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Apoptosis is a tightly regulated mechanism of cell death that plays important roles in

various biological processes including biological evolution, multiple system development,

anticancer, and viral infections. Swine enteropathogenic coronaviruses invade and

damage villous epithelial cells of the small intestine causing severe diarrhea with high

mortality rate in suckling piglets. Transmissible gastroenteritis virus (TGEV), Porcine

epidemic diarrhea virus (PEDV), Porcine deltacoronavirus (PDCoV), and Swine acute

diarrhea syndrome coronavirus (SADS-CoV) are on the top list of commonly-seen swine

coronaviruses with a feature of diarrhea, resulting in significant economic losses to the

swine industry worldwide. Apoptosis has been shown to be involved in the pathogenesis

process of animal virus infectious diseases. Understanding the roles of apoptosis in

host responses against swine enteropathogenic coronaviruses infection contribute to

disease prevention and control. Here we summarize the recent findings that focus on

the apoptosis during swine coronaviruses infection, in particular, TGEV, PEDV, PDCoV,

and SADS-CoV.

Keywords: swine enteropathogenic coronaviruses, transmissible gastroenteritis virus, porcine epidemic diarrhea

virus, porcine deltacoronavirus, swine acute diarrhea syndrome coronavirus, swine, apoptosis

INTRODUCTION

Apoptosis, also known as programmed cell death, is a ubiquitous mode of cell death known to
be responsible for clearance of unwanted, injured, or virus-infected cells (1, 2). Cells undergoing
apoptosis are accompanied by characteristic morphological changes, including cell shrinkage and
deformation, chromatin condensation, nuclear fragmentation, and plasma membrane blebbing,
which forms the apoptotic body containing the fragments of nucleus or cytoplasm (3). Cell
apoptosis is an active process, which involves a series of genes activation and expression, various
proteins regulation. To date, it was reported that there are two main apoptotic pathways:
the extrinsic/death receptor pathway (4) and the intrinsic/mitochondrial pathway (5). Death
receptors belong to the tumor necrosis factor receptor (TNFR) superfamily (6). Members of the
TNFR family are type I membrane surface receptors, which include the Fatty acid synthetase
receptor (FasR), TNFR, Death receptor (DR)3, DR4, DR5, etc. (7–11). Their ligands belong
to type II membrane proteins, which include Fatty acid synthetase ligand (FasL), TNF-α
Apo3 ligand (Apo3L), Apo2 ligand (Apo2L), etc. (7–11). Upon death receptor-ligand binding,
the adapter protein Fas-associated death domain (FADD) is recruited by death domain, then
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associates with pro-cysteinyl aspartic acid protease (caspase)-
8 via dimerization of the death effector domain and a death-
inducing signaling complex (DISC) is formed to activate caspase-
8, then caspase-8 results in the caspase-3 activation (12–14).
Once caspase-3 is activated, the execution phase of apoptosis
is triggered (12–14). The mitochondrial pathways involve some
chemical or physical stimulus factors leading to change of the
permeability of mitochondrial membrane, resulting in release
of the cytochrome c (cyt c) or other apoptotic molecules into
the cytoplasm cavity and activation of downstream caspases
to initiate apoptosis (15, 16). In addition, T-cell mediated
cytotoxicity involved with perforin-granzyme to kill target cells
is known as another apoptotic pathway (17).

It is known that many viruses can evolve various sophisticated
strategies to modulate apoptosis as a critical armament to
complete their replication cycle (18), reflected in the relationship
between viral infection and cell apoptosis is bidirectional.
Viruses could hijack host’s apoptotic pathway to delay apoptotic
response, providing sufficient time for maximizing progeny
virus production (19). On the other hand, viruses could induce
apoptosis to enable the release and dissemination of viral progeny
for further invasion to the neighboring cells at the late stages of
viral infection (18).

