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Staphylococcus aureus (S. aureus), a common mastitis pathogen widespread in the
natural environment of dairy farms, is capable of invading mammary epithelial cells
making treatment difficult. However, the mechanism of the response of bovine mammary
epithelial cell to S. aureus invasion remains elusive. In this study, transcriptomic analysis
and bioinformatics tools were applied to explore the differentially expressed RNAs in
bovine mammary epithelial cells (DMECs) between the control and S. aureus-treated
group. A total of 259 differentially expressed mRBNAs (DEmRNAs), 27 differentially
expressed microRNAs (DEmiRNAs), and 21 differentially expressed long non-coding
RNAs (DEIncRNAs) were found. These RNAs mainly enrich the inflammatory response,
immune response, endocytosis, and cytokine-cytokine receptor interaction. gRT-PCR
was used to analyze the quality of the RNA-seq results. In particular, to the defense
mechanism of bovine mammary epithelial cells against intracellular S. aureus, the PPAR
signaling pathway and the genes (ACOX2, CROT, and NUDT12) were found to be
up-regulated to promote the production of peroxisomes and ROS, DRAM1 expression
was also up-regulated to facilitate the activation of autophagy, indicating that the above
mechanisms were involved in the elimination of intracellular S. aureus in bovine mammary
epithelial cells.

Keywords: Staphylococcus aureus, bovine mastitis, bovine mammary epithelial cells, transcriptome, microRNA,
LncRNA 3

INTRODUCTION

Staphylococcus aureus is a frequently isolated pathogen responsible for bovine mastitis (1). This
bacterial disease is economically significant in dairy cows, causing considerable economic losses
and a series of food safety concerns (2). Despite the tremendous progress in understanding the
pathogenesis of bovine mastitis, the disease remains an important issue in the dairy industry
worldwide (3, 4).

Related studies have shown that S. aureus invades and survives in bovine mammary epithelial
cells, in bMECs protected from host defenses, and in the bactericidal effect of some antimicrobials,
thus making the treatment of mastitis caused by S. aureus difficult and prone to recurrence
(5-7). Moreover, although S. aureus is resistant to serval antibiotics (8-10). The administration
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of antibiotics is currently the most common method for
treating bovine mastitis (11). Hence, understanding the potential
molecular regulatory mechanisms of S. aureus invading bovine
mammary epithelial cells is particularly important.

MicroRNAs (miRNAs) are endogenous small non-coding
RNAs (22-25 nucleotides) universally expressed in higher
eukaryotic cells that play a crucial role in post-transcriptional
gene regulation (12). Previous research has shown microRNAs
as a vital part of the mammalian host response to bacterial
infection, involved in the host immune response (13-16). Long
non-coding RNAs (IncRNAs) are a class of non-coding RNAs
over 200 nucleotides in length that are essential regulators of
the immune response. Several researchers have reported the
specific involvement of IncRNAs in the response of host cells
to bacterial infection (17, 18). Their role in regulating gene-
encoding products involved in the immune response, including
direct interactions with chromatin, RNA, and proteins has been
one of the most recent discoveries (19, 20). In general, the
characterization of RNA regulatory networks represents a new
area in the field of host-pathogen interactions.

High-throughput transcriptome sequencing has effectively
been used to explore candidate mRNAs, IncRNAs, and miRNAs
with a differential expression that may be involved in specific
biological processes (21-23). Thus, it laid the foundation for
subsequent integration of whole transcriptome analysis. To date,
several studies have focused on the bovine mammary tissue or
epithelial cells transcriptional response to S. aureus showing
significant changes in gene expression following S. aureus
infection (24-28). However, complete transcriptome analysis of
the response of bovine mammary epithelial cells to intracellular S.
aureus has not been reported. This study, for the first time, details
the interpretations of whole transcriptome bMECs infected with
intracellular S. aureus.

The purpose of this study was to explore the transcriptional
regulation of bovine mammary epithelial cells after S. aureus
invasion and identify related candidate mRNAs, IncRNAs, and
miRNAs. Finally, the possible functions of the identified RNAs
were also discussed. These findings provide a base for the study
on the pathogenic mechanism of intracellular S. aureus and offer
several potential targets for the treatment of S. aureus-mastitis.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Staphylococcus aureus strain ATCC25923 was inoculated on a
Luria-Bertani (LB) Agar and incubated at 37°C for 24 h. A single
colony was randomly selected and cultured in LB broth with
agitation at 37°C for 12h and the growth was monitored by
measuring the ODgoonm.

