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This study was aimed to evaluate the effect of a mixed phytogenic (MP) on rumen bacteria

and their potential association with rumen fermentation andmilk yield parameters in water

buffaloes. Twenty Murrah buffaloes were fed a basal diet (consisting of maize silage,

brewers’ grains, and concentrate mixture) for 6 weeks supplemented with 0 (control),

15 (MP15), 25 (MP25), and 35 (MP35) g of mixed phytogenic/buffalo per d. The mixed

phytogenic contained fennel (seeds), ajwain (seeds), ginger (tubers), Swertia chirata

(leaves), Citrullus colocynthis (fruit), turmeric, fenugreek (seeds), Terminalia chebula (fruit),

licorice (roots), and Phyllanthus emblica (fruit) in equal quantities. After 2 weeks of

adaptation, daily milk yield, and weekly milk composition were recorded. On the last day

of the experiment (d 42), rumen contents were collected to determine rumen fermentation

parameters and bacterial diversity through 16S rRNA sequencing. Results revealed no

change in dry matter intake, milk yield and rumen fermentation parameters except pH,

which increased (P = 0.029) in response to MP supplementation. The mixed phytogenic

increased (P < 0.01) milk fatty acids (C4 to C14:0) in MP15 only. The milk C16:1

content and its unsaturation index were higher (P < 0.05) in MP35 as compared to the

control and other treatments. Furthermore, C18:3n3 was higher (P < 0.05) in the control,

MP15, and MP25, as compared to MP35. Supplementation of MP tended to increase

(P = 0.095) the Shannon index of bacterial alpha diversity and a difference (P < 0.05)

among treatment groups was observed in beta diversity. Feeding MP increased the

Firmicutes, Proteobacteria, and Spirochaetes but decreased Bacteroidetes numerically.

In addition, the dominant genus Prevotella decreased in all treatment groups while

Pseudobutyrivibrio, Butyrivibrio, and Succinivibrioanceae increased numerically in MP25

and MP35. The mixed phytogenic promoted groups of rumen bacteria positively

associated with milk and fat yield. Overall, our study revealed 14 positive correlations

of rumen bacteria with milk yield and eight with rumen fermentation parameters. Our

findings reveal substantial changes in the rumen bacteriome composition and milk fatty

acid content in response to MP but these results should be interpreted carefully, as the

sample size of our study was relatively small.
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INTRODUCTION

Gut microbes perform major digestive and metabolic activities
to derive energy from nutrient components of the diet and
are considered one of the crucial factors affecting the feed
conversion efficiency of ruminants. During rumen fermentation,
fermentable dietary components are broken down into volatile
fatty acids (VFA) and microbial protein (MCP) is synthesized.
Volatile fatty acids and MCP satisfy a major part of the dietary
energy (ca. 80%) and protein (65–85%) requirements of the host
(1, 2). Since the availability of fermentation products (amount
and composition) impacts milk yield, milk fat, and protein
synthesis, rumen fermentation is considered to be a vital process,
affecting the performance of dairy animals (3). The escape of
microbial cells from the rumen is followed by their digestion
and absorption in the small intestine leading to the availability
of amino acids, needed to satisfy the requirements of the host
animal (4). Cell membranes of rumen bacteria are composed of
different fatty acids like odd and branch-chain fatty acids that also
contribute to fatty acid profile of milk (5).

Some phytogenic feed additives, particularly secondary plant
compounds, have shown to affect the composition of the rumen
microbiome, change rumen fermentation dynamics and have
impact on milk production performance (6–10). So far, the
majority of in vitro and in vivo studies, aimed to evaluate
the use of plant secondary metabolites in ruminants, have
been conducted using one or two plants or their extract or
essential oils. In contrast, we wanted to test if different plant-
based compounds would act synergistically and therefore decided
to supplement a relatively complex mixture of phytogenic
compounds derived from 10 plants with proven antioxidant or
antimicrobial activity. Combinations of phytogenic antioxidants
have, for example, greater potential to scavenge free radicals than
individual plant compounds (11).

The plant compounds selected for this study have previously
shown to be bioactive and had beneficial effects on rumen
fermentation and animal performance (12). For example,
supplementation of ginger improved in vitro fermentation
characteristics by reducing ammonia nitrogen (NH3-N),
methane and acetate to propionate ratio along with desirable
effects on fibrolytic bacteria and protozoa (13). Turmeric
(Curcuma long) possesses anti-bacterial (14), anti-parasitic
(15) and antioxidant properties owing to its high content of
curcumin and other curcuminoids (16). In a previous study, we
highlighted the potential effects of curcumin as an epigenetic
modulator with potential effects on animal physiology (17).
Recently, curcumin supplementation has shown to increase
milk yield and unsaturated fatty acid (oleic acid) contents of
milk in dairy sheep (18). In combination with other herbs,
turmeric increased fat- and energy-corrected milk yields in cows,
while decreasing the acetate-to-propionate ratio in the rumen
fluid (19). Terminalia chebula and Phyllanthus emblica are rich
sources of tannins with potential impact on rumen fermentation;
particularly a reduction of methanogenesis through decreasing
rumen protozoa (20). Supplementation of T. chebula at 10 g per
kg diet DM in sheep improved nutrient digestibility and fiber
degradability possibly through increasing numbers of fibrolytic

bacteria (21, 22). Inclusion of Phyllanthus emblica has shown
to increase in vitro dry and organic matter degradability and
the synthesis of microbial biomass, while reducing methane
production (23). A combination of ajwain, fenugreek, and fennel
seeds and fruits of Terminalia chebula and Phyllanthus emblica,
reduced in vitro methane production without affecting other
fermentation parameters (24). Supplementation of fenugreek
led to an improvement in vitro dry matter degradability and
in vivo nutrient digestion and utilization in goats (25, 26).
Recently, the inclusion of licorice root has shown to increase
protein and saturated fatty acid contents of milk while decreasing
unsaturated fatty acids and somatic cell count of goat milk (27).

In present study, we attempted to evaluate the synergistic
effects of a mixture of 10 different plant-derived compounds on
the rumen bacteriome, rumen fermentation, and milk yield and
composition of water buffaloes.

