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The worldwide outbreak of Sars-CoV-2 resulted in modelers from diverse fields

being called upon to help predict the spread of the disease, resulting in many new

collaborations between different institutions. We here present our experience with

bringing our skills as veterinary disease modelers to bear on the field of human

epidemiology, building models as tools for decision makers, and bridging the gap

between the medical and veterinary fields. We describe and compare the key steps

taken in modeling the Sars-CoV-2 outbreak: criteria for model choices, model structure,

contact structure between individuals, transmission parameters, data availability, model

validation, and disease management. Finally, we address how to improve on the

contingency infrastructure available for Sars-CoV-2.
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INTRODUCTION

Infectious diseases are a constant threat for public health and consequently also the economy.
Although hygiene measures have been well-established and efficient prevention and control
measures such as vaccines have been developed for many diseases, only one human disease
(smallpox) and one animal disease (Rinderpest) have been eradicated (1). On the other hand,
new diseases are emerging and re-emerging in several parts of the world in both humans
(e.g., COVID-19) and animals [e.g., African swine fever (ASF) ]. It is therefore important to have
consistent and effective systems for rapid and successful control of infectious diseases of both
humans and animals. Models of infectious diseases have been used for many years to understand
the dynamics of these diseases and to support decision making, and are used in both animal and
human populations (2, 3). There is a large overlap with regard to methodology, procedures, and
general epidemiological considerations when modeling infectious diseases of animals and humans.
The development of models in both contexts is also similarly challenged by several factors such as
the availability of data, understanding of the disease and host behavior, and external factors such as
the environment.

At the start of the SARS-CoV-2 outbreak in Denmark, an expert group of modelers was
established to develop models to predict the course of the epidemic. The authors were part of this
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group due to their previous experience with modeling disease
spread mostly within the veterinary field. In this study, we
discuss and compare the challenges for infectious disease
prediction models of animal and human populations based
on our experience in modeling infectious diseases in animals
[e.g., foot-and-mouth disease (FMD), ASF, and bluetongue virus
(BTV) ] and our recent experience of modeling the spread of
SARS-CoV-2 in humans.

CHOICE OF MODELING METHOD

Several modeling methods can be used to mimic the spread
of infectious diseases, depending on the disease itself, available
data, the need for details, and the purpose of the model (2, 4).
Traditionally, ordinary differential equation (ODE) models have
been popular, but with increasing computational power, agent-
based models (ABMs) that can include higher levels of detail are
increasingly being used (4). The purpose of the model is key to
the choice of model.

Models are simple representations of real-life systems. In
order to be able to build a model that properly represents a
given system, it is necessary to have key knowledge in place:
(1) a fairly good understanding of how the disease is spread (or
knowledge of similar diseases, as for instance for SARS in relation
to COVID-19); (2) background data on the host population
(demography, density, etc.); and (3) data on the behavior of the
host population (mixing patterns). There are two main phases
of required models in an outbreak situation for a new disease
like COVID-19. During the initial phase where a lockdown of
large parts of society is implemented, it is important to have
one or more models that can: (1) include the available number
of parameters, which are often minimal in number due to the
lack of necessary data at the early stage of the epidemic, and
(2) run reasonably fast, in order to provide timely predictions
on a national/regional level where large number of individuals
may be involved. The purpose of modeling in this phase is
to evaluate the current (lockdown) situation. In the second
phase, where the focus regarding Sars-CoV-2 has been on how
to reopen society, it is also important (1) that it is relatively
easy to adjust the models to include newly arising information
during the outbreak and (2) that the models are flexible and
detailed enough to include information on the relevant parts
of society.

