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Snow leopards inhabit the cold, arid environments of the high mountains of South and

Central Asia. These living conditions likely affect the abundance and composition of

microbes with the capacity to infect these animals. It is important to investigate the

microbes that snow leopards are exposed to detect infectious disease threats and define

a baseline for future changes that may impact the health of this endangered felid. In this

work, next-generation sequencing is used to investigate the fecal (and in a few cases

serum) virome of seven snow leopards from the Tost Mountains of Mongolia. The viral

species to which the greatest number of sequences reads showed high similarity was

rotavirus. Excluding one animal with overall very few sequence reads, four of six animals

(67%) displayed evidence of rotavirus infection. A serum sample of a male and a rectal

swab of a female snow leopard produced sequence reads identical or closely similar

to felid herpesvirus 1, providing the first evidence that this virus infects snow leopards.

In addition, the rectal swab from the same female also displayed sequence reads most

similar to feline papillomavirus 2, which is the first evidence for this virus infecting snow

leopards. The rectal swabs from all animals also showed evidence for the presence

of small circular DNA viruses, predominantly Circular Rep-Encoding Single-Stranded

(CRESS) DNA viruses and in one case feline anellovirus. Several of the viruses implicated

in the present study could affect the health of snow leopards. In animals which are under

environmental stress, for example, young dispersing individuals and lactating females,

health issues may be exacerbated by latent virus infections.

Keywords: snow leopard, free-ranging, virome, Mongolia, rectal swabs, next-generating sequencing, Panthera

unica

INTRODUCTION

Infectious diseases can affect the abundance and distribution of animals by reducing survival
and reproduction (1, 2). Even small changes in these parameters can substantially increase the
extinction risk, for example, in species with slow reproduction or where populations are small (3).
This applies to many large carnivore populations as they exhibit a low reproductive output, occur
at low densities naturally, and populations are often further reduced and isolated as a consequence
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of habitat destruction, overexploitation of prey species, and
human persecution (4). Reduced survival can also disrupt the
social system, where the replacement of dominant males can
result in infanticide of young, thus further reducing population
numbers (4–6). The detrimental effects that a disease outbreak
can cause a felid population are well-exemplified by the canine
distemper virus outbreak in Serengeti lions (Panthera leo) in
1994. The outbreak, probably originating from domestic dogs
(Canis familiaris), claimed about 30% of the lion population
and is one of the most cited examples of the potential impact
that disease can have on felid populations (7). In contrast to
the Serengeti lions, which are frequently observed, such an
outbreak could occur unnoticed in snow leopards and other less
studied felids.

The snow leopard (Panthera uncia) is a large felid inhabiting
the high mountains of South and Central Asia. The species
distribution range covers 1.2–1.6 million km2, spanning over
12 countries (8). Snow leopards appear to utilize relatively
large territories (9, 10) and occur at low densities (0.9–1.8
adults/100 km2) (11). The cold, arid environment inhabited by
snow leopards likely has lower microbial abundance than in
more temperate and mesic habitats (12). Consequently, snow
leopards should encounter disease agents less frequently than
many other carnivores and may therefore exhibit lower intrinsic
levels of immunity, rendering it vulnerable to disease outbreaks
(13, 14). Snow leopards are likely susceptible to most infectious
diseases that are known to affect the domestic cat (Felis catus), in
addition, spill over from other felids and prey animals contribute
to the spectrum of infectious diseases that could affect the health
of snow leopards (13, 14). Direct routes of transmission are
likely most common, these include both intraspecies contact
(mating, fighting, socializing) and interspecies contact with wild
and domestic prey, other carnivores, and scavengers. To a degree,
indirect routes of transmission such as water holes, carcasses,
marking sites, and human settlements could also play a role in
disease transmission.

Except for a few incidental reports and a recent study focusing
on tick-borne bacteria from ticks collected from snow leopards
and protozoan infections evidenced by serology (15), there
are no published data on infectious diseases in free-ranging
snow leopards, owing to their remote and inaccessible habitat,
combined with the species’ secretive nature. Accordingly, there
is very limited information regarding the prevalence and thus
potential threat of infectious diseases to snow leopards or which
microorganisms are most commonly found in the species (14).
Therefore, to begin mapping the occurrence of infectious agents
in free-ranging snow leopards, we collected samples from eight
animals captured in a telemetry study (16). In the present study,
we report viral sequences that were obtained by next-generation
sequencing (NGS) of rectal swab samples and, for a few animals,
also serum samples from snow leopards in the Tost Mountains
of Mongolia.