MATERIALS AND METHODS

Animals, Diet, and Experimental Design
This research was carried out at Guangxi Buffalo Research
Institute, Nanning, China (latitude 28◦ 48′N, longitude 108◦

22′E). All experimental procedures used in this experiment were
approved by the Ethics committee of the Chinese Academy
of Agriculture Sciences, Guangxi Buffalo Research Institute,
China. Twenty Murrah buffaloes of similar body weight (580 ±

25 kg), parity and stage of lactation (3–4 months) were randomly
selected for this experiment and divided into four groups. The
four groups of buffaloes were fed with the same basal diet
supplemented with 0 (control), 15 (MP15), 25 (MP25), or 35
(MP35) g of a mixture of 10 different phytogenic substances per
buffalo per d. Aside from time to exercise and swim, buffaloes
were housed individually in an open-sided shed. To exercise,
the buffaloes were set free in an adjacent open yard with a
stocking density of 15 m2/buffalo. Free access to water was
provided to all buffaloes throughout the day. Fans were installed
in the buffalo barn to improve airflow. Buffaloes were allowed
30min swimming time before milking. Buffaloes were machine
milked twice a day. The same experimental diet consisting of
maize silage, brewers’ grains, and concentrate mixture was fed
to all experimental buffaloes for 6 weeks. The buffalo were fed
a total mixed ration (TMR) twice per day for ad libitum intake.
The TMR was formulated to meet the dietary requirements
of lactating buffalo. The respective amount of phytogenic
supplement was top-dressed on TMR during morning feeding
before milking and each buffalo was monitored for leftover.
Details of the chemical composition of the experimental diet
are given in Table 1. The first 2 weeks were considered as
an adaptation period. Feed intake of individual buffaloes was
measured during the last week of the experiment.

The mixed phytogenic consisted of respective parts of
following plants; fennel (seeds), ajwain (seeds), ginger (tubers),
Swertia chirata (leaves), Citrullus colocynthis (fruit), Turmeric,
Fenugreek (seeds), Terminalia chebula (fruit), Licorice (roots),
and Phyllanthus emblica (fruit). These plant parts were procured
in dry, finely-ground form from Verbena Nutraceuticals Inc.
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TABLE 1 | Formulation and chemical composition of the basal experimental diet.

Items Content

Ingredient (g/kg of DM)

Corn silage 197

Brewers’ grains 418

Concentrate feed mixture* 385

Total 1,000

Chemical composition (g/kg of DM, unless otherwise stated)

DM (g/kg as fed) 416

OM 756

CP 158

NDF 119

ADF 81

Gross energy (kcal/kg DM) 3.41

*Corn 17.83%; wheat bran 7.51%; Soybean meal 5.72%; Lime stone 0.5%; CaHPO4

0.6%; NaHCO3 0.8%; NaCl 0.7%; Premix
a 0.34%.

aThe additive premix provided the following per Kg of diets: Vitamin A 550,000 IU,

Vitamin E 3,000 IU, Vitamin D3 150,000 IU, 4.0 g Fe (as ferrous sulfate), 1.3 g Cu (as

copper sulfate), 3.0 g Mn (as manganese sulfate), 6.0 g Zn (as zinc sulfate), 80mg Co (as

cobalt sulfate).

(Islamabad, Pakistan). To make up the tested supplement, equal
quantities of each compound were thoroughly mixed.

Chemical Composition of the Diet and
Mixed Phytogenic
Dry matter (DM), crude protein (CP), and ash content of the
feed samples were analyzed according to the standard procedures
(28). Neutral detergent fiber (NDF) and acid detergent fiber
(ADF) were determined using an ANKOM2000 Fiber Analyzer
(ANKOM Technology Corp., Macedon, NY, USA) including
alpha-amylase and sodium sulfite (28, 29). The total polyphenolic
content of mixed phytogenic was determined using the Folin-
Ciocalteau’s phenol reagent as reported previously (30). Gallic
acid (10–60µg/g) was used as standard. The results were
expressed as mg of gallic acid equivalent (GAE) per g of
MP. Total tannins were measured as tannic acid equivalent
and flavonoids were determined as catechin equivalent using
UV-VIS Spectrophotometer (Labomed UVD-3500 Spectro) as
described previously (31). The chemical composition of the
mixed phytogenic is presented in Table S1.

Rumen Fermentation Parameters
Rumen content samples (500ml) were collected only once, at
the last day of the experiment before the morning feeding,
using a stomach tube. After collection, the samples were directly
transported to the laboratory. The rumen pH was measured
immediately using a pHmeter (HI 9024C; HANNA Instruments,
Woonsocket, Rhode Island, USA). Subsequently, the rumen
contents were strained through two layers of cheesecloth and
subsamples were analyzed for VFA concentrations (C2, C3, C4,
C5, iC4, and iC5) using a GC system (Agilent 7890A, Agilent
Technologies, USA), as described by Qin (32). A sub-sample of
rumen fluid (4mL) was acidified with 4mL of HCl (0.2 mol/L)
and stored in a freezer (−20◦C) for determination of NH3-N
using the indophenols method (33). Microbial protein content
was analyzed with a spectrophotometer at 595 nm using 1 mg/ml

bovine serum albumin solution (Sigma-Aldrich Co., LLC, St.
Louis, Missouri, USA) as standard equivalent (34).

Milk Yield and Composition
Milk yield in the morning (at 5:00 am) and evening (at 5:00 pm)
was recorded daily for each buffalo between d 15 and 42. Milk
samples for determination of milk composition were collected
weekly for 4 consecutive weeks. Fresh milk samples were used
to analyze milk composition (milk total solids, protein, fat, and
lactose) for morning and evening separately using MilkoScanTM
F120 (FOSS, Hillerød, Denmark). Energy corrected milk (ECM)
was calculated according to Tyrrell and Reid (35):

ECM = 0.327×Milk yield (kg)+ 12.95×Fat yield (kg)+ 7.20

×Protein (kg).