During the 2001 FMD epidemic in the UK, an ABM with
the farm as the modeling unit was used to advise the authorities
on the control of the disease (5). Similarly, for the first BTV
outbreaks in northern Europe in 2006, models were used
to inform authorities on how to react with regard to early
warning, mitigation of impact, vaccinating animals, and testing
for freedom of disease (6, 7). Another example is the ASF virus
genotype II that has persisted in Europe since 2007 and spread to
other parts of the world (8). AnABM for the spread of ASFwithin
wild boar populations has been used to advise the European
authorities in the control of the disease (9, 10).

In the current Sars-CoV-19 pandemic, many simulation
models have been developed, including both ODE and ABM

models, of which some have been used to advise authorities. For
instance, an ABM was used in the UK to guide the lockdown of
the country (11). In the USA, several models were developed and
used by the CDC individually or as ensemble modeling to predict
the spread of Sars-CoV-19 on a state or country level (12). In
Sweden, an ODE model has been used to advise the authorities
during the epidemic (13), while a stochastic meta-population
model was used in Norway (14). In Denmark, an ODE model
was used to advise the authorities (https://github.com/laecdtu/
C19DK) and qualitatively supported by an ABM. For previous
human epidemics, such as measles, SARS, and influenza, ABM,
and ODE models were developed to study disease dynamics
and/or guide the control of the epidemics [see details in a
review (3)].

DATA ON CONTACT STRUCTURE

One of the main challenges in modeling disease spread is
identifying and obtaining data on contact structure between the
modeled units (e.g., individuals or farms), when heterogeneity
is considered. In the veterinary field, the spread of a disease is
usually modeled either based on physical contacts between the
modeled units (15) or using distance-based kernels (5). In the
models that simulate the spread of diseases in the veterinary
field using explicit contacts, the spread is driven by contacts
between farms via animal movements, indirect contacts (e.g.,
veterinarians and vehicles), and/or vectors (midges for BTV, air
for FMD, and wild boar for ASF). Several countries maintain
registers for animal movements between herds, allowing explicit
modeling of disease spread between herds (16). Data on indirect
contacts is available based on questionnaires and field studies
(17). For diseases that spread via vectors, data are provided
via experiments and field studies (18–21). For airborne spread,
meteorological data have been used to study the spread of
FMD (22).

Because humans can normally move freely, while livestock
populations are restricted to their farms, humans are more
heterogeneous in their activities and contact patterns. Modeling
this heterogeneity is therefore important to mimic disease spread
correctly. We found few comprehensive studies quantifying
contacts and contact patterns between individuals (23–26). These
contacts formed the backbone for modeling the spread of Sars-
CoV-2 in several models such as [https://github.com/laecdtu/
C19DK; (27–29)].

DATA ON DISEASE STAGES AND

TRANSMISSION

In the veterinary field, data on the manifestation and stages
of infectious diseases within an individual animal and the
transmission between individual animals are normally collected
based on highly controlled experimental studies (30–32). Such
studies are necessary in order to understand and quantify
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transmission and hence reliably use the data in models of disease
spread and control.

In the current Sars-CoV-19 pandemic, data from previous
epidemics with other similar viruses such as SARS and
influenza were used to parametrize models published at
earlier stages (33). Later on, data specifically about Sars-CoV-
2 became available from multiple sources (patients, contact
tracing, special situations such as cruise ships) allowing the
estimation of necessary information regarding disease stages,
manifestation, and transmission potential between individuals
(34–37). Nevertheless, important information such as proportion
of asymptomatic cases, infectiousness and susceptibility of
children and their role in disease spread, and the role of
superspreaders and superspreading events is yet to be unraveled.

DATA FOR MODELING AND VALIDATION

A general aspect when modeling infectious diseases in real time
is fitting models to the available disease occurrence data. For
instance, during the 2001 FMD epidemic in the UK, infection
spread was modeled by creating a spread kernel using the
observed outbreak data (5). Similarly, the spread of ASF within
wild boar was simulated by fitting the model to observed data
(10). For BTV, the spread in northern Europe has often been
modeled using dispersal kernels capturing the vectors being
spread in up- and downwind movements (6, 38, 39).

