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Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes are

worldwide recognized zoonotic pathogens. Recent reports have emerged about the

circulation of antimicrobial-resistant STEC and L. monocytogenes isolates. To assess the

frequency of antimicrobial resistance and related genes in these pathogens, we studied

45 STEC and 50 L. monocytogenes isolates locally recovered from different sources.

Antimicrobial susceptibility testing was performed by disk-diffusion method, and the

genomic sequences of three selected STEC and from all 50 L. monocytogenes isolates

were analyzed for antibiotic resistance genes. Four STEC and three L. monocytogenes

isolates were phenotypically resistant to at least one of the antibiotics tested. Resistance

genes aph(3′′)-Ib, aph(3′)-Ia, aph(6)-Id, blaTEM−1B, sul2,mef (A), and tet(A) were found in

a human STEC ampicillin-resistant isolate. All L. monocytogenes isolates harbored fosX,

lin,mdrL, lde fepA, and norB. Overall resistance in L. monocytogenes and STEC was low

or middle. However, the high load of resistance genes found, even in susceptible isolates,

suggests that these pathogens could contribute to the burden of antimicrobial resistance.

Keywords: antimicrobial resistance, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes,

zoonotic pathogens, resistance genes

INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes are well-recognized
zoonotic pathogens circulating in Uruguay (1, 2). In humans, STEC can produce watery or
bloody diarrhea (WD, BD) or even more severe conditions such as hemorrhagic colitis (HC) or
hemolytic–uremic syndrome (HUS). HUS can be lethal in the early stages or leave long-term
sequelae; ∼20% of children who suffer it require chronic dialysis or kidney transplant. STEC has
also been rarely associated with urinary tract infections (3, 4). Cattle and other food production
animals are the main known reservoir for STEC, and the transmission to humans occurs by direct
contact with them or through the ingestion of foods or water contaminated with its feces (5).
Although controversial, antibiotics such as gentamicin, azithromycin, fosfomycin, andmeropenem
are recommended to the treatment of human STEC infections to avoid the development of most
severe diseases (6).
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Listeria monocytogenes is the etiologic agent of invasive
listeriosis, a severe food-borne disease that mainly affects elderly,
immunocompromised people, pregnant women, and infants. L.
monocytogenes is widely distributed in nature, including the
bowel of cattle, so it has multiple opportunities to enter the
food production and supply chain. Although human invasive
listeriosis is rare, it has high rates of hospitalization and case
fatality (7, 8).

Listeria monocytogenes is susceptible to most clinically
relevant groups of antibiotics active against Gram-positive
bacteria, except for intrinsic resistance to fosfomycin, older
quinolones, sulfamethoxazole, oxacillin, and expanded-spectrum
cephalosporins (8, 9). The first-line therapy for listeriosis is
ampicillin or penicillin G, with or without the addition of
gentamicin. For beta-lactam-allergic patients, the therapy of
choice is trimethoprim-sulfamethoxazole or vancomycin (8–10).

Likewise, antibiotics are used in veterinary medicine for the
treatment and prevention of infectious diseases, but also, they
have been used for a long time for animal growth promotion
and improved productivity. These situations contribute to
the selection of resistant bacteria, including STEC and L.
monocytogenes, which could then be transmitted to humans, also
facilitating the spread of antibiotic resistance genes (6, 11).

Reports have emerged about the circulation of antimicrobial-
resistant L. monocytogenes isolates worldwide (11). Similarly,
antimicrobial-resistant STEC isolates were reported in Brazil
and Mexico among other countries (6), highlighting the role as
reservoir of resistance genes and recommending the surveillance
of its susceptibility profiles.

The aim of this study was to assess the frequency of antibiotic
resistance against different drugs used in human and veterinary
medicine in a set of STEC and L. monocytogenes isolates and to
analyze the presence of possible related genes.