Determination of Fatty Acid Profile in Milk
Samples from morning and evening milking were pooled
(relative to the quantity of milk produced) for each week
separately. Milk samples from each week were stored at −20◦C
until analysis of fatty acids. Briefly, 20mL of milk was centrifuged
in a 50mL falcon tube at 17,800 × g for 30min at 4◦C. After
centrifugation, the above fat layer (1.0 g) was transferred to a
1.5mL Eppendorf tube and left at room temperature (∼20◦C)
for ∼20min to allow fat to melt. After that, it was centrifuged at
19,300× g for 20min at room temperature in a microcentrifuge.
Centrifugation of fat separated the sample into 3 layers: top layer
containing lipid; middle layer containing protein, fat, and other
water-insoluble solids; and bottom aqueous layer (36). Milk fatty
acids were trans-esterified with sodium methoxide according
to Zahran and Tawfeuk (37). Briefly, 2.0mL of n-hexane were
added to 40 ul of butterfat and vortexed for 30 s followed by the
addition of 2mL of sodiummethoxide (0.4mol). After vortexing,
the mixture was allowed to settle for 15min. The upper phase,
containing the fatty acid methyl ester (FAME), was recovered
and analyzed by an Agilent 7890B Gas chromatography (GC-
FID) with a polar capillary column CP-Sil R©-88 100m, 0.25mm
id, 0.2µm film thickness (Agilent Technologies, USA). Helium
was used as a carrier gas at a flow rate of 20 cm s−1 and split
ratio 100:1. The column temperature profile was held at 100◦C for
5min, ramp to 240◦C @ 4◦C min−1; hold at 240◦C for 30min. A
sample volume of 1.0 µL was injected. The FAME was identified
by comparing their relative and absolute retention times with
FAME standards (from C4:0 to C22:0). Fatty acid contents are
presented as percentage of total fat weight (wt%/wt%).

DNA Extraction and Sequencing of the 16S
rRNA Gene
The DNA was extracted from 1mL of frozen rumen content
(both solid and fluid phase) using the CTAB bead-beating
method (38). The quality of DNA was checked using a
spectrophotometer (NanoDrop2000, Thermo Scientific, USA).
High throughput (Illumina MiSeq) sequencing of the 16S
rRNA gene was carried out using barcoded primers for
V3–V4 region (39). DNA libraries were sequenced using
a 2 × 300 paired-end sequencing module (Illumina, San
Diego). Resultant paired-end sequence reads were joined
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TABLE 2 | Effect of mixed phytogenic on rumen fermentation parameters.

Item Treatments SEM P-value

Control MP15 MP25 MP35

pH 6.68b 6.88a 6.79ab 6.81a 0.026 0.029

TVFAs (mmol/L) 34.87 31.07 31.34 32.87 1.027 0.586

Acetate (mmol/L) 17.54 16.07 16.50 16.95 0.446 0.771

Propionate (mmol/L) 9.99 8.43 8.52 8.99 0.353 0.408

Isobutyrate (mmol/L) 0.63 0.69 0.63 0.65 0.017 0.714

Butyrate (mmol/L) 5.55 4.79 4.69 5.20 0.240 0.611

Isovalerate (mmol/L) 0.68 0.69 0.61 0.67 0.036 0.884

Valerate (mmol/L) 0.45 0.39 0.37 0.40 0.025 0.699

Acetate/Propionate 1.78 1.91 1.93 1.89 0.039 0.559

MCP (mg/mL) 37.93 42.23 43.72 38.73 1.418 0.436

NH3-N (mg/mL) 11.94 10.66 9.91 10.24 0.837 0.857

MP15, mixed phytogenic fed@ 15 g/d/head; MP25, mixed phytogenic fed@ 25 g/d/head;

MP35, mixed phytogenic fed @ 35 g/d/head; Control, without mixed phytogenic; TVFAs,

Total volatile fatty acids; MCP, Microbial crude protein; NH3-N, Ammonia Nitrogen.
a,b Values with different superscripts in the same row differ significantly (P < 0.05).

together using their overlap relationship (minimum 10 bp)
allowing maximum mismatch ratio of 0.2 using FLASH and
Trimmomatic software. After pruning, optimized sequence reads
were aligned against the SILVA database, Release128 (http://
www.arb-silva.de) for identification of Operational Taxonomic
Units (OTU) using cluster identity threshold of 97% (40, 41).
After that taxonomy of each sequence (OTU representative) was
analyzed by RDP Classifier (http://rdp.cme.msu.edu/) against the
database (confidence threshold of 0.7). Taxonomic assignment of
rumen bacteria was performed with bioinformatics pipeline of
Qiime software (http://qiime.org/scripts/assign_taxonomy.html)
as described previously (42).

The bacterial diversity of treatment groups was determined by
analyzing alpha and beta diversity indices. Population richness
(Chao, ACE) and evenness (Shannoneven and Simpsoneven)
of rumen bacteria were analyzed for each sample (43).
Alpha diversity was estimated by determining Shannon and
Simpson indices (44–47). Beta diversity index was calculated
to analyze rumen bacterial diversity across different treatment
groups using Bray-Curtis dissimilarities (48). Bray-Curtis
dissimilarities among different treatment groups were evaluated
non-parametrically by utilizing permutation analysis of variance
method (PERMANOVA using 999 permutations) as previously
reported (49). Redundancy analysis (RDA) was performed at the
bacterial genus level using VFAs and milk yield parameters as
explanatory variables in the vegan R package (version 3.2).

Statistical Analysis
Effect of MP on all parameters related to milk yield and
composition; DM intake, rumen fermentation, and bacterial
alpha diversity were analyzed using the general linear model in
SAS (SAS Institute Inc., Cary, NC, USA) with treatment as a fixed
effect and buffalo as a random effect nested in treatment group.
The Duncan’s multiple range test was used as a post-hoc test to
identify differences among treatment groups. We also analyzed
three orthogonal contrasts including all MP treatments vs. the

TABLE 3 | Effect of mixed phytogenic on milk yield parameters.