For the current COVID-19 epidemic, several models used to
advise the authorities have relied on calibration to hospitalization
data rather than the number of test-positive individuals because
the latter is known to vary according to changes in testing strategy
during the outbreak [https://github.com/laecdtu/C19DK, (13,
14, 40)]. Although this approach is certainly better than the
alternatives, it is not without potential pitfalls. During the
beginning of the Sars-CoV-2 outbreak in Denmark, substantial
technical issues were encountered due to the lack of automated
systems for reporting patient numbers. There are also issues
around the definitions of “hospitalized due to COVID-19” vs.
“hospitalized with COVID-19,” i.e., there exists an unknown
number of test-positive patients who have been hospitalized for
reasons completely separate from Sars-CoV-19 but happen to be
concurrently infected—should these be included in the counts?
Given the gradual shift in emphasis from targeted testing toward
blanket testing of hospitalized patients, this has the potential
to introduce a temporally inconsistent bias in the data from
the gradual inclusion of more and more “tangential cases” over
time. Put together, these issues pose a substantial challenge for
the prediction models, which ideally should be mitigated by
including more rigorous randomized testing of individuals to
provide an unbiased estimate of the proportion of people that
have been infected.

Disease spread models are often only verified to the extent
of ensuring that the code does what is intended. Validation
of disease spread models is quite challenging due to a lack of
comprehensive data for validation and impossible in the case
of Sars-CoV-2 models for now. Models developed for specific
epidemics may be fitted based on the epidemic data. This does

not preclude the fact that suchmodels should also be validated, as
they include several parameters that are not necessarily obtained
from that specific epidemic.

DISEASE MANAGEMENT DURING AN

OUTBREAK

In the veterinary field, the success of disease management in
case of an outbreak is highly variable depending on several
factors, including the extent of disease spread when the disease
is discovered; the severity of the disease; the infectiousness of
the virus; the density of the population; the speed of application
of control measures; the compliance of animal owners; and
the involvement of external factors such as vectors, climate,
and/or environmental reservoirs. For instance, the 2001 FMD
epidemic in the UK took more than a year to control and
spread to surrounding countries such as Ireland, Belgium, and
the Netherlands (41). Since the introduction of ASF to Europe
in 2007, it has been spreading in several parts of the continent
as well as in Southeast Asia (8). Recurrent BTV epidemics
have occurred in Europe during the past 15 years affecting
several countries (42). The control measures that are normally
implemented for outbreaks of these diseases (FMD, ASF, and
BTV) may vary from one disease to another, but generally, they
include a depopulation of the affected herds followed by cleaning
and disinfection, surveillance of neighboring herds, and tracing
of contacts. Vaccination may be an option when a vaccine is
available, as in the case of BTV (43) and FMD (44).

Since the emergence of reports from Wuhan on the spread
of a peculiar disease in late 2019 (44), the disease spread to
many countries and continents, leading to a pandemic with
devastating economic impact (45). In middle March, Europe was
declared the epicenter of the disease (46). The management of
the disease in Europe varied from one country to another but
was characterized by implementing a lockdown, which varied in
the speed and degree of its implementation following increase in
hospitalization cases. Some countries such as Denmark quickly
implemented a partial countrywide lockdown, while Sweden
kept several activities running, including schools, restaurants,
and bars (47). These diverging strategies have led them along
different paths during the epidemic. Testing, contact tracing, and
isolation are measures that were recommended by the World
Health Organization (48), and peers emphasized the importance
of these measures later when the number of cases is low, in order
to cut the transmission chain (46).

CONTINGENCY AND PREPAREDNESS

PLANS

Detailed and strict guidelines have been set for the control of
highly infectious diseases in the veterinary field. For instance,
the EU set clear guidelines for the control of FMD, ASF, and
BTV in domestic livestock populations (49–51). The member
states must follow these guidelines once the disease is detected in
the country and demonstrate preparedness and control plans to
prevent onward transmission. Furthermore, regular simulation
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exercises and assessment of logistic and laboratory capacities
must be conducted (15, 52, 53).

