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Since 2005, we have recorded annual episodes of alphaherpesvirus outbreaks in chicks

of magnificent frigatebird Fregata magnificens on the Ile du Grand Connétable Nature

Reserve in French Guiana. In 2009, we found sooty terns, Onychoprion fuscatus,

that live sympatrically with frigatebirds, with visible clinical signs of a potential viral

infection. To determine if the symptoms observed in sooty terns could be associated

with an alphaherpesvirus previously identified in frigatebirds, we carried out molecular

screening of samples collected from seven individuals. We identified and characterized

a novel viral sequence from five birds. BLAST searches, pairwise nucleotide, and

amino acid sequence comparisons, as well as phylogenetic analyses confirmed that

the sequence belonged to the Herpesviridae family, of the Alphaherpesvirinae subfamily.

We observed that it clustered with strains isolated from Podargidae (Caprimulgiformes),

Columbiformes, and Falconiformes, but was distinct from the frigatebird herpesvirus. We

have tentatively named it Onychoprion fuscatus alphaherpesvirus 1, (OfusAHV1). These

two sequences, although found syntopic on the Ile du Grand Connétable, belong to two

distinct alphaherpesvirus strains. Thus, the clinical symptoms showed by sooty terns do

not likely result from a cross-species transmission event. Future work is needed to better

characterize the virus and to investigate herpesvirus prevalence in healthy, free-ranging

sooty terns, and to assess the impact of the virus on population viability.
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INTRODUCTION

Herpesviruses are DNA viruses found in many animal species, from invertebrates to mammals
(1). Herpesviruses are thought to have evolved in association with their hosts. However, some
studies reported cases of cross-species transmission, indicating that such events could occur more
frequently than previously thought (2–4). These “spillover” infections in alternative hosts can result
in dramatic outbreaks of disease (5–7). Because of their ability to establish a latent infection,
herpesviruses do not generally pose a threat to their host species. However, some viruses can cause
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severe diseases and induce high mortality rates in their natural
hosts (8, 9). This is the case for avian herpesviruses that remain
one of the major causes of fatal infectious diseases in many bird
species (10–12).

In 2005, we found several chicks of magnificent frigatebird
Fregata magnificens on the Ile du Grand Connétable Nature
Reserve (4◦49’ 36” N, 51◦56’ 38” W), a rocky island located
off the coast of French Guiana, that showed clinical cutaneous
signs or were found dead (13). In particular, chicks showed
nodular proliferative skin lesions in legs and in the neck,
and hyperkeratosis (13). A few years later, we characterized
a novel alphaherpesvirus sequence from those chicks (13). In
the following years, we have started a monitoring program of
the population of frigatebirds, and have found that the disease
is widespread in chicks, causing a number of physiological
alterations associated with a high mortality rate (14–16). Since
the first appearance of clinical signs in frigatebirds, we have
also started annual monitoring programs for the other species
that breed sympatrically in the natural reserve. On the 30th
of April 2009, we found several dead or dying adult sooty
terns Onychoprion fuscatus showing similar clinical signs of
frigatebirds (bone frailty, hyperkeratosis) as described previously
(13, 16, 17). Our goal was to determine if the observed
symptoms could be due to a cross-species transmission of
the alphaherpesvirus that affect magnificent frigatebirds or the
results of an infection with an unknown herpesvirus.

MATERIALS AND METHODS

Sample Collection
To determine if the observed symptoms could be due to a
cross-species transmission we collected biological material (i.e.,
tracheal swabs and blood) from sick birds, while small tissue
samples (i.e., trachea, brain, lungs, liver, and heart) from dead
birds were additionally collected. Trachea (3 samples), brain (6
samples), lung (1 sample), liver (4 samples) heart (1 sample), and
whole blood (4 samples) for a total of 19 samples were collected
and placed in 2mL Eppendorf tubes. Blood was centrifuged in
the field and all samples were subsequently frozen in dry ice
while in the field and were then kept in a −80◦C freezer until
laboratory analyses.

Virus Identification
We extracted DNA by a classical phenol, phenol-chloroform
(1:1 vol/vol), and chloroform technique and precipitated it by
isopropanol. Then, we washed the DNA with 70% ethanol and
resuspended it in TE buffer containing 10mM Tris (pH 8.0)
and 1mM EDTA. We carried out molecular screening by semi-
nested PCR amplifications with degenerate consensus primers
targeting highly conserved amino acid motifs of the herpesvirus
DNA polymerase gene. To this end, we used two sets of
primers [First set: Freg1F: GTGTTCGATTTTGCCAGCCTGTA
TCC, Freg1R: ATGTTCCTTCCTATGGTCGTTACC, Freg2R:
ACGTGCAGACACGGCAGAAG; Second set: as explained in
(18)] targeting the same region of the gene, but with different
levels of degeneracy. This was done for each DNA sample in
separate reactions for the first-round PCR (Freg1F/Freg1R or

DFASA/GDTD1B) and second-round PCR (Freg1F/Freg2R or
VYGA/GDTD1B). The initial round of PCR contained 500 ng of
genomic DNA, 30 pmoles of degenerate primers, 2mM MgCl2,
0.2mM each dNTP, 5 µL of 10 × PCR buffer, and 0.5 µL of
AmpliTaq Gold DNA polymerase in a volume of 50 µL. We used
2µL of this reaction in the semi-nested reaction. The PCR cycling
conditions were as follows: after the DNAs were denaturated at
94◦C for 10min, the reaction mixtures were cycled five times
at 94◦C for 30 s, 60◦C for 30 s, and 72◦C for 30 s, followed by
30 cycles at 94◦C for 30 s, 46◦C for 30 s, and 72◦C for 30 s. We
made an extension of 10min at 72◦C on the last cycle (GeneAmp
PCR system 9600 thermal cycler; Perkin-Elmer). Amplification
products of the expected size (about 250 and 350 base pair,
respectively) were cloned into pCR4-TOPO vectors using a TA
cloning kit from Invitrogen and sent them for sequencing to
Genewiz (https://www.genewiz.com/). For each PCR product,
three clones of the “screening amplicons” were sequenced on
both strands.