Parameter Control MP15 MP25 MP35 SEM P-value

Dry matter intake (kg/d) 7.78 8.16 8.06 8.26 0.109 0.479

Milk yield (kg/d) 8.69 8.52 8.50 8.57 0.554 1.000

Fat corrected milk (kg/d) 13.36 14.03 13.07 14.61 0.740 0.907

Energy corrected milk (kg/d) 14.45 15.04 14.01 15.49 0.805 0.937

Protein (%) 4.99 5.00 4.65 4.89 0.064 0.181

Protein yield (kg/d) 0.44 0.43 0.39 0.42 0.028 0.965

Fat (%) 7.83 8.28 7.73 8.69 0.248 0.539

Fat yield (kg/d) 0.65 0.71 0.64 0.74 0.034 0.339

Total solids (%) 19.25 19.56 18.70 19.84 0.280 0.562

Solid not fat (%) 10.70 10.53 10.32 10.33 0.072 0.194

Lactose (%) 5.32 5.21 5.42 5.21 0.037 0.108

MP15, mixed phytogenic fed@ 15 g/d/head; MP25, mixed phytogenic fed@ 25 g/d/head;

MP35, mixed phytogenic fed @ 35 g/d/head; Control, without mixed phytogenic.

control, linear effect of MP dose, and quadratic effect of MP dose.
Treatment effects were declared significant at P< 0.05 and trends
were discussed at 0.05 ≤ P < 0.1. The abundances of bacterial
phyla and genera were compared using the Kruskal-Wallis H test
with a false discovery rate (FDR) correction and Scheffer as a
post-hoc test to elucidate differences across treatment groups.

Spearman’s rank correlation (r) analyses were performed
with the vegan R package (version 3.2) to analyze the
association of relative abundance of bacterial genera with rumen
fermentation and milk yield parameters. Correlation heatmaps
were constructed using the corrplot R package. In the two-
dimensional heat map, change in defined color and its depth
indicates the nature and strength of the correlation, respectively.
Asterisk sign was used when the r value was >0.1 and the P-
values were <0.05 (∗0.01 < P ≤ 0.05, ∗∗0.001 < P ≤ 0.01,
∗∗∗P ≤ 0.001).

RESULTS

Rumen Fermentation Parameters
Supplementation of MP increased ruminal pH (P = 0.029)
in MP15 and MP35 but no change in pH was observed in
MP25 compared to the control (Table 2). There was no effect of
treatment on any other rumen fermentation parameter.

Dry Matter Intake (DMI), Milk Yield, and
Composition
There was no treatment effect on DMI and milk production
performance (Table 3).

Fatty Acids Composition of Milk
Supplementation of MP increased (P < 0.05) short-chain fatty
acids in MP15 compared to other groups (Table 4). Myristic acid
(C14:0) tended to increase, while C18:0 tended to decrease in
MP15 as compared to other groups. The C16:1 content and its
unsaturation index was higher (P < 0.05) in MP35 as compared
to the control and other treatment groups. Furthermore, C18:3n3
was (P < 0.05) higher in control, MP15 and MP25, as compared
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TABLE 4 | Milk fatty acids profile across different treatment groups.

Fatty acid Common name Control MP15 MP25 MP35 SEM P-value

C4:0 Butyric acid 0.86ab 0.95a 0.83bc 0.74c 0.035 0.001

C6:0 Caproic acid 1.03ab 1.12a 0.96b 1.05ab 0.019 0.023

C8:0 Caprylic acid 0.68ab 0.78a 0.62b 0.73a 0.018 0.014

C10:0 Capric acid 1.49b 1.88a 1.39b 1.64ab 0.053 0.014

C12:0 Lauric acid 2.19b 2.63a 2.03b 2.32ab 0.066 0.016

C14:0 Myristic acid 10.64b 11.55a 10.45b 11.03ab 0.161 0.054

C14:1 Myristoleic acid 1.04 1.11 1.10 1.14 0.016 0.125

C16:0 Palmitic acid 31.91 32.22 32.76 33.19 0.366 0.671

C16:1 Palmitoleic acid 1.88b 1.77b 1.90b 2.19a 0.044 0.001

C17:0 Margaric acid 0.3 0.32 0.30 0.28 0.009 0.474

C18:0 Stearic acid 15.97a 14.50b 15.41ab 14.63ab 0.267 0.086

C18:1 Oleic acid 28.87 27.69 28.89 27.78 0.354 0.488

C18:2n6 Linoleic acid 1.42 1.56 1.53 1.43 0.029 0.255

C18:3n3 α-Linolenic acid 0.43ab 0.48a 0.47a 0.39b 0.014 0.035

C18:3 Linolenic acid 1.51 1.40 1.47 1.51 0.042 0.639

Group of fatty acids, g/100g of fatty acids

SFA 64.82 65.97 64.65 65.53 0.393 0.617

UFA 35.17 34.02 35.34 34.46 0.393 0.617

MUFA 31.81 30.59 31.89 31.12 0.357 0.554

PUFA 3.36 3.43 3.45 3.34 0.060 0.891

SCFA 3.98b 4.75a 3.71b 4.12b 0.097 0.001

MCFA 47.51 49.31 48.26 49.83 0.504 0.365

LCFA 48.51 45.94 48.03 46.05 0.553 0.224

n-6/n-3 3.35 3.47 3.43 3.86 0.128 0.419

Unsaturation index, %

C14:1/(C14:0 + C14:1) 9.19 8.84 9.63 9.42 0.144 0.283

C16:1/(C16:0 + C16:1) 5.61b 5.25b 5.49b 6.25a 0.125 0.01

C18:1/(C18:0 + C18:1) 64.41 65.9 65.18 65.44 0.387 0.427

SFA, Saturated fatty acids; UFA, unsaturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, poly unsaturated fatty acids; SCFA, short-chain fatty acids; MCFA, medium-chain

fatty acids; LCFA, long-chain fatty acids; SCFA included the C4:0, C6:0, C8:0, and C10:0 fatty acids; MCFA included all linear fatty acids from C12:0 to C16:1; LCFA included all linear

fatty acids from C17:0 to C18:3. MP15, mixed phytogenic fed @ 15 g/d/head; MP25, mixed phytogenic fed @ 25 g/d/head; MP35, mixed phytogenic fed @ 35 g/d/head; Control,

without mixed phytogenic. a,b,c Values with different superscripts in the same row differ significantly (P < 0.05).

to MP35. There was no treatment effect on total UFA, MUFA,
and PUFA content as well as omega6 to omega3 ratio.