MATERIALS AND METHODS

Study Area
This study was conducted in the Tost Mountains (43◦N,
100◦E), a relatively isolated range of mountain massifs

(1,600–2,500m.a.s.l.) in the Gobi Desert in southern Mongolia.
Temperatures range from 38◦C in the summer to −35◦C in
the winter, and the annual precipitation is <130mm of which
most falls as rain from June to August. An estimated 10–14
adult snow leopards inhabit the 1,700 km2 large area (17)
where they prey mainly on ibex (Capra sibirica), domestic goats
(Capra aegagrus hircus), and argali sheep (Ovis ammon) (18).
The human population consists of ∼90 semi-nomadic herder
families who move seasonally with their livestock, comprising of
∼32,000 goats and sheep (Ovis aries), ∼1,100 camels (Camelus
bactrianus), and ∼120 horses (Equus ferus caballus). In addition,
most families have at least one dog that either follow the livestock
or roam freely, usually spending the night close to the family’s
camp. Sympatric predators include gray wolf (Canis lupus),
Eurasian lynx (Lynx lynx), red fox (Vulpes vulpes), and marten
(Martes spp.).

Study Animals and Sampling
Snow leopards were captured using modified Aldrich-style foot
snares where cats were immobilized with a combination of
medetomidine and tiletamine–zolazepam. See reference (16) for
a detailed description of capture procedures. We collected rectal
swabs from eight snow leopards (three adult males, one subadult
male, and four females) from October 2011 to May 2013 by
inserting an Amies charcoal cotton swab (Copan Italia S.p.A.)
into the rectum and moving it along the wall. The swabs were
immediately placed in the charcoal medium. Blood was collected
from the cephalic vein and placed in 4ml blood serum separating
tubes (BD vacutainer, Plymouth, UK). Serum tubes stood for
12–15 h to separate cells and serum, which was then decanted
into cryovials. We obtained enough serum for NGS from three
individuals. In the camp, swabs were stored in a cool and dark
box, and sera were kept at −18◦C until the samples could be
transported to the National Veterinary Institute in Uppsala,
Sweden (within 0.5–2.5 months after capture).

Sample Preparation
Rectal swabs from the eight animals (F3, F7, F8, F9, M1,
M7, M9, M10) were immersed in 1,200 µl TE-buffer [100mM
Tris, 10mM ethylenediaminetetraacetic acid (EDTA), pH 8.0]
and homogenized by shaking the tubes vigorously for 1 h at
room temperature. After centrifugation (200 g for 5min), the
supernatant was collected and filtered through a 0.45µm filter
to remove particles of bacterium-size and larger. The filtrate was
treated with 400 U/ml of DNase I (Roche Applied Science) and
10µg/ml of RNase A (Invitrogen) in 1× DNase buffer (Roche
Applied Science) at 37◦C for 2 h to degrade unprotected nucleic
acids. Nuclease treatment was also applied to serum samples for
three animals (F3, M1, M9) in the same way, and subsequently,
DNA and RNA were extracted from 200 µl each of the nuclease-
treated samples (theM1 serum sample was also prepared without
nuclease treatment) using QIAamp DNA Mini Kit (Qiagen) and
a combination of TRIzol (Invitrogen) and RNeasy kit (Qiagen),
respectively, following the manufactures’ instructions. Sequence-
independent single-primer amplification (SISPA) was applied
to both RNA and DNA as follows: SuperScript III first-strand
synthesis kit (Invitrogen) was used to generate cDNA from the
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RNA preparation. The reaction was primed by a primer FR20RV-
6N (19) following the manufacturer’s instructions. Double-
stranded DNAwas obtained by incubation of the cDNA products
with Klenow Fragment DNA polymerase (New England Biolabs)
at 37◦C for 1 h. Subsequently, the Klenow enzymewas inactivated
at 75◦C for 10min. DNA templates were also tagged with the
FR20RV-6N primer during a Klenow Fragment reaction at the
same conditions. Random amplification of the tagged cDNA
and DNA was performed using the primer FR20RV (19) under
the following conditions: 10min at 95◦C, followed by 40 cycles
of 30 s at 95◦C, 30 s at 58◦C, and 90 s at 72◦C. The reaction
was ended with an extra elongation step at 72◦C for 10min.
The PCR reaction contained 1× PCR buffer, 2.5mM MgCl2,
2.5mM dNTPs, 0.4mM primer, and 1.25U AmpliTaq Gold DNA
polymerase (Applied Biosystems). The amplified DNA fragments
were further treated with EcoRV (New England Biolabs) to
remove the amplification primers and purified by QIAquick PCR
purification kit (Qiagen). Concentration was measured with a
Qubit fluorometer using Qubit dsDNA HS (High Sensitivity)
Assay Kit (Invitrogen), and a 0.2 ng/µl aliquot was prepared for
each sample. Nextera XTDNALibrary Preparation Kit (Illumina,
Inc.) was used to fragment the input DNA and tag the DNA from
each sample with a pair of unique index primers by a 12-cycle
PCR amplification. The libraries were purified with AMPure XP
beads (Sigma), and Agilent High-Sensitivity DNA Kit (Agilent)
was used to verify the length distribution of the fragments
and for quantification of the libraries. Finally, an equimolar
amount (2 nM) of each sample library with sufficient quality and
concentration was pooled, thus constituting two pools of seven
serum sample preparations and 15 rectal sample preparations,
respectively. The pools were denatured and further diluted to a
final concentration of 10 pM. Sequencing was performed on a
MiSeq desktop sequencer using MiSeq 500 cycles reagent kit 500
(v. 2) (Illumina, Inc.). Library preparation and sequencing were
performed according to the manufacturer’s instructions.

