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African swine fever (ASF) is a contagious viral disease that causes high mortality,

approaching 100%, in domestic pigs and wild boars. The disease has neither a cure

nor a vaccine, and it is caused by an ASF virus (ASFV), the only member of the family

Asfarviridae, genus Asfivirus, and the only known DNA arbovirus. Twenty-four genotypes

of ASFV have been described to date, and all of them have been described in Africa.

ASF is endemic in Burundi, and several outbreaks have been reported in the country;

the disease continues to economically impact on small-scale farmers. This study aimed

at genetic characterization of ASFV that caused an ASF outbreak in the Rutana region,

Burundi, in the year 2018. Tissue samples from domestic pigs that died as a result

of a severe hemorrhagic disease were collected in order to confirm the disease using

polymerase chain reaction (PCR) and to conduct partial genome sequencing. Nucleotide

sequences were obtained for the B646L (p72) gene, the intergenic fragment between

the I73R and I329L genes, and the central variable region (CVR) of the B602L gene.

Phylogenetic analysis of the Burundian 2018 ASFV grouped the virus within B646L

(p72) genotype X and clustered together with those reported during the 1984 and

1990 outbreaks in Burundi with high nucleotide identity to some ASFV strains previously

reported in neighboring East African countries, indicating a regional distribution of this

ASFV genotype. Analysis of the intergenic fragment between I73R and I329L genes

showed that the Burundian 2018 ASFV described in this study lacked a 32–base pair

(bp) fragment present in the reference genotype X strain, Kenya 1950. In addition, the

strain described in this study had the signature AAABNAABA at the CVR (B602L) gene

and showed 100% amino acid sequence identity to viruses responsible for recent ASF

outbreaks in the region. The virus described in this study showed high genetic similarities

with ASFV strains previously described in domestic pigs, wild suids, and soft ticks in East

African countries, indicating a possible common wild source and continuous circulation

in domestic pigs in the region.
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INTRODUCTION

African swine fever (ASF) is a contagious and fatal viral disease
of domestic pigs and wild boar (1, 2). It is caused by the ASF
virus (ASFV), the only member of the family Asfarviridae, genus
Asfivirus (3), and the only knownDNA arbovirus. Twenty-four (I

to XXIV) genotypes of ASFV have been described to date based
on nucleotide sequencing of the B646L gene encoding for the

p72 protein (4–6), and all of them have been described in Africa

(2). Depending on the virus strain, the ASFV genomes vary in
length from about 170 to 193 kilobase pairs (Kbp) and contain
between 151 and 167 open reading frames with a conserved
central region and variable termini (7). Depending on the ASFV
strain, morbidities and mortalities can reach 100%, making ASF
the most serious constraint to domestic pig production, food
and nutritional security, and livelihood of small-scale farmers
in Africa (8). ASF has neither a cure nor a vaccine, and its
effective control relies on quarantine, stamping out, and strict
biosecurity measures (9, 10). ASF is endemic in many African
countries south of the Sahara and in Sardinia (Italy), and in

FIGURE 1 | Map of Burundi showing African swine fever outbreaks between 2015 and 2018. The outbreaks between 2015 and 2017 occurred in regions located in

the northern part of Burundi bordering Rwanda and western regions bordering the Democratic Republic of the Congo. The 2018 outbreak occurred in the Giharo and

Gitanga districts of the Rutana region bordering Tanzania. Source: National Veterinary Laboratory of Burundi, Burundi.