Rumen Bacterial Diversity
High throughput sequencing of the 16S rRNA gene revealed
a total of 2,780 OTU in the rumen content samples. The
distribution of shared and unique OTU of the four treatment
groups is presented in Figure 1. The highest number of OTU
was detected in buffaloes supplemented with MP25, compared
to control and other groups. The number of OTU increased
in response to MP15 and MP25 but decreased for MP35 as
compared to the control. A total of 1,413 OTU were shared by all
groups, while the number of unique OTU was 536. The highest
number of unique OTU was found in MP15 (163) followed by
MP25 (161), MP35 (123), and the control (50).

Treatment had no effects on alpha diversity parameters
(Table 5). Analysis of beta diversity showed the difference
between groups caused by dietary treatment. The first two
dimensions from the (non-metric) multi-dimensional scaling
(NDMS) of the Bray-Curtis dissimilarity matrix are presented

in Figure 2. Samples were grouped by the level of MP and
PERMANOVA (using 999 permutations) amongst all groups
showed effect of treatment (P = 0.025).

Relative Abundance of Rumen Bacteria
Bacteroidetes and Firmicutes were the most dominant phyla
representing between 85 and 91% of total bacteria detected in
the rumen of the buffaloes (Figure 3). The relative abundance
of Firmicutes and Proteobacteria increased while Bacteroidetes
and Spirochaetes decreased numerically in response to treatment
compared to the control (Table S2). The abundance of
Cyanobacteria increased in MP15 and MP35 but decreased
numerically in MP25 as compared to the control group.

Prevotella was the dominant genus in all four treatments,
representing about 31–49% of all sequences (Table S3).
Relative abundance of Prevotella decreased numerically with
increasing levels of MP (Figure 4). Second most abundant
genus was o-Clostridales, which increased with supplementation
particularly in MP15 (5.74%) and MP25 (5.53%) as compared
to MP35 (3.62%) and control (4.96%). Abundance of f__F082
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FIGURE 1 | Distribution of OTU across different treatment groups.

increased in MP25 (4.01%) and MP35 (4.40%) compared
to MP15 (3.09%) and control (3.45%). Similarly, abundance
of Rikenellaceae_RC9_gut_group also increased in MP25
(3.95%) and MP35 (4.01%) compared to MP15 (2.99%)
and the control (3.09%). Treponema decreased linearly in
response to MP supplementation. Highest relative abundance of
Christensenellaceae_R-7_group was observed in MP25 (2.39%)
and MP35 (2.33%) as compared to MP15 (1.80%) and control
group (2.07%). Reduced abundance of Succiniclasticum and
Prevotellaceae_UCG-003 was observed in MP-supplemented
buffaloes compared to the control. Relative abundance of
Butyrivibrio increased with supplementation of MP, particularly
in MP35, compared to the control. The relative abundance of
Ruminococcaceae also increased as result ofMP supplementation.
Pseudobutyrivibrio decreased in response to MP15 but was
present in greater abundance in MP25 and MP35 compared to
the control. The relative abundance of Succinibrionaceae_UCG-
002 increased in MP35 (2.33%) compared to MP15 (0.66%),
MP25 (0.41%), and the control (1.17%).

Association of Bacteria With Rumen
Fermentation Parameters
Redundancy analysis showed acetate contributed to the bacterial
community differences at genus level (contribution = 56.8%,

TABLE 5 | Effect of mixed phytogenic on bacterial alpha diversity parameters.

Items Control MP15 MP25 MP35 P-value

Shannon 5.619 5.759 5.854 5.908 0.095

Simpson 0.013 0.012 0.010 0.008 0.231

ace 1892.8 1999.3 1956.7 1930.4 0.620

Chao 1777.1 2001.4 1955.7 1978.1 0.102

Shannoneven 0.785 0.787 0.800 0.814 0.260

Simpsoneven 0.063 0.057 0.069 0.093 0.451

MP15, mixed phytogenicfed @ 15 g/d/head; MP25, mixed phytogenic fed @ 25 g/d/head;

MP35, mixed phytogenicfed @ 35 g/d/head; Control, without mixed phytogenic.

P = 0.023) among the four treatment groups (Figure 5).
Milk yield and composition parameters did not contributed
to overall differences in bacterial genera. Two bacterial genera
Prevotella_1 (contribution = 78.6, P = 0.04) and Treponema_2
(contribution = 13.3, P = 0.045) contributed substantially to the
compositional differences in rumen bacteriome (Figure 5).

Spearman’s correlation between the relative abundance of
bacterial genera and rumen fermentation parameters is shown in
Figure 6. Acetate concentrations were negatively correlated with
Treponema_2 (R = −0.59; P < 0.05), Fibrobacter (R = −0.66;
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FIGURE 2 | First two dimensions from the (non-metric) multi-dimensional scaling of the Bray-Curtis dissimilarity matrix. Samples were grouped by feed additive.

PERMANOVA amongst all groups p = 0.025 (using 999 permutations).

FIGURE 3 | Relative abundance of bacterial phyla across treatment groups.

P < 0.05), and Candidatus_Saccharimonas (R = −0.64; P
< 0.05). Propionate, butyrate and valerate were negatively
correlated with genus f_F082, Rikenellaceae_RC9_gut_group,
Prevotellaceae_UCG-001 (R = −0.75, P <0.01,
Lachnospiraceae_AC2044_group, Ruminococcaceae_UCG-
005, Lachnospiraceae_ND3007_group, and probable_genus_10,
while two genera Ruminococcaceae_NK4A214_group and
Candidatus_Saccharimonas were negatively correlated with
propionate but not with butyrate (Table S4). Isobutyrate

showed a positive correlation (R = 0.60; P < 0.05) with genus
Succiniclasticum, while isovalerate was negatively correlated
(R = −0.59; P < 0.05) with Ruminococcaceae_UCG-005.
Only one bacterial genus f_Muribaculaceae showed positive
correlation (R = 0.71; P < 0.05) with acetate to propionate
ratio. TVFAs showed a negative correlation with genus
f_F082, Rikenellaceae_RC9_gut_group, Ruminococcaceae_UCG-
005, and Candidatus_Saccharimonas. Three bacterial genera
Rikenellaceae_RC9_gut_group, f_Prevotellaceae, and Fibrobacter
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FIGURE 4 | Relative abundance of bacterial genera across treatment groups.