Bioinformatics
The sequence reads were assigned to species by homology
searching the NCBI nt database with the BLASTn algorithm
as implemented on a Decypher server (TimeLogic R©, Carlsbad,
CA). Before blasting, the sequence reads were quality
checked and trimmed using HTStream v.1.0.0 (HTStream,
RRID:SCR_018354) (20). To reduce the computational burden,
the trimmed reads were first blasted against the VRL section
of the NCBI nt database (i.e., the viral sequences) with a cutoff
expect value (e-value) of 10−5. The reads with BLASTn hits to the
VRL database were collected with an in-house python script and
subsequently blasted (BLASTn) against the whole nt database
with the same e-value. Finally, the reads with best hits to viral
sequences in the nt database were collected with an in-house
python script. This procedure reduced the computational burden
to extract the reads with closest homology to viral sequences in
the nt NCBI database with about 90%. These selected subsets of
sequence reads were then subjected to de novo assembly using
the CLC genomics workbench. The reads were mapped back to
the assembled contigs, and consensus sequences were extracted
by using a low coverage threshold of 5 and a noise threshold of

0.3 (with a secondary nucleotide present above this fraction, a
degenerate nucleotide was inserted in the consensus sequence).

The consensus sequences were aligned with related reference
sequences for GenBank using a gap open and extension penalty
of 10 and 1, respectively. End gaps were free since sequences
of different lengths were aligned. Before phylogenetic trees were
constructed, the sequences of the alignment were trimmed to
the same length. The phylogenetic trees were created using the
neighborhood-joining method with the Jukes–Cantor distance
measure. The topology was verified using 1,000 bootstrap
calculations, and only branches with better than 60% support
are shown.

Genotyping of rotavirus A (RVA) were carried out by the
reimplementation of the RotaC2.0 (21) at the NIAID Virus
Pathogen Database and Analysis Resource [Virus Pathogen
Resource (ViPR), RRID:SCR_012983] (22, 23).

RESULTS

Extracted RNA and DNA from eight rectal swabs and three
sera were processed for NGS. Only seven rectal samples and
three serum samples produced enough sequence reads for further
analysis. The samples produced around 2 million sequence
reads each. The inference of virus sequences in the snow
leopard rectal swabs samples, and sera, was carried out by
finding the most closely homologous sequence in GenBank
by the blastn algorithm (24). The results are summarized in
Table 1. As expected, most of the reads were bacterial despite
the experimental procedures to enrich viral sequences in the
extracted nucleic acids. The number of viral reads varied in the
samples in the range 38–1,844. Generally, mostly DNA viruses
were detected with the notable exception of RVA, a double-
stranded RNA virus, which was clearly the most abundant
virus species.