Cell Culture

MAC-T cells are sensitive to the regulation of the extracellular

matrix and lactogen. MAC-T cells after differentiation
can synthesize and secrete o- and P-casein. It represents
an in vitro model of bovine lactation (29). Bovine

mammary epithelial cell line MAC-T cells were cultured
in a cell culture plate with a growth medium consisting

of Dulbecco’s modified eagle culture medium (DMEM)
with 10%(v/v) FBS and maintained in 5% CO,; at 37°C.
Cells that cultured to monolayer confluence were used for
further experiments.

Intracellular Infection Model

The model of intracellular infection was established in our
previous study (30). In brief, MAC-T cells were seeded
on 6-well cell plates, and when cells were cultured to
monolayers, S. aureus (ODgoonm = 0.8-1.2) was inoculated
with (treatment group) or without (control group) an MOI
of 8:1. After 2h of incubation, the cells were washed three
times in PBS. The cells from the treatment and control
groups were further placed into fresh medium supplemented
with lysostaphin (10 ng/mL) and gentamicin (50 ug/mL)
to kill extracellular bacteria. After 12min, extracellular
fluid was collected for plate culture experiments to verify
that extracellular bacteria were eliminated. The cells were
again washed three times with PBS to remove extracellular
bacteria and dead cells (30), and incubated for 2h in
10% FBS-DMEM.

RNA Extraction and cDNA Library

Construction

The total RNA from the control and S. aureus-treated group
(three samples per group) were extracted using RNAiso
Plus (Takara, Dalian, China) according to the manufacturer’s
instructions. Qualitative and quantitative total RNA was
quantified using Nano Drop and the Agilent 2100 Bioanalyzer
(Thermo Fisher Scientific, MA, USA). These RNAs were divided
into two parts for library construction of RNA or small
RNA, respectively.

Total RNA was treated with DNase I which degraded
double-stranded and single-stranded DNA and ribosomal RNA
(rRNA) was removed using the Ribo-Zero™ rRNA Removal
Kit (Ilumina, San Diego, CA, USA). Fragmentation of the
purified RNA was carried out at a specific temperature and
ionic environment. The first strand ¢cDNA was produced
by PCR in the first strand reaction system, along with
the second-strand c¢DNA. A-Tailing Mix and RNA Index
Adapters were added and incubated to carry out end repair,
and purification was performed using Ampure XP Beads.
Distribution of fragment sizes in the sequencing database
was examined using the Agilent 2100 Bioanalyzer, and
the libraries were quantified using qRT-PCR (TagMan
Probe). Finally, the qualified libraries were pair-end
sequenced on the Illumina Hiseq 4000 platform (BGI,
Shenzhen, China).

Quality Control of Raw Data

Before alignment, FastQC was used to check the quality of
the raw reads generated by the Illumina Hiseq 4000 platform
that were filtered by removing the dirty raw reads. Reads
containing adapter, an unknown base >10%, and low-quality
reads (The base number of threshold mass <10 accounts
for more than 50% of the total reading) were removed to
obtain clean reads of mRNA. PolyA, adapter, low-quality,

Frontiers in Veterinary Science | www.frontiersin.org

December 2020 | Volume 7 | Article 642


https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles

Wang et al.

BMECs’ Transcriptome to Intracellular S. aureus

and length <18 nt tags were removed to get clean reads
of miRNAs.

Reads Alighment and Differential
Expression Analysis of RNA-Seq

The transcriptome data were submitted to the Sequence Read
Archive (SRA) of the National Center for Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/sra/), with
the BioProject ID, PRJNA591729. In this study, gene model
annotations and reference genomes (ARS-UCD1.2/bosTau9)
were accessed from UCSC (31), IncRNA model annotations were

TABLE 1 | Primers used in this study.