Phylogenetic Analysis
Raw sequences were analyzed and edited in MEGA 5.05 (19).
The nucleotide sequence was 307 bp in size, excluding primers.
We then carried out sequence homology analyses using the
BLAST program at the National Center of Biotechnology
Information (NCBI) (http://blast.ncbi.nlm.nih.gov/Blast.
cgi). Then, a multiple sequence alignment was constructed
using ClustalW with previously published avian herpesvirus
sequences and representative sequences for each genus or
subfamily retrieved from GenBank (http://www.ncbi.nlm.nih.
gov/nucleotide) (13, 20). The alignment was checked manually.

We analyzed the phylogenetic relationships among
herpesviruses using the Bayesian inference (BI) approach
implemented in Beast 1.8.4 (21), based on a final alignment
including 37 unique sequences of 104 amino acid positions.
We assessed the best-fit model of amino acid evolution for
the dataset using the smart model selection (SMS) approach
(22) as implemented in the PhyML environment (23). We ran
BI analyses with LG+G+I model of aminoacidic substitution
(24), an uncorrelated relaxed molecular clock model with a
log-normal distribution (25), and a Yule tree prior. Then, we
analyzed the results from two independent runs of 10 million
generations, sampled every 1,000 generations, using Tracer 1.7.1
to check that the effective sample sizes for all parameters that
exceeded 200 (26) and to assess the appropriate number of initial
trees to discard as burn-in. Then, we combined the two runs
using Logcombiner 1.8.4 [BEAST package, (27)]. We computed
the Maximum Clade Credibility (MCC) tree summarizing the
post-burn-in trees using TreeAnnotator 1.8.4, and we visualized
the tree using FigTree 1.4.4 (26).

RESULTS AND DISCUSSION

This study aimed at assessing the presence of a herpesvirus from
dead and dying adult sooty terns and to determine its relationship
with other members of the Herpesviridae family. Out of the 19
tissue samples, 7 samples (4 blood samples and 3 brain samples,
collected from both dead and dying birds) tested positive for
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FIGURE 1 | Bayesian inference of the phylogenetic relationships of the herpesvirus sequence identified in the sooty tern Onychoprion fuscatus. Bayesian posterior

probabilities are shown at the nodes, when above 0.70. The sequence of Onychoprion fuscatus alphaherpesvirus 1 is in boldface. Alphanumerical codes represent

the Genbank accession numbers of each herpesvirus sequence used in this study.

herpesvirus. A unique and novel viral sequence was obtained
from five out of the seven individuals with PCR positive results.
This sequence is tentatively designated as Onychoprion fuscatus
alphaherpesvirus 1 (OfusAHV1) in the Alphaherpesvirinae
subfamily. From a phylogenetic perspective,OfusAHV1 clustered
with strains detected from Podargidae (Caprimulgiformes),
Columbiformes, and Falconiformes (posterior probability =

0.86; Figure 1). We also found that this novel alphaherpesvirus
sequence of sooty terns was distinct from the Frigatebird
herpesvirus (nucleotide p-distance: 0.28), which belonged to
a different well-supported monophyletic lineage. These results
seem to indicate that no cross-species transmission has occurred
between frigatebirds and sooty terns. This is not surprising given
that herpesviruses are usually associated with a single host species
(28), and co-evolve with their host over long periods of time (28).

Because herpesviruses establish latent infections and have a
high prevalence in natural hosts (11), symptoms of herpesvirus
infection and the associated appearance of clinical signs may only
occur when birds undergo a stressful situation (29). This raises
the question of whether sooty terns were undergoing any form

of stress and/or immune suppression. The severe clinical signs
found in dying birds with positive PCR results may also suggest
that sooty terns had no prior contact with this specific virus.
Although very little is known about this population, recent work
showed that sympatrically breeding frigatebirds have high blood
concentrations of mercury while sooty terns showed very low
mercury concentrations (30, 31). Mercury exposure can therefore
likely be ruled out as a plausible candidate stressor for this
population. However, suppression of the immune system in these
birds might also be due to malnutrition, as has previously been
suggested and recently corroborated in frigatebirds (13, 17).

This study does not conclusively prove the causal link
between this herpesvirus and the occurrence of clinical signs
and mortality in this population of sooty terns. The number
of tissue samples and birds included in the present study was
limited, and additional work would prove beneficial for a more
solid interpretation of the results. However, the viral sequence
here reported is novel and may be well-specific to this species,
further supporting the fact that distinct avian populations are
naturally infected with distinct herpesviruses. Seabirds aggregate
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at high densities during the breeding season, which may favor
viral spread among conspecific and may lead to severe outbreaks
in wild populations. We do not know the effect that this virus
may have on this and other populations of sooty terns in
terms of reproductive success and survival. However, given that
herpesviruses in wild animals are usually only detected when they
cause disease outbreaks, future works are needed to investigate
herpesvirus prevalence in healthy, free-ranging seabirds. Seabirds
are currently facing a strong decline in food resources (32, 33)
and an increasing exposure to environmental contaminants and
plastic pollution (34–36) which may increase their susceptibility
to viral outbreaks.
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