Rotavirus A
The most striking feature of the rectal swab samples is the large
abundance of RVA reads. Four of seven samples (F1, M1, M10,
and F7) contain RVA with the number of sequence reads in the
range 88–1,635. From animal M1 and M10, a 1,036- and 1,161-
nt-long fragment of the NSP1 and VP3 gene, respectively, could
be assembled, which allowed genotyping of these fragments.
The average read coverage of these contigs was 76 and 223
reads, respectively. After mapping back the reads to the contigs
and applying a conservative coverage lower limit of 5 reads,
the lengths of the contigs were reduced to 771 and 1,127 nt.
These trimmed contigs were used for phylogenetic analysis.
The NSP1 contig was of genotype A3 and the VP3 contig was
of genotype M2, as determined by the RVA genotyping tool
available at the ViPR resource (https://www.viprbrc.org). Of the
11 NSP1 genes from feline RVA available at the ViPR database,
the most common genotype was A3 with five members. There
were also 11 VP3 genes from feline RVA strains represented at
the ViPR resource. Of these, two were of the M2 genotype and
the remaining nine were all of the M3 genotype. Phylogenetic
analysis of the VP3 fragment shows that the snow leopard
fragment is most similar to a human isolate from Japan and is
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TABLE 1 | Summary of blastn hits to the GenBank nt (database release 228) supported by at least four reads each.

Animal Sex Collection date Rectal swabs and sera (*)

Virus blastn hits No. of reads Min e-value

M1 M 16-10-2011 Reoviridae (Rotavirus A) 406 10−113

Virus Chimp162 8 4·10−61

Circoviridae (Bat circovirus) 4 2·10−16

*Astroviridae (Mamastrovirus) 191 2·10−6

*Virus Chimp162 58 10−116

*Circoviridae (Bat Circovirus) 7 10−27

*Unclassified Picornavirales (Posavirus 1) 6 2·10−11

F3 F 18-10-2011 Reoviridae (Rotavirus A) 1,049 10−118

Unclassified ssDNA viruses (Sewage-associated circular DNA

virus-19)

225 2·10−18

Herpesviridae (Human gammaherpesvirus 4; Equine herpesvirus 4) 203 2·10−43-8·10−42

Unclassified ssDNA viruses (Circovirus-like genome DCCV-13;

Circovirus-like genome RW-E; CRESS DNA virus; *Lake

Sarah-associated circular virus-36; *CRESS DNA virus)

13 3·10−35-7·10−10

M7 M 22-05-2013 Virus Chimp162 106 10−98

F7 F 25-04-2012 Reoviridae (Rotavirus A) 88 10−110

Virus Chimp 162 14 3·10−77

Unclassified ssDNA viruses (Dragonfly larvae-associated circular

virus-3)

9 6·10−7

Unclassified Picornavirales (Posavirus 1) 5 10−8

Herpesviridae (Equine herpesvirus 4; Suid alphaherpesvirus 1;

Epstein–Barr virus; Human herpesvirus 1)

4 10−8-5·10−6

M9 M 26-10-2011 Anelloviridae (Feline anellovirus; Giant panda anellovirus) 20 2·10−17-5·10−9

Anelloviridae (Torque teno felis virus 2; Torque teno Leptonychotes

weddellii virus-1; Paguma larvata torque teno virus; Torque teno

didelphis albiventris virus)

15 2·10−17-4·10−6

Herpesviridae (Human betaherpesvirus 6B) 4 4·10−29

F9 F 23-06-2012 Papillomaviridae (Feline papillomavirus 2) 108 8·10−42

Herpesviridae (Felid herpesvirus 1; Papiine herpesvirus 2; Macaine

alfaherpesvirus; Cyprinid herpesvirus 1; Epstein–Barr herpesvirus;

Human herpesvirus 7; Ateline alfaherpesvirus; Equid herpesvirus 4)

12 10−111-5·10−6

Poxviridae (Volepox virus) 6 3·10−11

M10 M 18-04-2012 Reoviridae (Rotavirus A) 1,635 10−118

Circoviridae (Circovirus) 26 10−121

Genomoviridae/Unclassified ssDNA viruses (Sewage-associated

circular DNA virus-7, 19, 32; Spider-associated circular virus 2;

Gemycircularvirus gemy-ch-rat1; Sewage derived

gemycircularvirus 2; Lynx canadensis feces-associated

genomovirus; CRESS DNA virus)

26 2·10−87-2·10−6

Virus Chimp162 8 4·10−76

Herpesviridae (Gallid herpesvirus 2; Human herpesvirus 6; Equid

herpesvirus 1; Human herpesvirus 7)