Porcine coronaviruses (CoVs) are significant enteric and
respiratory pathogens of swine. Six porcine CoVs have so far
been identified: transmissible gastroenteritis virus (TGEV) (20),
porcine respiratory coronavirus (PRCV) (21), porcine epidemic
diarrhea virus (PEDV) (22), and swine acute diarrhea syndrome

FIGURE 1 | Geographic distribution of (A) Transmissible gastroenteritis virus (TGEV), (B) Porcine epidemic diarrhea virus (PEDV), (C) Porcine deltacoronavirus

(PDCoV), and (D) Swine acute diarrhea syndrome coronavirus (SADS-CoV).

coronavirus (SADS-CoV) (23) in the Alphacoronavirus genus;
porcine hemagglutinating encephalomyelitis virus (PHEV) (24)
in the Betacoronavirus genus; porcine deltacoronavirus (PDCoV)
(25) in the Deltacoronavirus genus. The clinical signs of swine
enteropathogenic CoVs including TGEV, PEDV, PDCoV, and
SADS-CoV are characterized by severe watery diarrhea with
subsequent dehydration in pigs of all ages, and a high mortality
rate in suckling piglets (26–29). The molecular surveillance
studies indicated that swine enteropathogenic CoVs were
common viral pathogen of pigs around the world (30–44)
(Figure 1). In addition, co-infections of these diarrhea-associated
viruses were commonly found in pig farms (45). For swine
enteropathogenic CoVs infection prevention, the administration
of vaccines and antiviral drugs are important tool. Currently
a number of vaccines and antiviral drugs, such as killed, live-
attenuated vaccine, shRNA expression vector are widely used
to prevent swine enteropathogenic CoVs infection (46–49).
However, it still can not stop the swine enteropathogenic CoVs
outbreak, due to they are not optimal in terms of safety and
efficacy, and large-scale infections still occur, resulting in the
death of large numbers of piglets, causing huge economic
losses to the pig industry (23, 50–52), indicating that a deeper
understanding of the pathogenesis of swine enteropathogenic
CoVs is needed to develop more effective prevention and
control measures.

Although swine enteropathogenic CoVs might infect multiple
organs in pigs, the intestinal tract is the major target organ, where
virus replication is limited to intestinal villus epitheial cells (29,
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TABLE 1 | Compare apoptotic cell death caused by the four swine enteropathogenic CoVs and the related mechanisms.

Virus Genomic

organization

Cell lines used in

apoptotic

studies

Virus-related

apoptotic cell

death occurs in

vitro or in vivo

Apoptotic

pathway

Apoptosis

involved

molecules

Contribution of

apoptosis to

virus

replication

References

TGEV 5′ UTR-

ORF1a/1b-S-3a-

3b-E-M-N-7-3′

UTR

PK-15, IPEC-J2,

HRT18, ST cells

In vitro Extrinsic and

intrinsic

miR-27b, RUNX1,

Bax, Caspase

3/8/9, DJ-1, AIF,

p53, ROS, FasL,

Bax, PARP, p53,

AIF

No effect (54, 61, 74–82)

PEDV 5′ UTR-

ORF1a/1b-ORF2-

ORF3-ORF4-

ORF5-ORF6-3′

UTR

IECs, Vero,

Marc-145 cells

In vitro and in vivo Extrinsic and

intrinsic

Caspase 3/8,

AIFM1, PARP,

p53, ROS, AIF

Facilitate (18, 53, 83–85)

PDCoV 5′

UTR-ORF1a/1b-

S-E-M-ns6-N-ns7

3′ UTR

LLC-PK, ST cells In vitro Intrinsic Bax, Caspase3/9,

Cyt c, PARP

Facilitate (86–89)

SADS-CoV 5′ UTR-

ORF1a/1b-S-NS3-

E-M-N-NS7a-3′

UTR

Vero, IPI-2I cells In vitro Extrinsic and

intrinsic

Fas,

Caspase3/8/9,

Bax, Cyt c, PARP

Facilitate (23, 90)

53). Diarrhea caused by pathogen infection associates with viral
damage to intestinal epithelial cells, which plays an important
role in the nutrition absorption (54), causes a breach of mucosal
physical barriers and reduction of enzyme activities, leading to
electrolyte imbalances, nutrient decomposition and absorption
anomalies (53, 55). It has been reported that apoptosis, which
occurs in the infection course of many CoVs (56, 57), is involved
in viral pathogenesis and disease processes that promote cell
death and tissue injury (58, 59). In this review, the roles of
apoptosis in the pathogenesis and control of TGEV, PEDV,
PDCoV, and SADS-CoV will be discussed, which may provide
some clues to further understandings of pathogenesis of swine
enteropathogenic CoVs.