MATERIALS AND METHODS

Bacterial Strains
We studied a collection of 45 STEC and 50 L. monocytogenes
isolates. All of them were received at the Bacteriology and
Virology Department (University of the Republic, School of
Medicine) between 2010 and 2019 to confirm the identification
and to determine pathotype and serotype. All STEC received
until the end of 2017 were included in this study. STEC isolates
were from different sources: human samples (n = 7), six isolates
from feces of children ≤5 years old and one belonging to the
serogroup O157 from urine of an adult woman; food samples
(n = 37), all recovered from beef (Bos taurus); and animal
sample (n = 1) isolated from feces of a healthy cow (see
Supplementary Table 1).

Listeria monocytogenes isolates were selected as a convenience
sample from a total of 498 isolates received, including
different serotypes, sources, and year of isolation (see
Supplementary Table 2). Human isolates (n = 29) were
obtained from blood, placenta, amniotic fluid, and cerebrospinal
fluid samples. The food isolates (n = 21) were recovered from
frozen food, ready-to-eat food, deli meat, and cheese.

STEC isolates were serotyped and analyzed by PCR for the
presence of stx1/2, eae, and ehxA virulence genes (1).

Listeria monocytogenes strains were serotyped using a
combination of multiplex PCR and agglutination tests with
commercially available Listeria antisera to one and four somatic
antigens as we previously described (3).

Antimicrobial Susceptibility Testing
All STEC isolates were studied by disk-diffusion method
according to the guidelines for Enterobacteriaceae of Clinical
and Laboratory Standards Institute (CLSI) (12). We used
Mueller–Hinton agar plates, and the antimicrobials tested
were ampicillin (AMP), amoxicillin-clavulanic acid (AMC),
cefuroxime (CXM), fosfomycin-trometamol (FOT), cefepime
(FEP), cefotaxime (CTX), ceftazidime (CAZ), cefoxitin (FOX),
ceftriaxone (CRO), ciprofloxacin (CIP), gentamicin (CN),
imipenem (IPM), meropenem (MEM), and trimethoprim-
sulfamethoxazole (SXT) (Oxoid R©). Plates were incubated at 35±
2◦C in ambient air during 16–18 h, and the result interpretation
was done according to Clinical and Laboratory Standards
Institute (CLSI) breakpoints (Table 2A, Enterobacteriaceae M02
and M07) (12). E. coli ATCC 25922 was used as quality control.

Listeria monocytogenes antimicrobial susceptibility testing
was performed by disk-diffusion method according to the
recommendations for L. monocytogenes of the European
Committee on Antimicrobial Susceptibility Testing (EUCAST)
(13). Mueller–Hinton agar plates supplemented with 5% of
mechanically defibrinated horse blood and 20 mg/L β-NAD
(MH-F) were prepared “in-house.” A panel of six antibiotics
was tested: benzylpenicillin (1 µg), gentamicin (10 µg),
trimethoprim-sulfamethoxazole (1.25µg/23.75µg), meropenem
(10 µg), erythromycin (15 µg), and ciprofloxacin (5 µg) with
Oxoid R© disks. Cultures were incubated at 35◦C with 5% CO2 for
18–20 h.

Streptococcus pneumoniae ATCC 49619 and Staphylococcus
aureus ATCC 25923 were used as quality control strains.
L. monocytogenes-specific clinical breakpoints of EUCAST
were used for penicillin, meropenem, erythromycin,
and trimethoprim-sulfamethoxazole; for gentamicin and
ciprofloxacin, interpretation was done according to the clinical
breakpoint value for Staphylococcus spp.

Detection of Antimicrobial Resistance
Genes
The genomic DNA from three selected human STEC isolates
(corresponding to different serogroups, two fully susceptible, and
one resistant only to ampicillin) and from all L. monocytogenes
isolates was extracted with the DNA blood and tissue kit
(Qiagen R©) and subjected to whole-genome sequencing by
IlluminaMiSeq platformwithNextera XT library prep kits (USA)
and TruSeq Nano library kit. The reads were de novo assembled
with SPAdes version 3.13.1 (14). Genomic sequences of STEC and
L. monocytogenes were analyzed for resistance genes using the
software ABRicate with the databases ResFinder, CARD, NCBI
AMRFinderPlus, and MEGARes (update April 19, 2020). For L.
monocytogenes, we also searched for the antimicrobial resistance
genes fepA, lde, and penA using BLAST tool because these genes
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FIGURE 1 | Distribution of analyzed Shiga toxin-producing Escherichia coli

(STEC) serogroups according to the source. Uruguay, 2010−2017.