FIGURE 5 | Biplot of RDA analysis on genus level between bacterial genera, VFA, and milk yield parameters.

were positively correlated with the ruminal concentration
of NH3-N.

Association of Rumen Bacteria With DMI,
Milk Yield, and Composition
Milk yield was positively correlated with genera o_Clostridiales
(R = 0.59; P < 0.05), Butyrivibrio_2 (R = 0.59; P <

0.05), Pseudobutyrivibrio (R = 0.67; P < 0.05), and
Lachnospiraceae_NK3A20_group (R = 0.58; P < 0.05; Figure 7,
Table S5). Amoderate negative (R=−0.61; P< 0.01) correlation
of milk yield was observed with Prevotellaceae_UCG-003. Milk
protein contents were negatively (R = −0.64; P < 0.05)
correlated with Ruminococcaceae_NK4A214_group while milk
protein yield was positively correlated (R = 0.61; P < 0.05) with
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FIGURE 6 | Correlation of bacterial genera with rumen fermentation parameters.

Pseudobutyrivibrio. Milk fat yield showed positive correlation
with; o_Clostridiales (R = 0.56; P < 0.05), Butyrivibrio_2
(R = 0.69; P < 0.05), Lachnospiraceae_XPB1014_group
(R = 0.70; P < 0.05), Pseudobutyrivibrio (R = 0.68; P
< 0.05), and Lachnospiraceae_NK3A20_group (R = 0.64;
P < 0.05). Milk lactose was negatively (R = −0.78)
correlated with Lachnospiraceae_XPB1014_group. Bacteria
specialized in fiber and polysaccharides degradation
including Succinivibrionaceae_UCG-002 (R = 0.63;
P < 0.05), Ruminococcus_1 (R = 0.65; P < 0.05),
Lachnospiraceae_NK4A136_group (R = 0.60; P < 0.05),
Fibrobacter (R = 0.65; P < 0.05), and Acetobacter
(R = 0.62; P < 0.05) were positively correlated with
DMI (Figure 7).

DISCUSSION

Rumen Fermentation Parameters
Themixed phytogenic tested in this study had no effect on rumen
fermentation parameters of buffaloes except pH. An increase in
rumen pH in response to supplementation of phytochemicals
(flavonoids and polyphenols) in ruminants has been reported
earlier (51, 52). A stabilization of rumen pH and prevention
of acidotic bouts would be particularly beneficial for ruminants
fed large amount of readily fermentable carbohydrates which
can decrease rumen pH rapidly and alter fermentation kinetics
and the composition of rumen microbiome. Strong declines in
rumen pH reduce the activity of cellulolytic bacteria (53), shift
bacterial populations and promote lysis of gram-negative bacteria
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FIGURE 7 | Correlation of bacterial genera with milk yield parameters.

leading to an increase in lipopolysaccharides (LPS) in the rumen
(54, 55). Plant polyphenols have shown to increase rumen pH and
stimulate the diversity of rumen microbiota, which is commonly
high in conditions of physiological rumen pH and regular rumen
function (56).

Rumen pH plays a crucial role in fiber degradation as it
directly affects bacterial adhesion to cellulosic material (57, 58).
This can lead to a reduction in fiber digestion, as frequently
observed in animals fed high-grain diets (59). In addition,
fibrolytic bacteria like Rumiococcus and F. Succinogenes are
highly sensitive to even mildly acidic pH (60). Our findings
indicate that the tested combination of phytogenics might
improve the performance and health of ruminants by preventing
excessive drop in pH and subsequent accumulation of LPS in
rumen. However, it needs to be emphasized that we measured
rumen pH only once as spot sampling just before the morning

feeding. It may not be reflective of pH changes over the course
of the day, which are important variables to consider. Earlier
studies have reported the strong diurnal variation of rumen
fermentation parameters and particularly pH (61). The limited
number of buffaloes enrolled in the experiment and the fact that
we only sampled each buffalo once, is a limitation of our study. In
addition, we also did not collect rumen samples at the beginning
of the experiment but considered the control group as baseline
for our experiment. A more extensive rumen sampling protocol
should be followed in further experiments.

We observed an increase in the relative abundance of well-
known bacterial genera like Pseudobutyrivibrio, Butyrivibrio,
and Succinivibrioanceae. These bacteria form butyrate and
propionate which can subsequently affect milk composition
especially the milk fat content. The shift in the relative abundance
of certain bacterial genera had, besides the discussed modulation
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of rumen pH, no other effect on rumen fermentation. This might
be due to the functional redundancy of the rumen microbiota.
The rumen microbiome possesses the ability to adapt to long
term exposure to inhibitory substances, like some phytogenics
but the effectiveness of the adaptation is dependent on the
robustness and diversity of the microbiome, length of exposure,
and the concentration of the inhibitor (62). No change in rumen
fermentation parameters in response to phytogenic compounds
like peppermint oil, garlic, and Piper sarmentosum was reported
earlier (63, 64).

DMI, Milk Yield, and Composition
Earlier studies have also reported no effect of plant compounds,
such as propolis polyphenols, garlic and peppermint on DMI and
the apparent digestibility of nutrients in buffaloes (63, 65). As
it was the case in the present study, other studies also reported
that polyphenolic compounds had no negative impact on milk
yield. For example, supplementation of propolis polyphenols had
no effect on milk yield and concentration of milk solids in dairy
cows (66). Studies using a blend of different phytochemicals like
cinnamaldehyde, eugenol and capsicum also reported no effects
on milk yield in dairy cattle (67–69).