6 2·10−17-3·10−6

Astroviridae (Mamastrovirus) 4 3·10−6

Hits have been grouped according to relatedness. The minimum e-value is the smallest e-value among the reads. For results with several grouped species, the range of minimum

e-values is shown. An asterisk indicates results from the serum samples.

found in a clade with rotaviruses isolated from many different
host species, including isolates from primates, bovids, cervids,
cats, pigs, and horse (Figure 1). The NSP1 sequence is also found
in clade containing rotavirus isolates from humans and bovids
(Figure 2). It should be noted that the feline isolates available in

GenBank are all isolated from domestic cats, and we have not
been able to find rotavirus sequences for comparison from wild
felids. In general, the rotavirus sequences found in snow leopard
are not related to rotavirus sequences isolated from cats available
in GenBank (Figures 1, 2).
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FIGURE 1 | Neighbor-joining phylogenetic tree for a 1,127-nt-long fragment of the rotavirus VP3 gene obtained from the rectal swab of animal M10 together with

selected sequences from GenBank (NCBI accessions are given within parentheses). These were selected to include the representative from different hosts with the

highest similarity, except that all available isolates from felids were included if not identical. The phylogenetic trees were constructed with the CLC genomics

workbench using the neighbor-joining method with the Jukes–Cantor distance measure with 1,000 bootstrap calculations. Only branches with at least 60% bootstrap

support are shown. The NCBI accession of the novel snow leopard VP3 sequence is shown in red.

FIGURE 2 | Neighbor-joining phylogenetic tree for a 771-nt-long fragment of the rotavirus NSP1 gene obtained from the rectal swab of animal M1 together with

selected sequences from GenBank (NCBI accessions are given within parentheses). These were selected to include the representative from different hosts with the

highest similarity, except that all available isolates from felids were included if not identical. The phylogenetic trees were constructed with the CLC genomics

workbench using the neighbor-joining method with the Jukes–Cantor distance measure with 1,000 bootstrap calculations. Only branches with at least 60% bootstrap

support are shown. The NCBI accession of the novel snow leopard NSP1 sequence is shown in red.

Herpesviruses
Most samples from the seven animals had sequence reads that
were similar to various herpesviruses (Table 1). However, few
reads with relatively high e-values and blastn hits to herpesviruses
found in distantly related host species make most of these hits of
questionable relevance. The exceptions are the rectal swab from
F9 (Table 1) and the serum sample fromM1 (not in Table 1 since
only two reads were found), which after assembly of the reads

contained a 228- and 289-nt contig, respectively, with sequence
identical or closely similar to segments of felid herpesvirus 1 (e.g.,
GenBank accession MH070348).

Papillomaviruses
The swab from one of the female snow leopards (F9) produced
108 reads, which could be assembled into a 489-nt-long
contig from the E1 gene most similar to feline papillomavirus
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type 2 (Table 1). After mapping back the reads on the contigs
(average coverage 43 reads) and applying a conservative lower
limit for coverage of 5 reads, the length of the contig was reduced
to 435 nt. Phylogenetic analysis of this E1 fragment with related
papillomaviruses shows that the papillomavirus sequence found
in this snow leopard female was most similar to the feline
papillomavirus type 2 (Figure 3). The nucleotide identity with
feline papillomavirus type 2 (NC_038520) is 74%, and the amino
acid identity is 91%.

Circular Rep-Encoding Single-Stranded
DNA Viruses and Anelloviruses
The rectal swabs of four of seven animals (M1, M7, F7,
M10) contained viral sequences that were very similar to
virus Chimp162 (Table 1). This is a Rep-protein sequence
obtained from chimpanzee feces sample collected in Uganda and
likely originates from a Circular Rep-Encoding Single-Stranded
(CRESS) DNA virus (25). The prevalence of CRESS DNA viruses
is further manifested in animal F7 by blast hits to Dragonfly
larvae-associated circular virus-3 (26), Lake Sarah-associated
circular virus-36 (27), and related viruses in the serum of animal
F3 and several hits to the Genomoviridae family for animal M10
(Table 1). All these blast hits indicate that CRESS DNA viruses
are common in snow leopards and can be found both in the
digestive tract and in the blood. Indeed, circoviruses also belong
to the CRESS DNA virus group, and the fecal swabs of the snow
leopard males M1 and M10 both show evidence of the presence
of a circovirus. In the case of M1, sequence reads similar to bat
circovirus are found both in the swab sample and in the sera.
The fecal swab from the male snow leopard M9 did not show
any reads related to CRESS DNA viruses; however, the nucleic
acid preparation optimized for DNA viruses showed 35 reads

with the highest similarity to the Anelloviridae family. The feline
anellovirus displayed the closest similarity with an e-value of 2
× 10−17 (Table 1), which is relatively high, indicating that the
putative snow leopard anellovirus only is distantly related to the
feline anellovirus.

