suggested that∼35% ofmalignant CMThave
either HER2 gene or protein expression (94–97) and that HER2
expression is associated with histological grade, proliferation
index and tumor size (94, 96, 98). Human and canine genome
sequencing has identified significant homology between the
HER2 antigens in both species and although further research
is needed, results such as these suggest that human-based
immunotherapies (e.g., pertuzumab or trastuzumab) or human
developed tyrosine kinase inhibitors, could be successfully
employed in HER2+ CMT (99). The REM-134 cell line and our
developed REM-134 RR model would therefore be good in vitro
models to investigate HER2 signaling in CMT.

In support of the REM-134 HER2-overexpressing
classification, we showed that REM-134 cells exhibited lower
expression of ER-driven genes in comparison to the human
ER+ MCF-7 and ZR-751 cell lines. Again, the REM-134 and
REM-134 RR cell lines clustered closely with the MCF-7 RR
and ZR-751 RR cell lines. In HBC, HER2 expression and ER
activity have been shown to have an inverse relationship, with
HER2 overexpression being associated with reduced sensitivity
to endocrine therapies (100–102). Because of the change in
subtype classification and the suggestion of a shift away from ER
signaling in the MCF-7 RR and ZR-751 RR cell lines, a situation
akin to that seen in the canine cell lines, downstream signaling
pathways of the HER/ERBB family were investigated. The
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)
pathway is commonly hyperactivated in various cancer types
and leads to cellular responses related to survival, proliferation
and metabolism (103, 104). RT can also activate the PI3K/AKT
pathway, which is associated with intrinsic radioresistance,
proliferation, and resistance to hypoxic environments (105, 106).
Similarly, activation of the mitogen-activated protein kinase
(MAPK) pathway is thought to be a cytoprotective response
which can allow cancer cells to repopulate the tumor during
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fractionated RT (107–111). In this study we found that MCF-7
RR, ZR-751 RR, REM-134, and REM-134 RR gene expression
signatures corresponded with activation of the PI3K and MAPK
pathways; these pathways may therefore play a significant role
in the development of radioresistance in both human and
canine patients.

The development of novel RR CMT cell lines opens up the
possibility of future in vivo studies. Xenograft studies using
orthotopic (mammary fat pad) or subcutaneous implantation
of paired sensitive and RR REM-134 cells could be used
for a multitude of pre-clinical research opportunities. Studies
evaluating the effectiveness of radiosensitizing agents, the
development of metastatic models or the detection of serum-
based biomarkers of radiation response are all achievable with the
generation of RR cell lines such as ours.

CONCLUSION

This study is the first to report the development and
characterization of a novel canine mammary cancer RR cell
line which was used as a comparative model for HBC. The
generation of new radioresistant models is important, as these
will aid the understanding of the molecular mechanisms that
drive the development of radioresistance. Similarities in terms
of EMT, WNT signaling, estrogen regulation, HER signaling,
and subtype classification were identified between the RR cell
lines derived from the human ER+ cell lines and the canine
parental and RR cell lines. These results suggest that the
mechanisms involved in the acquisition of radioresistance may
be similar in the 2 species. As we continue to appreciate the
significant similarities between human and canine mammary
tumors, comparative studies will become more important for the
investigation of carcinogenesis in both species. We believe that
comparative studies of resistant disease will be fundamental for
future research, leading to the development of novel treatment
strategies that are equally applicable to both human and
veterinary patients.
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