Milk Fatty Acid Contents
The major milk fatty acids were C16:0 and C18:1, followed by
C18:0 and C14:0, which is in agreement with earlier studies in
dairy cattle (70, 71). Contents of SFA (65%) and UFA (35%)
measured in our study are similar to earlier reports in cattle and
buffaloes (72, 73).

Supplementation of MP15 increased the content of short-
chain fatty acids (C4 to C10:0) inmilk. The increase in C18:3n3 in
response to MP15 and MP25 means that MP has the potential to
affect de novo synthesis of fatty acids. The tendency to decrease
the percentage of stearic acid (C18:0), amajor saturated fatty acid,
is desirable from a human health point of view. Polyphenolic
compounds have shown to affect microbial biohydrogenation
by inhibiting specific rumen bacteria, this can lead to a more
desirable fatty acid composition of milk (74–76). Condensed
tannins have shown to partially inhibit the last step of C18:3
biohydrogenation in the RUSITEC system (77). Durmic et al.
(78) reported that tannins extracted from Acacia mearnsii
inhibited Clostridium proteoclasticum but exhibited no effect on
Butyrivibrio fibrisolven, revealing selective inhibition of rumen
bacteria involved in biohydrogenation.

Earlier studies reported that polyphenolic-rich forage
increased the α-linoleic acid content of milk in sheep (79, 80).
Higher abundance of Butyrivibrio and Pseudobutyrivibrio was
associated with an increase in the content of unsaturated fatty
acids owing to their positive correlation with linoleic acid and
n-3 fatty acid content of milk (81). The decrease in stearic acid
(C18:0) together with the increase in n-3 fatty acid contents, is
in agreement with earlier studies that reported similar findings
in response to supplementation of tannins in dairy sheep (82).
Based on the ratio of C14:1 to C14:0 (a proxy of desaturation),
it has been suggested that tannins can enhance the activity of
stearoyl Co-A desaturase enzyme (SCD), which mediates the

conversion of stearic acid to oleic acid and vaccenic acid to
conjugated linolenic acid (CLA). In particular, SCD has shown
to contribute almost 50% of oleic acid and cis-9, trans-11 CLA
secreted in sheep milk (83). This implies that tannins can
increase milk unsaturated fatty acids especially n-3 fatty acids
not only by mediating rumen biohydrogenation but also through
enhancing SCD activity (82, 84, 85).

Since we did not determine the fatty acids content of the
rumen microbial biomass, we are unable to associate microbial
abundance with the fatty acid profile in milk. This should be
attempted in future studies.

Rumen Bacterial Diversity
Supplementation ofMP had no effect on bacterial alpha diversity.
However, beta diversity was impacted by MP. Similar results
regarding alpha and beta diversity have been reported earlier in
response to grape-pomace which is rich in polyphenols (86).

As it was the case in this study, Bacteroidetes and Firmicutes
are the major bacterial phyla in both dairy cattle and
buffaloes (50, 87–90). A linear increase in Firmicutes was
observed together with a decrease in Bacteroidetes. The highest
increase in relative abundance in Firmicutes was observed
in response to the highest dose of phytogenics (MP35)
and resulted in a corresponding decrease in Bacteroidetes.
An increase in Firmicutes-to-Bacteroidetes ratio in response
to supplementation of plant flavonoids has been reported
earlier (50). A major function of rumen Bacteroidetes is the
breakdown of polysaccharide, along with various other activities
(91). Firmicutes are particle-associated bacteria, which produce
butyrate. Numerically higher concentration of butyrate in
MP35 was associated with a greater abundance of Firmicutes.
Furthermore, buffaloes in this group also had higher milk fat
percentage and fat yield, likely due to the positive association of
Firmicutes-to-Bacteroidetes ratio and milk fat yield, as previously
reported (92).

In the present study, Prevotella was the dominant genus
across all treatment groups. This is in agreement with
earlier studies in buffalo (93–95). Supplementation of MP
linearly decreased the abundance of Prevotella, with the
greatest reduction (1.6-fold) in MP35 compared to the control.
The decrease in Prevotella was correlated with numerically
higher DMI, fat corrected milk (FCM), ECM, fat (%), and
milk fat yield in MP35 as compared to the control, most
likely due to the negative association of Prevotella with
DMI and milk fat content (92, 96). We also observed a
negative correlation of Prevotella with acetate, propionate,
milk yield and fat (%) but these correlations were weak
(R = 0.2–0.37) and not significant. In contrast, earlier studies
have also reported a positive correlation of Prevotella with
acetate and butyrate in dairy cows (97, 98) and butyrate
in buffaloes (99). Prevotella species are more specialized in
protein degradation, peptide fermentation and their uptake in
the rumen (100). Similar to Prevotella, lower abundance of
Succiniclasticum and Prevotellaceae_UCG-003 was observed in
buffaloes supplemented with MP compared to the control. In
response to MP35, we detected a 3-fold increase in the relative
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abundance of Butyrivibrio, together with a 1.8-fold increase in
Pseudobutyrivibrio compared to the control. Bacterial taxa like
Firmicutes, Butyrivibrio, and Pseudobutyrivibrio, are important
degraders of polysaccharides in the rumen and produce formate,
butyrate, and acetate (101).