recent years, it has spread beyond its traditional geographical
boundaries to the Caucasus region, the European Union, and
Asia (11–14). The recent spread to China, which is the major
pork-producing country, is threatening global food security (15,
16). The epidemiology of ASF is complex, transmission is direct
and vector-borne, and the disease has well-recognized sylvatic
and domestic cycles (17). In Eastern and Southern Africa, ASFV
is maintained in a sylvatic cycle between warthogs (Phacochoerus
africanus) and soft argasid ticks of the Ornithodoros moubata
complex (18). Warthogs and bushpigs (Potamochoerus spp.) are
the natural hosts of ASFV that are persistently infected with no
obvious clinical disease, and soft ticks of the genus Ornithodoros
are vectors for transmission of ASFV from the sylvatic to the
domestic cycle (19). Wild natural hosts of ASFV have been
reported to be present in the Kibira and RuvubuNational Parks of
Burundi (20), but their role in the maintenance and transmission
of the virus in the country is not known. In the domestic cycle,
two transmission patterns are recognized, namely, a tick-to-
pig cycle that involves soft ticks inhabiting pig shelters and an
exclusively pig-to-pig cycle. Once introduced into domestic pig
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populations, the virus can be transmitted between domestic pigs
mainly by ingestion of contaminated feeds and direct contact
between infected and susceptible pigs (21).

In Eastern and Southern Africa, some ASFV genotypes are
country specific, while others have a transboundary distribution
(22). In Burundi, strains of ASFV described from the outbreaks
of 1984 and 1990 belong to B646L (p72) genotype X (21).
Genotype X is one of the predominant genotypes in East
African countries including Tanzania, Kenya, and Uganda (23–
25). Despite the regular ASF outbreak reports in domestic pigs in
Burundi, molecular characterization of the causative viruses has
been limited. For instance, the currently available ASFV strains
genetically characterized from Burundi were collected more than
two decades ago. In August 2018, an outbreak of a hemorrhagic
and fatal disease affecting domestic pigs suspected to be ASF

occurred in the Rutana region in South-Eastern Burundi. This
study describes the confirmation and molecular characterization
of the 2018 outbreak of ASFV in South-Eastern Burundi based
on partial amplification and nucleotide sequencing of the B646L
(p72) gene, the tandem repeat sequence (TRS) located between
the I73R and I329L genes, and the central variable region (CVR)
of the B602L gene.

MATERIALS AND METHODS

Study Area, Sampling, and Sample
Processing
An outbreak of a hemorrhagic disease associated with high
mortalities in domestic pigs occurred in South-Eastern Burundi

TABLE 1 | African swine fever virus (ASFV) isolates from Eastern and Southern Africa used for the construction of phylogenetic tree based on partial B646L (p72) gene

nucleotide sequences.

Isolate Host species Year of isolation Location Country Accession number p72 genotype Reference

DRC/35/10/5 Domestic pig 2010 NKa DRCb KX121552 I (30)

TAN/12/Iringa Domestic pig 2012 Iringa Tanzania KF834193 II (31)

BOT/1/99 Domestic pig 1999 NK Botswana AF504886 III (27)

RSA/1/99/W NK 1999 NK South Africa AF449477 IV (27)

Tengani Warthog NK Tengani Malawi AF301541 V (32)

SPEC265 Domestic pig 1994 NK Mozambique AF270710 VI (32)

RSA/1/98 NK 1998 NK South Africa AF302818 VII (27)

MOZ/1/98 Domestic pig 1998 Tete Mozambique AF270705 VIII (27)

Ug12.Kabale1 Domestic pig 2012 Kabale Uganda KC990890 IX (33)

BUR/18/Rutana Domestic Pig 2018 Rutana Burundi MK829709 X This study

Kenya 1950 Domestic pig 1950 NK Kenya AY261360 X (34)

TAN/Kwh12 Warthog 1968 Kirawira Tanzania AF301546 X (27)

KAB 94/1 Domestic pig 1994 NK Kenya AY972163 X (35)

KIRT/893 Ticks 1989 Kirawira Tanzania AY351512 X (5)

TAN/16/Ngara Domestic pig 2016 Ngara Tanzania MF437293 X (36)

TAN/15/Mwanza Domestic pig 2015 Mwanza Tanzania MF437291 X (36)

BUR/1/84 Domestic pig 1984 Gitega Burundi AF449463 X (27)

BUR/90/1 Domestic pig 1990 Muyinga Burundi AF449472 X (5)

Ken05/Tk1 Tick 2005 Kapiti plains Kenya NC_044945 X (34)