APOPTOSIS ASSOCIATED WITH
TRANSMISSIBLE GASTROENTERITIS

VIRUS (TGEV)

Virus Characteristics of TGEV
TGEV is an enveloped, single-stranded, positive-sense RNA
virus with a genome of appropriately 28 kb in length (20, 60).
The full-length genome of TGEV is arranged in the order of:
5′ UTR-ORF1a/1b-S-3a-3b-E-M-N-7-3′ UTR, containing nine
open reading frames (ORFs) encoding four structure proteins (S,
M, N, E) and five non-structure proteins (61). The nsp1 protein
of TGEV can efficiently suppress protein synthesis inmammalian
(62). The nsp3 protein of TGEV can cleave a peptide mimicking
the cognate nsp2|nsp3 cleavage site based on its papain-like
protease 1 (PL1(pro)) domain (63). The N protein of TGEV
belongs to a multifunctional phosphoprotein, which can package
the RNA genome into a helical ribonucleoprotein, regulate viral
RNA synthesis, and modulate of host cell metabolism (64). E

protein promotes TGEV maturation in the secretory pathway
(65). S1 and M proteins play a role in viral replication (66,
67). In addition, M protein can affect TGEV-induced IFN-α
production (68).

The Role of Apoptosis in TGEV Infection
It was reported that TGEV invades and replicates in villous
epithelial cells to provoke villous atrophy, causing severe
diarrhea, and dehydration in piglets is the central event in
the pathogenesis of TGEV infection (69, 70). Apoptosis plays
a important role in the pathogenesis process of animal virus
infectious diseases (71–73). Many studies shown that TGEV
infection could induce apoptosis in PK-15 cells, swine testicular
(ST) cells, swine kidney cells, MDCK-APN cells (canine kidney
cell line expressing porcine APN) or human rectal tumor cells
(HRT18, expressing porcine APN) (Table 1) (74–82, 91), which
associates with intracellular molecules, such as p53, reactive
oxygen species (ROS), mitochondrial apoptosis-inducing factor
(AIF), poly (ADP-ribose) polymerase (PARP), and caspases
(74, 82). Interestingly, TGEV may not induce apoptotic death
of intestinal villous enterocytes in vivo (77). TGEV infection
could decrease p300/CBP, down-regulate MDM2, and promote
p53 phosphorylation at serine 15, 20, and 46, resulting in
accumulation and activation of p53, then p53 induced ROS
accumulation which leads to mitochondrial oxidative damage
to release cyt c to the cytosol and thereby activate apoptosis
in PK-15 cells (79, 91). In addition, TGEV infection up-
regulated FasL to activate caspase-8 and cleaved Bid to tBid
which was transferred to the mitochondria, resulting in release
of cyt c into the cytoplasm to activate caspase-9 (78). Moreover,
TGEV could down-regulate Bcl-2, increase the expression
of Bax, and promote the transfer of Bax from cytoplasm
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FIGURE 2 | Diagram of the roles of apoptosis in the pathogenesis of Transmissible gastroenteritis virus (TGEV) infection.

to mitochondria (78). Then, mitochondria released cyt c to
activate caspase-9, and finally caspase-9 activates caspase-3 to
induce cell apoptosis (78). microRNAs (miRNAs) play a key
role in the regulation of virus-induced apoptosis (80). For
instance, miR-27b can directly target the 3′ UTR of runt-
related transcription factor 1 (RUNX1) mRNA to regulate the
expression of RUNX1 in PK-15 cells (80). It has been found
that TGEV infection can down-regulate the expression of miR-
27b in host cells, thereby down-regulating the expression of
RUNX1 and activating the Bax regulated expression of caspase-
9/3 to induce cell apoptosis (80). These results suggest that
TGEV can induce apoptosis through both extrinsic and intrinsic
pathways (Figure 2) in PK-15 cells. Further analysis of the
key viral proteins induced by TGEV showed that N protein
could activate p53, p21 to eliminate cyclin B/cdc2, promote
the transfer of Bax to mitochondria, lead to the release of cyt
c from mitochondria, and activate caspase-9/3 to induce cell
apoptosis (81) (Figure 2). Interestingly, N protein was cleaved
at the position of VVPD359 by activated caspase-6/7 during
TGEV-induced apoptosis (76) in human rectal tumor cell line,
indicating that N protein plays a very important role in the