Plant phenolic compounds like thymol; have shown to
increase the relative abundance of Firmicutes in vitro (up to
82.8%) mainly by inhibiting more sensitive non-Firmicutes
(Bacteroidetes) bacteria (102). In contrast, plant essentials oils
extracted from Origanum vulgare, garlic and peppermint have
shown to decrease the abundance of Firmicutes and methane
production, while increasing Bacteroidetes (7). The increase
in Proteobacteria in response to MP supplementation was
interesting as a substantial increase (2-fold) in the relative
abundance of Succinibrionaceae in response to MP35 was
also observed. Previously, plant secondary metabolites
(8-hydroxyquinoline, α-terpineol, camphor, bornyl acetate,
α-pinene, thymoquinone, and thymol) have shown to increase
the relative abundance of Succinibrionaceae (102). In study
Succinibrionaceae was a dominant family of Proteobacteria,
which is in agreement with earlier data from cattle (103).
The major fermentation product of this bacterial family is
succinate which is subsequently converted to propionate
in the rumen, so it creates the possibility of competition
between Succinivibrioanceae and methanogens to utilize
hydrogen as a substrate to produce succinate and propionate
instead of methane. In line with this, greater abundance of
Succinivibrioanceae was negatively correlated with methane
production (R = −0.72) in cattle (102). Substantially higher
abundance of Succinivibrioanceae has been observed in
beef cattle with low methane production compared to
cattle with higher emissions (103). In addition to the fact
that methane is a strong greenhouse gas, reduced losses
of methane can also be associated with an improvement
in feed efficiency in ruminants. Since we did not measure
methane production or total methanogens, we can only
speculate about the effect of MP on methane emissions.
However, the detected shift in rumen bacteriome toward
more beneficial bacteria like Pseudobutyrivibrio, Butyrivibrio
and Succinivibrioanceae make it somewhat likely that
the tested phytogenic has not only positive impact on
production performance but also greenhouse gas intensity
of milk.

Association of Bacteria With Rumen
Fermentation and Milk Yield Parameters
The Spearman’s correlation analysis revealed 28 negative and 8
positive correlations of bacterial genera with rumen fermentation
parameters. Three bacterial genera Fibrobactor, Treponema_2,
and f_Prevotellaceae had a modest positive correlation with
ruminal NH3-N concentrations. Treponema belongs to phylum
Spirochetes which mostly ferments soluble sugars to formic acid,
acetic acid, lactic acid, and succinic acid (104). Succiniclasticum
was positively correlated with the concentration of isobutyrate
in the rumen as this genus of bacteria is associated with the

formation of succinate from starch degradation leading to the
subsequent production of propionate (105). Moreover, increased
abundance of Succiniclasticum in high-producing dairy cows
has been associated with greater propionate production (106).
In our study, we observed very few positive correlations in
contrary to earlier studies reporting various strong correlations
of bacterial genera with VFA in the rumen of dairy cows (81,
107) and buffaloes (99). This may be attributed to the low
variation observed in fermentation parameters, which was likely
due to the relatively low sample size and the fact that we only
sampled once instead of multiple times over the course of the
day. We took rumen samples once from each buffalo using
the stomach tube at the end of the experiment; consequently
we had a total of five samples per treatment. The relatively
low number of buffaloes per treatment and only one rumen
sampling are the main limitations of the present study. To
evaluate potential effects of MP on rumen fermentation and
shifts in the bacterial population in more detail, further studies
are required involving a larger cohort of animals and multiple
rumen samplings.

Fibrobactor is one of the most active cellulolytic bacteria
which ferment only cellulose, glucose, and cellobiose, its
primary end products are acetic and succinic acid (104).
Unsurprisingly, in this study presence of Fibrobactor was
positively correlated with DMI due to its ability to breakdown
fiber. However, the negative correlation between Fibrobactor
and acetate is difficult to explain. All five bacterial genera
(Succinivibrio, Ruminococcus, Lachnospiraceae, Fibrobacter, and
Acetobacter) which were positively correlated with DMI are well-
known cellulolytic and amylolytic bacteria (108). Dry matter
intake has a direct association with milk production so the
relationship of these bacteria with DMI, as observed in this
study, indicates their potential in enhancing milk yield in
buffaloes (109).

Our study showed a positive correlation of Pseudobutyrivibrio
with milk, fat and protein yield. The positive impact of
Pseudobutyrivibrio on milk yield parameters has been reported
earlier in dairy cows (108). A positive correlation of Butyrivibrio
and Lachnospiraceae with milk yield and protein has also been
reported (93). Furthermore, a positive correlation of Butyrivibrio
with average milk fat, milk solid, and total milk yield has been
reported in buffaloes (99). Butyrivibrio and Pseudobutyrivibrio
ferment structural carbohydrates (hemicellulose, xylan, and
pectin) to butyrate (110). However, a negative correlation of
Butyrivibrio species with milk fat yield has also been reported
in dairy cattle (81, 96). The substantial increase in the relative
abundance of Butyrivibrio (3-fold) and Pseudobutyrivibrio (1.8-
fold) in this study was correlated with numerically higher milk
fat (%), DMI, FCM, ECM, and DMI in buffaloes supplemented
with MP35. An unclassified genus of family Prevotellaceae
showed a negative correlation with milk yield which is also in
agreement with earlier reports revealing a negative association
of Prevotella with DMI and milk fat content (92, 96). One
unclassified genus belonging to Clostridiales showed a positive
correlation with milk yield in the present study. Previous
reports have shown substantial differences in abundance of
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these taxa in beef steers with high and low residual feed
intake (111).

Our study found that the tested mixed-phytogenic has
the potential to stabilize rumen pH which may be beneficial
especially for ruminants in intensive grain-based feeding systems.
An increase in Firmicutes-to-Bacteroidetes ratio in response to
mixed phytogenic substances reveals their synergistic potential
to increase milk fat yield in buffaloes. The significant increase
in omega-3 and numeric increase in PUFA in response to
MP15 and MP25 may be beneficial from a human health
perspective. Our study provides new information regarding the
potential effect of a mixed phytogenic on the rumen microbial
population, particularly rumen bacteria, and their potential
association with fermentation and milk performance parameters.
The use of tested mixture of different phytogenics could lead to
improvements in production performance and digestive health
of buffaloes. However, further studies on larger cohorts are
required to solidify these first results and explore the shift in the
rumen bacteriome and their impact on production related traits
in depth.

CONCLUSIONS

Supplementation of MP increased rumen pH and n-3
fatty acid content of milk, while decreasing its stearic
acid content. Additionally, MP promoted bacteria
that are positively associated with milk and fat yield
(Firmicutes-to-Bacteroidetes ratio, Pseudobutyrivibrio,
Butyrivibrio, and Succinivibrioanceae). Overall, our findings
provide new insight into the modulation of rumen
bacteriome caused by a mixed phytogenic feed additive in
water buffaloes.
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