TABLE 1 | Characteristics of resistant Shiga toxin-producing Escherichia coli

(STEC) isolates analyzed.

Isolate

identification

Source Serotype Virulence genes Resistance

profile

IH23 Beef O157:H7 stx1/2, eae, ehxA AMP, CN, SXT

IH12 Human, HUS O26:H11 stx1/2, eae, ehxA AMP, SXT

IH36 Healthy cow O26:H11 stx1, eae, ehxA AMP, SXT

IH7 Human, HUS O111:HNM stx1/2, eae, ehxA AMP

Uruguay, 2010–2017.

AMP, ampicillin; CN, gentamicin; SXT, trimethoprim-sulfamethoxazole.

have been reported in these bacteria but were not included in the
databases mentioned above.

RESULTS

Source, Serogroup Distribution,
Antimicrobial Resistance, and Resistance
Genes Found in STEC
STEC serogroup distribution was as follows: O157 (36 isolates),
O26 (3), O145 (2), O45 (1), O103 (1), O111 (1), and O153
(1). Serogroup distribution according to the source is shown in
Figure 1.

Four out of 45 STEC analyzed (8.8%) showed resistance to
at least one of the antimicrobials tested (O26:H11, 2 isolates;
O157:H7, 1 and O111:HNM, 1) (see Table 1).

Only one STEC O157 isolate (obtained from beef sample)
was resistant (2.8%); on the other hand, three out of the nine
non-O157 (32%) analyzed included were resistant. Resistance
to ampicillin was observed in all (n = 4) the resistant STEC
analyzed; additionally, three isolates were also resistant to
trimethoprim-sulfamethoxazole and one to gentamicin (see
Table 1).

TABLE 2 | Characteristics of resistant Listeria monocytogenes isolates analyzed.

Isolate

identification

Source Serotype Resistance

profile

Resistance genes

Ulm_70 Food 4b CIP fosX, lin, norB, lde,

mdrL, fepA

Ulm_74 Human 4b E fosX, lin, norB, lde,

mdrL, fepA

Ulm_77 Food 1/2b CIP fosX, lin, norB, lde,

mdrL, fepA

Uruguay, 2010–2019.

CIP, ciprofloxacin; E, erythromycin.

Resistance genes found in the only sequenced resistant STEC
isolate (serogroup O111, isolated from a child with HUS, see
Table 1) were aph(3′′)-Ib, aph(3′)-Ia, aph(6)-Id, blaTEM−1B, sul2,
and tet(A) (minimum identity and coverage of 88%). We did not
find these genes in the other two susceptible STEC sequenced
(see Supplementary Table 1). One STEC O145:H25 susceptible
to all antibiotics tested bears the fosA7 gene, associated with
resistance to fosfomycin (see Supplementary Table 1). Also, the
three STEC isolates sequenced carried among others the mdfA,
mphB, andmef (A) genes.

Serotypes, Antimicrobial Resistance, and
Resistance Genes Found in L.

monocytogenes
Among L. monocytogenes isolates analyzed, 27 belonged to
serotype 1/2b, 20 to 4b, and 3 to 1/2a. Forty-seven isolates
of L. monocytogenes were susceptible to all antibiotics tested.
Two isolates were resistant to ciprofloxacin (serotypes 4b and
1/2b, both from food origin), and one isolate was resistant
to erythromycin (serotype 4b, human source) (see Table 2).
Serotype distribution according to the source is shown in the
Figure 2.