interaction between virus and host during apoptotic process. It is
well-known that viruses could manipulate apoptosis to complete
their life cycle. It was reported that mitophagy induced by DJ-
1 to counteract apoptosis could promote viral infection during
TGEV infection (54) (Figure 2). The above studies confirmed
that there may be a certain correlation between pathogenicity and
apoptosis after TGEV infection. More research is needed on how
apoptosis affects the proliferation and spread of TGEV during
viral infection.

APOPTOSIS ASSOCIATED WITH PORCINE

EPIDEMIC DIARRHEA VIRUS (PEDV)

Virus Characteristics of PEDV
PEDV is an enveloped, single-stranded, positive-sense RNA
virus with a genome of appropriately 28 kb in length (22). The
viral genome is sequentially composed of 5′ untranslated region
(UTR), open reading frame 1a/1b (ORF1a/1b), ORF2-6, and
3′ UTR (84). The ORF 1a/1b cover the 5′-proximal two-thirds
of the genome coding for replicase polyprotein (pp) la and
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FIGURE 3 | Diagram of the roles of apoptosis in the pathogenesis of Porcine epidemic diarrhea virus (PEDV) infection.

pp1ab, respectively (84, 92). These pp1a and pp1ab polyproteins
can be cleaved by internal proteases generating sixteen non-
structural proteins, namely nsp1-16 (85). Moreover, the genome
of PEDV encodes four structural proteins including the spike
(S), envelope (E), membrane (M), and nucleocapsid (N) proteins,
while ORF3 encodes an accessory protein (84). The functional
form of the S protein is a trimer, which protrude from the
viral membrane thus providing typical crown appearance of
the CoVs (93). It functions during cell entry by binding to
cellular receptors and causing fusion of the viral and host cell
membranes (93). During maturation, the S protein is cleaved
into a receptor-binding subunit S1 and a membrane-fusion
subunit S2 (84). The E protein has ion channel activity and
plays an important role in virion morphogenesis (93, 94). The
M protein is the main component of the viral envelope and
interacts with all structural components during viral particle
assembly (93). The N protein packages the genomic RNA to form
the helical nucleocapsid (RNP) (93). ORF3 protein was known
to be related to PEDV pathogenicity (93). In addition, N and
ORF3 are involved in viral replication (95, 96). Furthermore,
the encoded N, M, E, ORF3, PLP2, nsp 1, nsp 3, nsp 5, nsp
7, nsp 14, nsp 15, nsp 16 proteins can antagonize Interferon-β
production (97–100).

The Role of Apoptosis in PEDV Infection
PEDV infection can damages pig intestinal epithelial tissue
and interfere with epithelial mucosal cell function, resulting
in abnormal nutrient absorption and diarrhea (53). This
phenomenon may be related to apoptosis caused by PEDV
infection. Apoptosis of cells in the lamina propria or submucosa
of PEDV-infected jejunum or ileum was increased (18, 101).
However, PEDV may not induce apoptosis death of intestinal
villous enterocytes in vivo (50), like TGEV and PDCoV. AIF
could translocate to the nucleus to cause apoptosis after PEDV
infection in Vero cells (18). Moreover, PEDV could promote
p53 phosphorylation at serine 20 and subsequent translocation
to the nucleus, leading to p53 activation and thereby apoptosis
in Vero cells (83). During this process, ROS also accumulates to
promote apoptosis (83). In addition, apoptosis was mediated by
activation of caspase-8 and caspase-3 in the late stage of PEDV-
infected Vero cells (102). Treatment with the inhibitor of pro-
apoptotic molecule could significantly inhibit PEDV infection
(18), indicating that apoptosis plays an important role in the
PEDV pathogenicity. However, the host cells showed an anti-
apoptotic effect through LTBR during PEDV infection (103). By
analysis cell apoptosis induced by PEDV-related viral proteins,
it was found that M, nsp1, nsp2, nsp5, nsp6, nsp7, nsp9, nsp13,
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FIGURE 4 | Diagram of the roles of apoptosis in the pathogenesis of Porcine deltacoronavirus (PDCoV) infection.