KAB/62 Ticks 1983 Livingstone Game Park Zambia AY351522 XI (5)

MZI/921 Domestic pig 1992 Mzinda Malawi AY351543 XII (5)

SUM/1411 Ticks Sumbu Park Zambia AY351542 XIII (5)

DRC/35/10/3 Domestic pig 2010 Ngaliema DRC KX121550 XIV (30)

TAN/08/Mazimbu Domestic pig 2008 Mazimbu Tanzania GQ410765 XV (37)

TAN/2003/1 Domestic pig 2003 Arusha Tanzania AY494550 XVI (5)

ZIM/92/1 Domestic pig 1992 Gweru Zimbabwe DQ250119 XVII (38)

NAM/1/95 NK 1995 Windhoek Namibia DQ250122 XVIII (38)

SPEC/251 NK 1996 Ellisras South Africa DQ250118 XIX (38)

Lillie Domestic pig NK NK South Africa DQ250109 XX (38)

RSA/1/96 NK 1996 Gravelotte South Africa DQ250125 XXI (38)

SPEC/245 NK NK Louis Trichardt South Africa DQ250117 XXII (38)

ETH/5a Domestic pig 2011 Bahir Dar Ethiopia KT795361 XXIII (4)

MOZ_11/2006 Tick 2006 Gorongosa National Park Mozambique KY353990 XXIV (6)

aNot known.
bDemocratic Republic of the Congo.
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in August 2018. The disease started in Mutwana village in the
Giharo district of the Rutana region in South-Eastern Burundi
(Figure 1). The number of domestic pigs that died during the
outbreak was recorded from Rutana Region Livestock Office
records. Tissues (lung, spleen, and liver) were collected from
three domestic pigs that naturally died from the disease. Each
tissue (lung, spleen, and liver) was aseptically collected into a
separate tube. Samples were chilled on ice and transported to the
laboratory. In the laboratory, 1 g from each of the tissue samples
was separately placed into a sterile petri dish and chopped using
a sterile scalpel blade in the presence of 10mL sterile phosphate-
buffered saline (PBS). Afterward, homogenized tissue samples
were centrifuged at 6,000 g for 5min, and the supernatants,
aliquoted into cryovials before cryopreservation at −80◦C until
DNA extraction.

DNA Extraction
Frozen aliquots of lung, liver, and spleen homogenates were
allowed to thaw, and DNA was extracted directly from 150
µL of homogenized tissue samples using a QiaAmp nucleic
acid extraction kit (Qiagen, Hilden, Germany), following the
manufacturer’s instructions. Each extraction yielded 50 µL
of DNA whose quantity and purity were determined by a
nanodrop spectrophotometer (Biochrom, Cambridge, England)
before being stored at −20◦C until nucleotide amplification by
polymerase chain reaction (PCR).

Amplification of ASFV DNA
The disease confirmation was carried out by PCR using ASF
diagnostic primers PPA1 and PPA2 as previously described
by Agüero et al. (26). Amplification for partial nucleotide
sequencing of ASFV DNA was conducted using primers that
target (i) the variable 3′-end of the B646L gene encoding the
major capsid protein p72 using primers p72D and p72U (27),
(ii) a TRS located between the I73R and I329L genes using
primers ECO1A and ECO1B (28), and (iii) the CVR of the B602L
gene using the ORF9L-F and ORF9L-R primer pair (21, 29).
The amplification conditions used in the present study were
similar to those previously described (21, 26–29). All nucleotide

amplifications were performed using AccuPower PCR premix
(Bioneer, Daejeon, Republic of Korea) on a GeneAmp 9700
PCR system (Applied Biosystems, Foster City, CA). Afterward,
the electrophoretic separation of amplicons was conducted
on 1.5% agarose gel mixed with GelRed nucleic acid stain
(Phenix Research Products, Candler, NC) against a 1 Kbp
molecular weight marker (Promega, Madison, WI, USA) before
visualization and imaging using a Gel DocTM EZ Imager agarose
gel imaging system (Bio-Rad, Hercules, CA).