Gene Primer sequence (5" — 3') Gene ID Amplicon
size (bp)

PIDD1-F TGCATTGGGCCCTGATCTC 100137737 89

PIDD1-R CCGTCCTGCACACGACTGTA

DRAM1-F  GTGTCCTGCGCAGCTGTCATA 533992 128

DRAM1-R ACTGTCCATTCACAGATCGCACTC

TNFRSF18- TGTATCCAGCCCGAGTTCCAC 516256 131

F

TNFRSF18- ACGGCACAGTCAACACACTCAA

R

DEPDC5-F  GTGCGACTGGAACAGGCAGA 521542 84

DEPDC5- CAGGTTGATGGCCTCCAGGTA

R

TMEM102- GAACTAACCCAGCTGATCCAGGAG 508014 126

F

TMEM102- CCTGCGATGAATGAGACTAAGCAA

R

TRIM32-F  GCGGCAACTACCGCATACAA 521975 96

TRIM32-R  AGAAGCTCAGCACAAAGCTATCCA

CD36-F TTGATGTGCAGAATCCAGATGAAG 281052 183

CD36-R CAACTGATAGCGAGGGTTCAAAGA

GAPDH-F  GATGGTGAAGGTCGGAGTGAAC 281181 100

GAPDH-R  GTCATTGATGGCGACGATGT

CXCR1-F TCCCTGTGAGATAAGCACTGAGACAC 281863 118

CXCR1-R GCTGTATAAGATGACCAGCATCACCA

ACTB-F CATCGGCAATGAGCGGTTC 280979 152

ACTB-R ACAGCACCGTGTTGGCGTAG

PPIA-F GGTGGTGACTTCACACGCCATA 281418 100

PPIA-R TGCCAGGACCTGTATGCTTCAA

accessed from NONCODE (32), and miRNA model annotations
were obtained from miRbase (33).

The clean reads of each sample were mapped using
HISAT2 for mRNA and IncRNA to the index from
the reference genome. StringTie was used to assemble
transcripts for each sample to obtain all assemblies.
After initial assembly, assembled transcripts were merged
by the StringTie merge module, creating a uniform set
of transcripts for all samples. StringTie was run again
by the merge function to re-calculate the abundances
of the merged transcripts after merging all assemblies
and generated read coverage tables. StringTie also
provided a Python script to calculate the count matrix
of mRNA or IncRNA directly from the file created in the
previous step (34).

Conversely, Bowtie was applied for miRNA to map the clean
reads of each sample to the index from the reference genome (35).
miRDeep2 calculated the count matrix of each miRNA for each
sample (36).

The DESeq2 package in R identified the count
matrix between the control and S. aureus-treated group,
and the results according to the P-values (37). The
pheatmap in R were used for clustering. IncRNAs,
miRNAs, and mRNAs with a P < 0.05 and | log2(fold-
change) | > 1 were set as the threshold for being
differentially expressed.

Protein—Protein Interaction (PPI) Analysis
Understanding all functional interactions between expressed
proteins is essential for a system-wide understanding of cellular
function. The STRING database aims to consolidate known and
predicted protein-protein association data. Network analysis of
DEmRNAs protein-protein interactions were obtained using the
STRING database (38), and Cytoscape was used to draw the
PPI network.

Prediction of the Target Gene of IncRNAs
and miRNAs

The target genes of the IncRNAs were identified using a large-
scale RNA-RNA interaction prediction tool, RIsearch2 (39). The
target genes of the miRNAs were predicted using TargetScan and
miRWalk (40, 41).

TABLE 2 | mRNA and IncRNA sequence quality.

Sample C1 Cc2 C3 T T2 T3

Group Control Control Control Treatment Treatment Treatment
Total raw reads 135018358 133373384 133372480 133374488 133373544 133373594
Total clean reads 127339136 126512562 126149020 126426654 125894398 125895540
Total clean base 12733913600 12651256200 12614902000 12642665400 12589439800 12589554000
Clean reads ratio 94.312% 94.856% 94.584% 94.791% 94.392% 94.393%
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FIGURE 1 | Screening and enrichment analysis of differently expressed mRNAs (DEmRNAs) in S. aureus infected mammary epithelial cells compared with
non-infected mammary epithelial cells. (A) Cluster analysis of DEmRNAs in mammary epithelial cells between the control group (C1, C2, and C3) and treatment group
(T1, T2, and T3). Red indicates highly expressed genes, and blue indicates low expressed genes. Each column represents a sample, and each row represents a gene.
On the left is the tree diagram of mMRNA clustering, and on the right is the name of each mRNA. The closer the two mRNA branches are, the closer their expression
level is. The upper part is the tree diagram of sample clustering, and the bottom is the name of each sample. The closer the two-sample branches are to each other,