Other Viruses
Samples from animal F7 and M1 have sequence reads with
homology to porcine stool-associated virus 1 (posavirus 1) (28).
The sequence similarity is low as measured by the e-values
(Table 1), and the number of reads is low. There is thus some
evidence that a virus related to posavirus-1 of the Picornavirales
order may be present in the snow leopards, but this requires
further substantiation. This is also true for the reads found with
weak homology to astroviruses (animals M1 and M10; Table 1).
Astroviruses are frequently found in stool samples from many
mammals, and our study suggests that astrovirus may also infect
snow leopards, but further investigations are needed to verify
astrovirus infections in snow leopards. Six reads are most similar
to a volepox virus in animal F9 (Table 1), but the similarity is
relatively low, and the finding needs further support. Poxviruses
do not normally infect felids, although cowpox is an exception
(29). Snow leopards feed on a large array of prey species and
can occasionally kill smaller animals such as voles (30), and the
volepox virus reads might indicate infected prey animal rather
than infection of the snow leopard.

DISCUSSION

NGS provides a powerful tool for metagenomic investigation and
has led to identification of a multitude of novel viruses (31–33).
In the present work, we have investigated the intestinal virome

FIGURE 3 | Neighbor-joining phylogenetic tree for a 435-nt-long fragment of the papillomavirus E1 gene obtained from the rectal swab of animal F9 together with

selected sequences from GenBank (NCBI accessions are given within parentheses). These were selected to include viral sequences obtained from related host

species or for showing high similarity. The phylogenetic trees were constructed with the CLC genomics workbench using the neighbor-joining method with the

Jukes–Cantor distance measure with 1,000 bootstrap calculations. Only branches with at least 60% bootstrap support are shown. The NCBI accession of the snow

leopard papillomavirus sequence is shown in red.
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of snow leopards by rectal swab sampling and also sera for a
subset of the animals. Respiratory viruses are consequently not
investigated. In addition, cell-associated viruses of the blood will
be detected to a less degree in sera compared to whole blood or
buffy coat samples.

The cutoff value for the degree of similarity considered a hit
used in the BLAST homology search is set relatively low to make
sure that asmany potential virus reads as possible are found. This,
on the other hand,means that false hitsmay occur and, if a related
virus is absent from the database, the probability for false hits
increases. In addition, viruses not infecting the snow leopard but
other microorganisms that in turn has infected the snow leopard
will also end up as virus hits as well as viruses infecting prey
consumed. All these types of presumably false hits have been
manually excluded and are not listed in Table 1. The complete
list of all virus hits is found in the Supplementary Material.

Reads most similar to RVA are by far the most common viral
reads in the fecal swab samples. Many RVA reads were found in
animals sampled both in 2011 and 2012, and it appears likely
that rotavirus infections are common among snow leopards.
Rotaviruses are important enteric pathogens both for humans
and animals (34, 35). Reports on rotavirus infections in wild
felids are lacking, and the scarce reports in domestic cats have not
indicated serious impacts of the disease (36), although exceptions
exist (37). In a large epidemiological investigation of RVA in cats
housed within 25 rescue catteries across the United Kingdom,
only 3% of the 1,727 cats sampled were infected (36). Although
only eight snow leopards were sampled, the present study shows
that the RVA prevalence of ∼67% in snow leopards in the Tost
Mountains of Mongolia is surprisingly high compared to existing
knowledge. The genotypes of the NSP1 and VP3 genes of RVA
could be determined and were found to be A3 and M2. These
genotypes have also been found for RVA infecting domestic
cats. The significance of RVA infections for the health status
of snow leopards remains to be determined. It is known that
rotaviruses frequently switch host and can establish productive
infections leading to new strains in the novel host (38). It cannot
be excluded that the rotaviruses observed here originate from
prey either via a host switch event or alternatively from feeding
on infected prey. The similarity of the snow leopard rotaviral
sequences to bovine rotaviruses rather than feline rotaviruses
may indicate that.