ASFV Partial Genome Nucleotide
Sequencing
PCR products from B646L (p72), TRS, and CVR were subjected
to automated dideoxynucleotide cycle sequencing using a Big
Dye Terminator Cycle sequencing kit V3.1 (Applied Biosystem,
Foster City, CA) using primers: p72D, p72U, ECO1A, ECO1B,
ORF9L-F, and ORF9L-R. Products from the cycle sequencing
reaction were purified by ethanol precipitation and separated
by capillary gel electrophoresis on an ABI 3730xl DNA analyzer
(Applied Biosystems, Foster City, CA). Chromatograms for both
the forward and the reverse primer reactions were checked
for quality using Sequence Scanner v2.0 software (Applied
Biosystems, Foster City, CA). The forward nucleotide sequence
and the reverse complement nucleotide sequence from the
reverse primer were subjected to pairwise alignment in Bioedit
v7.2.5 (Ibis Biosciences, Carlsbad, CA) in order to obtain a single
consensus nucleotide sequence delimited by the forward and
reverse primers. In addition to the Burundian 2018 ASFV, the
TRS between the I73R and I329L genes of the Tanzanian ASFV
strains TAN/13/Arusha, TAN/16/Babati, and TAN/16/Ngara was
amplified and sequenced in this study. The CVR of the B602L
gene was amplified and sequenced for TAN/16/Ngara in the
present study.

Phylogenetic Analysis of ASFV B646L (p72),
TRS, and CVR
The nucleotide sequences of B646L (p72), TRS, and CVR from
the 2018 ASFV that caused an outbreak in South-Eastern
Burundi were submitted to GenBank and assigned accession

TABLE 2 | Tetramer amino acid repeat signatures within the central variable region (CVR) of the B604L gene of selected ASFV strains belonging to p72 genotype X from

some East African countries.

Strain name Year of

collection

Country of origin Host CVR accession

number

CVR signature Reference

BUR/18/Rutana 2018 Burundi Domestic pig MT550685 AAABNAABA This study

TAN/16/Ngara 2016 Tanzania Domestic pig MT550686 AAABNAABA This study

TAN/13/Arusha 2013 Tanzania Domestic pig KF706367 BNBA(BN)5NA (23)

Ken05/Tk3 2005 Kenya Tick HM745290 AAANAABBA (39)

TAN/13/Moshi 2013 Tanzania Domestic pig KF706364 BNBA(BN)5NA (23)

Ken08BP/HB 2008 Kenya Bushpig JN590917 AAABNAAAABA Unpublished

Bur90/1 1990 Burundi Domestic pig AM259424 AAABNAAAAAAAAAABA (21)

Bur84/2 1984 Burundi Domestic pig AM259423 AAABNAAAAAAAAAABA (21)

Bur84/1 1984 Burundi Domestic pig AM259422 AAABNAAAAAAAAAABA (21)

Key: (CAST, CVST, CTST, CASI = A), (CADT, CADI, CTDT, CAGT, CVDT = B), (NVDT, NVGT, NVDI = N), and (CASM = D).
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numbers (Tables 1, 2). The similarity search of the obtained
nucleotide sequences against other ASFV sequences available at
GenBank was performed using BLASTn (version 2.8.1+). The
nucleotide sequence of B646L (p72) of the Burundian 2018 ASFV
outbreak was aligned with other ASFV nucleotide sequences
representing the 24 ASFV B646L (p72) genotypes (6, 11, 15) using

the ClustalW algorithm in MEGA X (40). ClustalW was used to
perform multiple sequence alignment of nucleotide sequences of
the TRS as implemented in MEGA X (40). Nucleotide sequences
of the B602L (CVR) gene were translated using the ExPASy
translation tool (https://web.expasy.org/translate/) and coded in
order to obtain corresponding amino acid tetramer signatures