mammary epithelial cells between the control group and treatment group. Red dots (Up) represent significantly up-regulated genes [P < 0.05, | log2(fold-change) |
>1]; blue dots (Down) represent significantly down-regulated genes [P < 0.05, log2(fold-change) < —1]; black dots represent insignificantly differential expressed
genes. (C) KEGG pathway classified annotation of DEmRNAs in mammary epithelial cells. The pathway is exhibited in the left axis, and the size of the circle represents
the number of genes listed in the right axis. (D) The relationship between these pathways is illustrated.

.Ierpes simplex virus 1 infection

d of the more recent gene expression. (B) Volcano plot of global DEmRNAs in

GO Annotation and KEGG Pathway
Analysis of DEmRNAs and Target Genes of
DEmiRNAs and DEIncRNAs

Gene Ontology (GO) enrichment analysis was performed
using the DAVID 6.8 functional annotation tool. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
analyzed by the clusterProfiler R package (42, 43).

Competitive Endogenous RNAs (ceRNAs)
Analysis of DEmRNAs, DEmiRNAs, and
DEIncRNAs

DEmRNAs, DEmiRNAs, and DEIncRNAs crosstalk networks
were constructed based on the hypothesis of competitive
endogenous RNA (ceRNA) (44). ceRNA act as a sponge for
microRNA (miRNA) through its binding site, and changes
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FIGURE 3 | Protein—protein interaction (PPI) analysis of DEmRNAs. Map node
size and color to degree, low values to small sizes and dark colors. Map edge
size to the combined source, low values to small sizes.

in ceRNA abundance in individual genes can regulate
miRNA activity (45). Thus, understanding this new RNA
crosstalk could provide insight into gene regulatory networks.
Correlation analysis was performed in R (P < 0.05 & cor
< —0.4) and the networks were constructed by cytoscape
software (46).

qRT-PCR Identification of Differentially

Expressed mRNAs

Randomly selected five (PIDD1, TNFRSF18, DEPDCS,
TMEM102, TRIM32) and three (CD36, DRAM1, CXCRI1)
genes of biological interest from DEmRNAs were tested by
qRT-PCR to verify the reproducibility and repeatability of
the differentially expressed genes in RNA-Seq data. Total
RNA was extracted using RNAiso Plus (Takara, Dalian,
China) and reverse-transcribed using the PrimeScript®
RT regent kit with gDNA Eraser (Perfect Real Time)
(Takara, Dalian, China) according to the manufacturer’s
instructions. Quantitative PCR analysis was performed using
the LightCycler® 96 (Roche Diagnostics GmbH, Germany)
with TB Green™ Premix Ex Taq™ II (Tli RNaseH Plus)
Kit (Takara, Dalian, China) following the manufacturer’s
instructions. The reaction mixtures in a 96-well plate were run
at 95°C for 120s, followed by 40 cycles at 95°C for 15s and
65°C for 30s. qRT-PCR was performed in triplicate for each
cDNA sample to ensure repeatability. The glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), actin beta (ACTB),
and peptidylprolyl isomerase A (PPIA) genes were set as
endogenous reference genes. All primers used in this study are
listed in Table 1.

Statistical Analysis

The relative fold change of target gene expression was calculated
by the 27AACt method (47), and a Students t-test examined
significant differences between conditions. ACt value was
determined by subtracting the target Ct of each sample from the
GAPDH, ACTB, and PPIA Ct values.
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FIGURE 4 | Screening and enrichment analysis of differently expressed INcRNAs (DEINCRNAS) in S. aureus infected mammary epithelial cells compared with
non-infected mammary epithelial cells. (A) Cluster analysis of DEINCRNAs in mammary epithelial cells between the control group and treatment group. (B) Volcano plot
of global DEINcRNAs in mammary epithelial cells between control group and treatment group. (C) KEGG pathway classification for the annotation of DEINcCRNAs in
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RESULTS Analysis of Differentially Expressed mRNAs