and S1 proteins can induce apoptosis, among which S1 is the
critical apoptotic-inducing protein in Vero cells, but the detailed
molecular mechanism is still unclear (85). On the contrary,
PEDV encoded ORF3 could inhibit cell apoptosis to promote
virus proliferation (93), indicating that PEDV applies different
strategies to regulate cell apoptosis in different stages of infection
to complete viral proliferation. Although some studies have been
conducted on the influence of PEDV on apoptosis (Figure 3),
many questions remain unclear, such as how does S1 induce
apoptosis? And what role does S1 portein induced-apoptosis play
in virus-caused diarrhea? Clarifying these issues will help explain
how PEDV causes diarrhea in pigs.

APOPTOSIS ASSOCIATED WITH PORCINE

DELTACORONAVIRUS (PDCoV)

Virus Characteristics of PDCoV
PDCoV is an enveloped, single-stranded, positive-sense RNA
virus with a genome of appropriately 25 kb in length (26).
The genome organization of PDCoV are in the order of:
5′ untranslated region (UTR), open reading frame 1a/1b
(ORF1a/1b), spike (S), envelope (E), membrane (M), non-
structural protein 6 (ns6), nucleocapsid (N), non-structural

protein 7 (ns7), and 3′ UTR (86, 87). The diverse dimerization
forms of nsp9 protein could enhance their nucleic acid binding
affinity (104). ns6 protein is an important virulence factor of
PDCoV (105). It is known that N, nsp5, nsp15, ns6 contribute
to inhibit interferon-β production (106–109).

The Role of Apoptosis in PDCoV Infection
PDCoV is a newly discovered virus that causes severe clinical
diarrhea and intestinal pathological damage in piglets (88), but
the pathogenesis of PDCoV infection is still largely unknown.
Current studies showed that PDCoV infection could promote
Bax translocation and mediate mitochondrial outer membrane
permeabilization (MOMP), resulting in specific relocation of the
mitochondrial cyt c into the cytoplasm, thus activating caspase-
9/3 to initiate apoptosis in ST cells (88). These results indicate that
PDCoV mediates cell apoptosis through a caspase-dependent
endogenous apoptotic pathway (Figure 4). Moreover, apoptosis
caused by PDCoV contributes to viral protein translation and
the caspase-dependent intrinsic apoptosis pathway in PDCoV-
infected ST cells is also used for facilitation of viral replication
(88). Interestingly, PDCoV induces apoptosis in swine testicular
and LLC porcine kidney cell lines in vitro but not in infected
intestinal enterocytes in vivo. Another form of cell death,
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FIGURE 5 | Diagram of the roles of apoptosis in the pathogenesis of Swine acute diarrhea syndrome coronavirus (SADS-CoV) infection.

necrosis, has been found in PDCoV-infected swine intestinal
enterocytes as well as in the porcine small intestinal epithelial cell
line, IPEC-J2 in vitro (89). The above results indicate that a better
model of cellular infection is needed to reflect the infection in
vivo. In-depth study on the molecular mechanism of cell death
caused by PDCoV infection will help to analyze the pathogenesis
of PDCoV. In addition, the key proteins responsible for cell death
caused by the virus still need to be further studied, which will help
to identify virulence factors and provide guidance for prevention
and control PDCoV infection.

APOPTOSIS ASSOCIATED WITH SWINE

ACUTE DIARRHEA SYNDROME

CORONAVIRUS (SADS-CoV)

Virus Characteristics of SADS-CoV
SADS-CoV, also named PEAV (110) and SeACoV (111), is an
enveloped, single-stranded positive-sence RNA virus (110). The
full-length genome of SADS-CoV is about 27 kb (110), arranged
in the order of: 5′ UTR-ORF1a/1b-S-NS3-E-M-N-NS7a-3′ UTR
(112). It is known that the S protein has many important
characteristics in CoVs, such as virus attachment and entry,

and induction of neutralizing antibodies in vivo (113). Of note,
compare to other reported CoVs, SADS-CoV has the smallest S
protein including 1,129 amino acids (110). To date, the papain-
like protease 2 (PLP2) domain of nsp3 was shown to be able to
cleave nsp1 proteins and also peptides mimicking the nsp2/nsp3
cleavage site and also have deubiquitinating and deISGynating
activity (114). The function of other viral proteins of SADS-CoV
remains to be further explored.