The current Sars-CoV-19 epidemic has proven the lack
of preparedness of many countries to manage a widespread
epidemic in human populations (46). For instance, hospitals
were not prepared to handle a large number of patients. In
addition, some countries, such as Denmark, had no models
ready for disease spread in human populations that included the
necessary framework to be adjusted to Sars-CoV-19 to advise the
authorities from the beginning. Instead, scientists had to build
these models within a very short time and develop them as data
became available, without following the normal rigor in model
development and validation, subjecting the model prediction to
high uncertainty. Other countries, such as the UK, adapted an
existing model of influenza virus spread (54) to simulate the
spread of SARS-CoV-2 and advise the authorities.

DISCUSSION

It seems that ABMs are frequently chosen in the veterinary
field to advise the authorities during outbreak situations due
to their ability to incorporate a large amount of detail, while
different methods are generally used for modeling infectious
diseases in humans. Using a farm as the population requires
much less computational power compared to modeling all
people in a country, which could explain the difference in
choice of method. However, because the human population is
often more heterogeneously mixed and contains many more
behavior patterns than livestock, ABMs would actually be
a good choice of model for capturing these patterns (29).
Modeling human infectious diseases on a municipality level
might be sufficient to capture spatial heterogeneities and
provide good tools to advise the authorities on diseases control.
However, modeling on smaller aggregations than a country
can create problems with parameterization due to fewer cases
per subpopulation.

For convenience, some studies have categorized contacts
between humans into contacts at home, work, schools, leisure,
and others [e.g., 23, 24]. Precise specifications of the contacts are
not defined. For instance, who are the receivers of the contacts
at home, e.g., other members of the family, friends, neighbors,
etc. In addition, the frequency to each of these potential
receivers is sometimes not reported. The same issue exists with
the other types of contacts. This limits the ability to develop
ABM where exact contact structures cannot be simulated,
leaving ABMs to be a more or less detailed representation of
ODE models. Thus, detailed information on contact structures
between individuals is essential to develop reliable predictions
from ABMs.

In the veterinary field, experimental studies can be done
relatively quickly to obtain necessary data to parametrize models
of disease spread. This is a bigger challenge within infectious
diseases of humans, as such studies would be unethical. Data
sources are therefore typically limited to patients and sometime
their contacts, which may include recall or selection bias, so
it is highly important to rapidly initiate data collection under
ongoing epidemics for the benefit of modeling future epidemics.
Specifically, for SARS-CoV-2, it is often reported that cases
are most infectious prior to onset of symptoms, so contact
tracing of individuals should include repeated testing of contacts
to ascertain the shedding of viral loads prior to the onset
of symptoms.

From our own long experience in modeling disease spread
and control in the veterinary field and the recent experience
of modeling SARS-CoV-2 spread in Denmark, we observe that
contingency and preparedness planning to handle a highly
infectious disease like COVID-19 in humans has been suboptimal
compared to similar preparations within the veterinary field.
The importance to Denmark of livestock production and
exports, including the demands for high-quality products
that are made by importing countries, partly explains the
importance of contingency and preparedness planning to
Denmark. Nevertheless, it is unclear why contingency and
preparedness planning for infectious diseases in humans has not
so far been done at the same level. One potential explanation is
that Denmark (in common with other developed countries) has
not experienced a disease as severe as COVID-19 for many years,
so contingency and preparedness plans have not been a focus
of attention for the health authorities for a disease like COVID-
19. We therefore recommend urgent investment in continuous
development of contingency plans for human infectious diseases
to develop and maintain robust models that can provide accurate
predictions in case of a new outbreak with minimized prediction
failures. We note that the latter has been a major discussion issue
in the current epidemic (55).
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