. . Cluster attern  analysis of DEmRNAs  between
Transcr_lptome Assembly Profiles the contrcI:l n = 3)Y and S. aureus-treated groups
Evaluation (n=3) 1is illustrated in FigurelA. A total of 259
The quality of six mRNA and IncRNA transcriptome sequence  DEmRNAs (Supplementary File 1) were filtered by the
expression profiles of mammary epithelial cells are summarized  thresholds of P < 0.05 and | log2(fold-change) | >
in Table2. Clean data were obtained after filtration from 1, out of which 124 were up-regulated and 135 were
downstream analysis. down-regulated (Figure 1B).
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TABLE 3 | miRNA sequence quality.

Sample C1 c2 C3 T1 T2 T3

Group Control Control Control Treatment Treatment Treatment

Raw tag count 13935997 13916721 14223015 14965296 14386800 14745979

Clean tag count 12589674 12995887 13399505 14374700 13798302 14033353

Percentage (%) 90.34 94.38 94.21 96.05 95.91 95.17
Gene Ontology (GO) enrichment analysis showed (P < 0.05 and | log2(fold-change) | > 1). Volcano plot showed

that 259 DEmRNAs were distributed into 83 GO terms
(Supplementary File 2) and divided into three categories
based on molecular function, biological process, and cellular
components (Figure 2). The top 10 enrichment GO terms, such
as the metal ion binding, integral component of the membrane,
extracellular exosome, intracellular, and extracellular space were
also significantly enriched.

The enrichment analysis of the KEGG pathway in DEmRNAs
is depicted in Figure 1C. The top 20 enriched pathways included
“Endocytosis,” “Cytokine-cytokine receptor interaction,” and
“PPAR signaling pathway,” which may be associated with
inflammation development. The relationship between these
pathways is reflected in Figure 1D.

The association in STRING includes direct (physical) and
indirect (functional) interactions. The PPI network (Figure 3)
showed that myeloid differentiation-factor 88 (MyD88) is a
central protein and interacts with multiple proteins.

Analysis of Differentially Expressed IncRNA
A total of 21 DEIncRNAs were obtained (Supplementary File 3),
of which 13 were up-regulated and 8 were down-regulated

the DEIncRNAs between the control group and treatment
groups (Figure 4A). The heatmap showed hierarchical clustering
for DEIncRNAs in Figure4B. A total of 288 DEIncRNA
target genes were predicted. Figure5 depicts 107 GO terms
(Supplementary File 4) from the GO analysis. The “integral
component of the membrane” term was the found to be
most significant enrichment. Figure 4C depicts the enrichment
analysis of the KEGG pathway in DEIncRNA targets. Figure 8A
shows two common target genes (Supplementary File 5) from
DEmRNA and DEIncRNA targets and KEGG enrichment
analysis of these genes is shown in Figure 8C.

Summary of miRNA Sequencing

The quality of six miRNA transcriptome sequence
expression profiles of mammary epithelial cells is presented
in Table3. The data used for downstream analysis

was filtered.

A total of 27 DEmiRNAs were identified (P < 0.05 and |
log2(fold-change) | > 1) (Supplementary File 6) and the volcano
plot also shows these DEmiRNAs (Figure 6B). The heatmap
of the DEGs shows clustering of DEmiRNAs (Figure 6A).
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FIGURE 6 | Screening and enrichment analysis of differently expressed miRNAs (DEmiRNAs) in S. aureus infected mammary epithelial cells compared with
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Figure 7 shows the predicted 784 target genes of DEmiRNAs
that enriched the 417 GO terms (Supplementary File 7). KEGG
pathway enrichment analysis of DEmiRNAs is shown in
Figure 6C, suggesting DEmiRNAs major role in the “Ras
signaling pathway,” “Endocytosis,” and “PI3K-AKT signaling
pathway”. There were 14 common target genes (BASPI,
RAB11FIP4, PIP5K1C, VAMP4, DHRS12, LBH, MOB3B,
ABO, FOXQIl, WDFY2, DYRKIB, NCKAP5L, TMEM59L,
LIMKI1) from DEmRNA and DEmiRNA targets Figure 8B.

Figure 8D shows KEGG enrichment analysis of DEmRNA and
DEmiRNA targets.