FIGURE 2 | Evolutionary relationships of representative strains of African swine fever virus (ASFV) based on the maximum likelihood phylogeny of the partial p72 gene

nucleotide sequences. The phylogenetic analysis was performed using MEGA X (http://www.megasoftware.net) and the Kimura two-parameter substitution model, as

determined by a model selection analysis. Phylogeny was inferred following 1,000 bootstrap replications, and the node values show percentage bootstrap support

(only values above 50% are shown). The round black spot indicates the ASFV nucleotide sequence from Burundi obtained in this study. The scale bar indicates

nucleotide substitutions per site.
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FIGURE 3 | Partial nucleotide sequence alignment of the intergenic region between I73R and I329L genes in ASFV isolates belonging to B646L (p72) genotype X from

Eastern Africa. The nucleotides highlighted in gray, present in the reference ASFV strain, are absent in the 2016 Tanzanian ASFV, the 2018 Burundian ASFV, and the

tick strain described in Kenya in 2005. Other nucleotide variations between ASFV strains are highlighted in red and pink. The GenBank accession numbers of the

nucleotide sequences are shown in parentheses.

as previously described (21, 23, 29). The evolutionary history of
ASFV was inferred by the maximum likelihood method using
the Kimura two-parameter model implemented inMEGAX (40).
Phylogeny was inferred following 1,000 bootstrap replications.

RESULTS

Outbreak Description
The outbreak described in this study was reported in Mutwana
village (Giharo district) in August 2018 (Figure 1). Afterward,
ASF spread from Mutwana to neighboring villages of the Muzye,
Butezi, Giharo, and Gakungu zones in the Giharo district before
it was reported in villages of the Kinzanza and Gitanga zones of
the Gitanga district in September 2018 (Figure 1). A total of 3,509
domestic pigs from 1,958 households died in both districts of the
Rutana region, South-Eastern Burundi. The main clinical signs
presented by affected domestic pigs included anorexia, dyspnea,
and congestion of the skin particularly on the peripheral part
of the pinna, belly, neck region, and mammary glands, followed
by sudden death. Postmortem findings included hydrothorax,
splenomegaly, and hemorrhages in the lung, liver, and lymph
nodes, especially the hepatogastric and mesenteric lymph nodes.

Confirmation of ASF Using PCR
Each of the lung, liver, and spleen obtained from pigs that
naturally died from the disease were tested for the presence of
ASFV as previously described (26). All lung, liver, and spleen
tissues from the three sampled domestic pigs were found to
be positive for ASFV. The spleen had a high ASFV DNA
concentration on a nanodrop spectrophotometer, followed by the
lung and liver, at 501, 336.5, and 141.5 ng/µL, respectively.

Molecular Characterization of ASFV
The ASFV strain from the Rutana region (South-Eastern
Burundi) obtained in this study was designated as
BUR/18/Rutana. BLASTn of BUR/18/Rutana B646L (p72)
ASFV nucleotide sequences in GenBank showed high nucleotide
identity to B646L (p72) genotype X ASFV strains previously
described in Tanzania and Kenya. In order to determine
the genetic relationship of BUR/18/Rutana with other
ASFVs representing the 24 B646L (p72) ASFV genotypes, a
phylogenetic tree was constructed with the maximum likelihood
method using partial B646L (p72) nucleotide sequences. The
BUR/18/Rutana ASFV strains clustered together with genotype

X strains previously described in Burundi, Tanzania, and Kenya
(Figure 2).

We amplified the region located between the I73R and I329L
genes, characterized by the presence of TRS. The most similar
TRS was that of TAN/16/Ngara responsible for the 2016 ASF
outbreak in domestic pigs in the Ngara district of Kagera
Region, South-Western Tanzania, followed by that of Ken05/Tk1
collected from a tick in Kenya in 2005 (Figure 3). We compared
the Kenya 1950 isolate, which is a reference for genotype X,
with BUR/18/Rutana. The ASFV strain BUR/18/Rutana lacked
a 32 bp fragment in the TRS (Figure 3), as was the case for
the TAN/16/Ngara and Ken05/Tk1 strains (34). In addition, the
Burundian ASFV strain described in this study had the signature
AAABNAABA at the B602L (CVR) gene and showed 100%
amino acid sequence identity to TAN/16/Ngara (Table 2).