The Role of Apoptosis in SADS-CoV
Infection
As another newly identified swine intestine CoV, detail
information of the pathogenicmechanism of SADS-CoV remains
unclear. It was reported that SADS-CoV infection could
increased apoptosis in the small intestinal epithelial cell line
IEC in vitro (90). SADS-CoV infection could up-regulate FasL,
subsequentially activates caspase-8/3 to lead to apoptosis in
Vero and IPI-2I cells (90). Moreover, activated caspase-8 could
cleave Bid, then the cleaved Bid translocated to mitochondria
participating in the destruction of mitochondria integrity and
cyt c release to cytosol, which in turn facilitates caspase-9/3
activation thus result in apoptosis (90). In addition, SADS-CoV
infection triggers Bax recruitment into the mitochondria, leading
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to cyt c but not AIF release into cytoplasm to induce apoptosis
through mitochondrial permeability transition pore (MPTP),
which involve with cyclophilin D (CypD) in these processes
(90). These results suggest SADS-CoV-induced apoptosis were
mediated by both extrinsic and intrinsic pathways (Figure 5).
The viral replication was affected with the inhibitors of caspase-
8 or capases-9, indicating that SADS-CoV-induced apoptosis
contributes to viral replication (90). Although it has been
demonstrated well in SADS-CoV induced apoptosis, the function
of viral protein in SADS-CoV-induced apoptosis and the exact
mechanism underlying remains unclear. More efforts to elucidate
the molecular mechanisms of SADS-CoV-induced apoptosis will
help to explore the pathogenesis of SADS-CoV infection.

OTHER MECHANISMS ARE RELATED TO
THE PATHOGENESIS OF SWINE
ENTEROPATHOGENIC CoVs

Innate immunity is thought to be the first line of host defense
against a wide variety of pathogenic infections (115). Of note,
type I interferon (IFN-α/β), as important cytokines of innate
immunity induced by virus invasion, could establish an anti-
viral state in infected sites (116). In order to infect the organism
and cause pathogenicity, the virus must break through the anti-
viral state of the organism. It was reported that PEDV, PDCoV
and SADS-CoV can inhibit the up-regulated expression of type I
interferon through a variety of different mechanisms (100, 115,
117–120), thus leading to virus infection, indicating that the
inhibition of type I interferon might relate to the pathogenesis
of these viruses. In addition, inhibition of anti-viral status to
promote viral infection might contribute to the occurrence of
apoptosis (121). Interestingly, unlike PEDV, PDCoV, and SADS-
CoV, TGEV infects the body can promote the up-regulated
expression of IFN-β (122). IFN-β has been reported to induce
apoptosis (123, 124). Whether the apoptosis induced by TGEV
is related to the upregulation of IFN-β needs further study.

CONCLUSIONS

Lines of evidence indicate that apoptosis play critical roles
in the pathogenesis of swine enteropathogenic CoVs. Most of
the information is gleaned from the studies on the apoptosis
of TGEV, PEDV, PDCoV, or SADS-CoV infections in vitro
and in vivo. Viral proteins, such as N from TGEV, S1
from PEDV, are involved in regulation of virus-mediated
apoptosis production, which might provide some clues to
determine the virulence factors and serve as the targets
of antiviral drugs. However, the roles of apoptosis in host
response to swine enteropathogenic CoVs infection alone or
co-infections are still far from elucidation and need to be
further investigated. In addition, the apoptotic forms and
mechanisms caused by these four swine enteropathogenic
CoVs are different (Table 1), which whether involved with
the differences of pathogenicity also needs further study.
In brief, further investigation into the role of apoptosis in
these swine enteropathogenic CoVs is conducive to elucidate
of the pathogenesis of viral infections and develop an
appropriate strategy for the prevention and control of swine
diarrhea diseases.
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