Competitive Endogenous RNAs (ceRNAs)

Analysis

The ceRNAs network is shown in Figure9 which reflects
the competitive endogenous relationships between DEmRNAs,

DEmiRNAs, and DEIncRNAs.
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Nine differential expressed genes (PIDD1, DRAM1, TNFRSF18,
DEPDC5, TMEM102, TRIM32, CD36, CXCR1) were randomly
selected and quantified using qRT-PCR to confirm differentially
expressed genes in mammary epithelial cells obtained by RNA-
seq between the control and treatment group. The gene symbol
corresponding to all mRNAs is shown in Supplementary File 8.
PIDD1, DRAMI1, TNFRSF18, and DEPDC5 were the up-
regulating genes while TMEM102, TRIM32, TNFRSF25, CD36,
and CXCR1 were down-regulating in the high-throughput RNA-
Seq. The expression of these genes was confirmed by qRT-PCR
(Figure 10).

DISCUSSION

Staphylococcus aureus often causes subclinical bovine mastitis
and persistent intramammary infections. Ineffective pathogen
clearance often leads to chronic and persistent infections (7).
Studies have shown that S. aureus invades udder epithelial
cells, which protects the pathogen from host defenses and
antibiotics (6). Thus, it is particularly important to understand
the response associated with bovine mastitis at a molecular level.
In this study, we performed a comprehensive assessment of the
whole transcriptomic profile of bMECs infected by S. aureus
intracellularly, it contributed to a more embedded understanding
of the transcriptome regulation behind this biological process.
Wang et al. investigated the transcriptional responses of
primary bovine mammary epithelial cells against three S.
aureus strains with different virulent factors using a tag-based
high-throughput transcriptome sequencing technique (24). Li
et al. identified functional miRNAs in bovine mammary glands

infected with S. aureus on Chinese Holstein cows using Solexa
sequencing and bioinformatics (25). Fang et al. compared the
expression of mRNAs and miRNAs at after 24h of intra-
mammary infection (IMI) with high or low concentrations of
S. aureus (26). The current study mainly focused on the defense
mechanism of bMECs against intracellular S. aureus. Differences
were observed from the previous research from the experimental
designs to the conclusion.

Through the GO functional enrichment analysis for
DEmRNAs, functional molecular processes were found to
be related to the inflammatory response, immune response,
peroxisome, regulation of autophagy, and positive regulation
of ERK1 and ERK2 cascade. Related research showed that
peroxisomes play an indispensable role in the generation of
reactive oxygen species (ROS) (48). ROS is crucial in the
signaling and defense of biological organisms and can also
contribute to bacterial killing (49-51). Previous studies showed
that S. aureus induces bMECs triggering immune responses
and ROS production (52-54). Autophagy is a highly conserved
mechanism that maintains homeostasis by removing damaged
organelles and cytoplasmic proteins. It is also an immune
response pathway that can eliminate intracellular bacteria
(55-57). Bacterial infection induces autophagy and transports
bacteria to the lysosome for degradation by autophagosomes
(58, 59). The ERKI1/2 signaling pathway has been shown to
respond to the autophagy regulation of intracellular pathogens
(60). KEGG pathway analysis identified several critical pathways,
such as endocytosis, cytokine-cytokine receptor interaction,
PPAR signaling pathway, and the inflammation mediator
regulation of TRP channels. Endocytosis is essential for the
entry of pathogens into cells and followed by its replication.
Bacteria use this mechanism to utilize the osmotic network of
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the endocytic organelles to enter the cytoplasmic or replicating
site and reach the relevant intracellular compartment (61, 62).
Cytokine-cytokine receptor interaction is also reported to be
involved in clinical mastitis (63). Peroxisome proliferator-
activated receptor (PPAR) has anti-inflammatory effects
inevitably linked to inflammation (64). Studies have shown that
transient receptor potential (TRP) channels are associated with
various factors and mechanisms that can activate/modulate
inflammation through innate immunity (65, 66). They also
play a key role in S. aureus elimination from bovine mammary
epithelial cells.