Herpesvirus is known to occur in wild felids (39) and can in
particular affect the health and survival of juveniles (40). Feline
herpesvirus type 1 (FeHV-1) is an important cause of acute upper
respiratory tract and ocular disease in cats (41). In the present
study, a 289-nt-long contig assembled from a serum sample
from animal M1 and a 228-nt-long read from the rectal swab
from animal F9 were found to be identical or nearly identical
to segments from the genome of the FeHV-1 strain KANS_02.
This represents to our knowledge the first indication that FeHV-1
circulates among snow leopards.

It was observed some 20 years ago that different patterns
were observed with immunohistochemical screening for oral
and cutaneous papillomavirus-induced lesions both for snow
leopards kept in captivity and domestic cats, indicating the
presence of two distinct papillomavirus species (42). The

only snow leopard papillomavirus that has been genetically
characterized (UuPV-1) is similar to feline papillomavirus type 1
(43). However, the papillomavirus discovered in the present study
is more similar to feline papillomavirus type 2 (Figure 3). There
is increasing evidence that feline papillomavirus type 2 plays a
significant role in the development of skin cancers of domestic
cats (44) and could potentially also cause skin cancer among
snow leopards.

With application of NGS, a multitude of small circular
DNA viruses have been discovered (45–47). For example, many
single-stranded DNA (ssDNA) viruses encoding a replication-
associated protein have been discovered, and since they by
phylogenetic analysis appear to belong to yet uncharacterized but
related virus families, they are collectively referred to as CRESS
DNA viruses (46, 47). Among the CRESS DNA viruses detected
in vertebrates, the Circoviridae and Genomoviridae are well-
established and prevalent. Viruses in the Parvoviridae family,
which can cause the serious disease feline infectious enteritis
(48), have small linear single-stranded DNA genome and thus
do not belong to the CRESS DNA virus group. But they have
a similar genome organization, and all encode a homologous
Rep-protein. Besides the CRESS DNA viruses, also members
of the Anelloviridae are circular single-stranded DNA viruses
commonly found infecting vertebrates. In contrast to the CRESS
DNA viruses, anelloviruses lack a Rep-coding gene (49).

In the present study, we observed blast hits with best matches
to the putative parvovirus NIH-CQV. However, these viral
sequences have been shown to be contaminants from the Qiagen
extraction spin columns (50) and will not be further discussed.
No other parvovirus blast hits were found.

Similar to many other studies [e.g., (25)] of fecal microbiome,
many reads from small circular DNA viruses were observed
in the present study (Table 1). In particular, virus Chimp162
(25) is prevalent and is found in four of seven fecal swab
samples. Another significant finding of small circular DNA virus
is feline anellovirus found in one animal in this study. The
clinical significance of these types of viruses has however not yet
been well-established.

Finally, it should be noted that few RNA virus reads are
found in the present study. The main exception is rotavirus,
which is a double-stranded RNA virus known to be very stable
and resistant in the environment (51, 52). These observations
could be interpreted as the RNA to a large extent has
not been well-preserved on the rectal swab samples. The
rectal swabs were maintained at ambient temperature during
several months at the site of collection before they were
transported to locations where they could be kept in freezers.
Further sampling taking precautions for RNA preservation, for
instance by using PrimeStore R© molecular transport medium
(LonghornTM Vaccines and Diagnostics, LLC) or RNAlaterTM,
might be necessary to investigate the presence of other potentially
important RNA viruses in snow leopards.

Several of the viruses indicated in the present study such as
feline herpesvirus 1, feline papillomavirus 2, and RVA could affect
the health of snow leopards (37, 41, 44). The impact that these
viruses may have on the health of the snow leopards largely
depends on the host immunity, which in turn is modulated by
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other factors such as availability of prey, suitable habitat, and
stress. Thus, in sensitive animals that are under environmental
stress, for example, young dispersing individuals and lactating
females, any acquired health issues may be exacerbated by
latent virus infections, which for example papillomavirus, and
herpesvirus are known to establish.

A complication of this study was the isolated location where
the animals reside, prohibiting optimal sample maintenance.
This fact will bias the viruses observed toward those with DNA
genomes and those that possess a more stable capsid structure
that protects the nucleic acids better. With these limitations in
mind, this is nonetheless a first step toward establishing a baseline
characterizing the viral pathogens most commonly found in
snow leopards. It is important to continue the sampling in our
study area and to expand into other parts of the snow leopard
distribution range.
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