DISCUSSION

ASF is endemic in Burundi, and 24,696 ASF cases have been
reported in the country between January 2005 and December
2018 (13); the disease continues to economically impact on small-
scale farmers. In this study, we report an outbreak of a highly fatal
hemorrhagic disease of domestic pigs that occurred in 2018 in
the Rutana region of Burundi. The presence of ASFV in domestic
pigs was confirmed by nucleotide amplification, sequencing, and
phylogenetic reconstruction of the ASFV B646L (p72) gene, the
region located between the I73R and I329L genes characterized
by the presence of TRS, and the B602L (CVR) gene. Partial
sequencing of the B646L (p72) gene is used in order to determine
the ASFV genotype. However, to achieve more resolution among
closely related strains, analysis of additional ASFV genomic
regions is needed (21, 28). Regions with tandem repeat arrays
within the coding or in intergenic regions identified in the ASFV
genome have proven useful for discerning between closely related
ASFV strains (21). Among these regions, the TRS located in the
CVRwithin the B602L gene and the TRS located in the intergenic
region between the I73R and I329L genes have been described
as suitable to distinguish between closely related ASFV strains
and to trace the source of ASF outbreaks (21, 28, 41, 42). Thus,
in the present study, B646L (p72), B602L, and the TRS between
the I73R and I329L genes were analyzed to achieve higher
resolution. The results obtained from the present study confirm
an ASF outbreak in the Rutana region in South-Eastern Burundi.
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FIGURE 4 | Distribution of ASFV p72 genotype X isolates in the East African Community (EAC) between 1954 and 2018. 1Rutana 2018 [domestic pig (Dp)]; 2Muyinga

1990 (Dp); 3Gitega 1984 (Dp); 4Ngara 2016 (Dp); 5Kigoma 2004 and 2015 (Dp); 6Mwanza 2015 (Dp); 7Longido 2009 (Dp); 8Rombo 2013 (Dp); 9Moshi 2013 (Dp);
10Machame 2013 (Dp); 11Arusha 2013 (Dp); 12Babati 2016 (Dp); 13Manyoni 2015 (Dp); 14Kirawira 1968 [warthog (Wh)] and 1989 [Wh and tick (Tk)]; 15Nyanza 2008

(Continued)

Frontiers in Veterinary Science | www.frontiersin.org 7 November 2020 | Volume 7 | Article 578474

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Hakizimana et al. African Swine Fever in Burundi

FIGURE 4 | (Dp and Wh); 16Nandi 2005 (Dp); 17Nanyuki 1954 (Dp), 1959 (Dp and Wh), and 1961 (Dp); 18Kiambu 2005 (Dp); 19Kiganjo and Mweiga 1957 and 1959

(Wh); 20Rift valley 1959 (Wh); 21Machakos 2005 and 2009 (Tk); 22SSembabule 1995 (Dp); 23Lake Mburu national park 2010 (Tk). The isolates from Kenya in 1950

(Kenya 1950) and Uganda in 1964 (Ug64) are not indicated on the map, because their locations are not mentioned in the available literature.

The ASFV responsible for the 2018 outbreak in the Rutana
region belonged to B646L (p72) genotype X and was closely
related to other genotype X strains previously characterized in
Burundi, Tanzania, and Kenya (28, 34, 41). Genotype X is one of
the predominant ASFV p72 genotypes in countries of the East
African Community (Figure 4), and it has been isolated from
domestic pigs, warthogs, and Ornothodoros ticks in the region
(23, 39). The ASFV p72 genotype X has been involved in previous
outbreaks in Burundi in 1984 and 1990, in Gitega and Muyinga,
respectively (5, 21). The ASFV BUR/18/Rutana lacked a 32 bp
fragment within TRS compared to the reference genotype X
isolate, Kenya 1950 (40). Similarly, the same 32 bp fragment was
absent in the ASFV TAN/16/Ngara strain responsible for the ASF
outbreak in domestic pigs in South-Western Tanzania in 2016
and the ASFV Ken05/Tk1 strain recovered from a tick that was
extracted from a warthog burrow in central Kenya in 2005 (40).
In addition, the amino acid tetramer repeats within the CVR of
the virus that caused the 2018 ASF outbreak in the Rutana region
had the signature AAABNAABA and showed 100% similarity to
the virus recovered from the outbreak in Ngara, South-Western
Tanzania, in 2016. The amino acid identity was greater with
TAN/16/Ngara than with the ASFV strains responsible for earlier
outbreaks in Burundi in 1984 and 1990 (21).