In this study, some genes were up-regulated in the S.
aureus-treated bMECs, such as ACOX2 (acyl-CoA oxidase
2), CROT (carnitine O-octanoyltransferase), NUDT12 (nudix
hydrolase 12), and DRAM1 (DNA damage regulated autophagy
modulator 1). Among these, three genes (ACOX2, CROT,
and NUDT12) were enriched in peroxisomes. Additionally,

peroxisomes play an integral role in the production of
ROS. ROS levels acutely increased during cellular stress
and the process of bacterial killing. Many studies supported
the indispensable role of cellular stressors in regulating
the innate immune responses (51). A new study reported
that ROS can enhance macrophage antimicrobial activity
against intracellular S. aureus (67). In the S. aureus treated
group, DRAM1 expression was up-regulated. Moreover, in the
case of DRAMI1 over-expression, autophagosome production
could be triggered by enriching DRAMI on the Golgi
membrane (68). Besides, DRAMI can affect autophagy by
the acidification of lysosomes, the fusion of lysosomes with
autophagosomes, and autophagosome clearance (69). However,
although autophagy has an antibacterial effect, there is evidence
that pathogens have developed several ways to evade this
mechanism (70). S. aureus can avoid autophagy clearance in
bMECs by impairing lysosome function (30). Which may be
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FIGURE 10 | Expression levels of selected DEGs quantified by quantitative
reverse transcription-PCR (QRT-PCR). GAPDH, ACTB, and PPIA were used as
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an important mechanism of S. aureus to evade the host’s
immune response.

Conversely, certain genes including CD36 (CD36 molecule),
CXCR1 (chemokine C-X-C motif receptor 1), BMP4 (bone
morphogenetic protein 4), and TNFRSF25 (TNF receptor

superfamily member 25) were down-regulated in S. aureus-
treated bMECs. CD36 is a transmembrane glycoprotein receptor
and contributes to the host’s innate defense against S. aureus. It
binds to TLR2 (toll like receptor 2) and recognizes the S. aureus
cell wall diacylglycerol, inducing phagocytosis and cytokine
production. In addition, CD36 expression on macrophages plays
a significant role in host control of inflammation and skin
damage during skin infection caused by S. aureus (71). Previous
studies showed that blocking cell surface CXCRI1 expression
could be used as a beneficial treatment against S. aureus
infection by disrupting the balance between inflammation and
bacterial clearance (72). BMP4 facilitates leukocyte recruitment
and inflammation improvement (73). The down-regulation of
CD36, CXCR1, and BMP4 expression is not conducive to
eliminating the bacteria but may be beneficial for S. aureus to
evade its destruction.

Analysis of DEIncRNA target profiles revealed that
DEIncRNAs participate in the regulation of the “INF signaling
pathway” and “NF-kappa B signaling pathway.” The pro-
inflammatory cytokine TNF plays a significant role in apoptosis,
cell proliferation, differentiation, necrosis, and cytokine
induction (74). Activation of NF-kappa B is thought to guide
the transcription of genes associated with inflammation and cell
death or survival (75).
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The integrated analysis identified DEmiRNA targets to be
related to the “mTOR signaling pathway,” “Endocytosis,” and
“PI3K-AKT signaling pathway”. PI3K regulates its downstream
effector’s activity through the AKT/mTOR/p705°X signaling axis,
thereby altering the production of cytokines, and thus could
be a potential target for inflammatory diseases (76). Previous
studies have also shown that Bta-miR-145 expression was down-
regulated in udder tissues after S. aureus infection, consistent
with our research. It was also found that overexpression of Bta-
miR-145 significantly inhibited the proliferation of bMECs, and
also reduced the secretion of IL-12 and TNF-q, but increased the
secretion of IFN-y (77). Therefore, the down-regulation of Bta-
miR-145 is conducive to the production of IL-12 and TNF-a, thus
inducing an immune response.

CONCLUSION

In the current study, we characterized the whole transcriptome
profiles of bovine mammary epithelial cells infected
intracellularly with S. aureus by RNA-seq. S. aureus invading
into bovine mammary epithelial cells can trigger the immune
responses, ROS production, and the expression of genes involved
in autophagy. These differentially expressed RNAs may be
critical in understanding the molecular mechanisms of S. aureus
to survive in bovine mammary epithelial cells. It thus provides
novel insights into the responses to bovine mammary epithelial
cells with intracellular S. aureus.
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