The high genetic similarity of the virus described in this study
to ASFV strains recovered from domestic pigs, warthogs, and
Ornithodoros soft ticks vectors is in agreement with previous

studies that classified the ASFV p72 genotype X as a sylvatic cycle
associated genotype (23, 39, 43). In Burundi, the Ruvubu and

Kibira National Parks host warthogs (Phacochoerus aethiopicus)

and bushpigs (Potamochoerus porcus) (18), which are natural

reservoirs of ASFV, but the role of the sylvatic cycle in the
maintenance and transmission of ASF in the country has not

been investigated. Therefore, there is a lack of information on
the potential existence of the ASF sylvatic cycle in Burundi, and
this aspect should be investigated in wildlife protected areas of
Burundi in order to understand the possibility of the virus spilling
over from the sylvatic to the domestic cycle. The strain described
in this study showed high genetic similarities with ASFV strains
previously reported in Burundi and those circulating in the
region, indicating regional distribution and circulation of this
ASFV genotype. These findings are in agreement with previous
studies in the region that have also reported transboundary
distribution of different ASFV genotypes including genotype
X between the Democratic Republic of the Congo (DRC) and
Burundi (44) and genotype II between Malawi, Tanzania, and
Zambia (45–48). In these studies, uncontrolled movements of
domestic pigs and pork products have been cited as a major
factor contributing to the transboundary spread of ASFV strains.
Sequence analysis of the three ASFV genomic regions considered
in this study showed that the most closely related strain was
that responsible for the 2016 ASF outbreak in the Ngara district

of Kagera region, South-Western Tanzania, indicating that the
same viruses are causing outbreaks on both sides of the Burundi-
Tanzania border. Kagera region on the Tanzanian side and
the Rutana region in Burundi share borders, and uncontrolled
animal movement, including that of domestic pigs, are more
likely to happen between these two regions. For instance,
movement of refugees together with their livestock, reported in
the area (49), can contribute to the spread of animal diseases,
including ASF. It has been reported that in order to reduce the
economic loss due to ASF outbreaks, some farmers sell their
pigs before they show clinical signs as soon as ASF is suspected.
This emergency pig sell contributes to the spread of the virus
in resource-poor settings, including between countries (50–52).
However, considering the proximity of the Rutana region to
Ruvubu National Park, where warthogs are present (20), and the
reported uncontrolled movement of wild animal species between
Ruvubu National Park in Burundi, Akagera National Park in
Rwanda, and the Kimisi and Burigi game reserves in Tanzania
(49), the virus spillover from the sylvatic to the domestic cycle
cannot be excluded based on the results of this study.

This study confirms that the 2018 ASF outbreak in the Rutana
region, South-Eastern Burundi, was caused by the ASFV p72
genotype X. The virus showed high genetic similarities with
ASFV strains previously described in domestic pigs, warthogs,
and soft ticks in East African countries, indicating a possible
common wild source and continuous circulation in domestic
pigs in the region. This study contributes to the understanding
of ASFV epidemiology in Burundi and in the East African
Community. It will be interesting to investigate the role of the
ASFV sylvatic cycle in Burundi and to perform whole genome
sequencing of the ASFV strains reported in this study along
with those previously described in Burundi and ASFV strains
from neighboring countries to facilitate a better understanding
of ASFV dynamics and epidemiology in Eastern and Southern
Africa. Such perspective on the changing dynamics may provide
an understanding of the global epidemiology of ASF.
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