We identified the resistance genes fosX, lin, norB, lde, mdrL,
and fepA in all analyzed genomes, with a minimum identity and
coverage of 90% (see Supplementary Table 2).

DISCUSSION

The overall resistance frequency found in STEC (8.8 %) suggests
that its local contribution to the burden of antimicrobial
resistance seems low and comparable to that previously reported
in a similar study of Spain-País Vasco (15). Probably, the
percentage of resistance could have been higher if we had
included the tetracycline and chloramphenicol disks in the
susceptibility assays (16).

Only 1 out of 36 STEC O157 isolates analyzed was resistant
(2.8%); however, 3 of the 9 non-O157 (32%) were resistant.
This figure coincides with results obtained by Sasaki et al. (17)
and would be related to the fact that STEC non-O157 may
acquire genes for antimicrobial resistance more easily than STEC
O157 isolates do. Resistance to ampicillin was observed in all
the resistant STEC isolates analyzed. Beta-lactamase TEM-1
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FIGURE 2 | Distribution of analyzed Listeria monocytogenes serotypes

according to the source. Uruguay, 2010–2019.

is the most prevalent enzyme responsible for resistance to
ampicillin in gram-negative bacteria, and the encoding genes
are usually located in mobile genetic elements. In this sense,
the resistance genes found aph(3′′)-Ib, aph(3′)-Ia, aph(6)-Id,
blaTEM−1B, and sul2 are generally located in class 1 integrons
(18) as was previously reported by Colello et al. in STEC isolates
recovered from animals in neighboring Argentina (19). We also
found tet(A), fosA7, and mef (A), mphB genes, responsible for
tetracycline, fosfomycin, and macrolide resistance, respectively.
Due to economic reasons, we could only analyze the genome of
three STEC isolates. We hope to carry out the whole-genome
sequencing (WGS) on the remaining STEC isolates to detect
other resistance genes.

Taking together the STEC isolated from beef and animal
source and assuming that all the beef isolates come from
the bowel of the cattle, we noticed that only 2 of these 38
(5.2%) were resistant, whereas 2 of the 7 (28.5%) isolated from
humans showed resistance. These figures are similar to those
previously reported by Oporto et al. in Spain-País Vasco. The
difference could be explained in part for which was said above
about serogroup behavior and also by selection pressure due to
the frequent use of aminopenicillins in humans, especially in
children (15, 17, 20). However, we cannot rule out that STEC have
been acquired by cross contamination during meat processing
or handling.

Treatment with antibiotics in the HUS phase is controversial;
some authors do not recommend them (21), and others suggest
that the early use (e.g., BD stage) of azithromycin, fosfomycin,
aminoglycosides, and meropenem can be a therapeutic option
(22–24). In this set of STEC, one was resistant to gentamicin,
and none showed resistance to meropenem nor fosfomycin
by disk diffusion assay. However, one of these fosfomycin-
susceptible isolates carried the fosA7 gene. According to this
finding, that gene was also detected in a fosfomycin-susceptible
E. coli obtained from a Japanese river. In this Japanese isolate,

the fosA gene was truncated, thus explaining the observed
phenotype. However, in our STEC isolate, the fosA7 gene was
complete; therefore, the in vitro susceptibility to fosfomycin
could be due to the fact that the gene is not fully expressed,
or its level of expression is extremely low. Nevertheless, this
finding highlights the role of STEC as a reservoir of transferable
resistance genes (25).

The role of azithromycin in the prevention of HUS cases
remains to be assessed knowing thatmef (A), unlikemph(A) gene,
has a poor role in resistance to this antibiotic (26).

The obtained results show that STEC deserves special
attention considering the local circulation of antibiotic-resistant
full-pathogenic strains, in both humans and animals, and
knowing that some of them harbor transferable resistance genes.
The spread of these strains and its resistance genes will surely
continue and even increase if this situation is not addressed.

CLSI and EUCAST guidelines include minimal inhibitory
concentration (MIC) breakpoints for three or four antibiotics,
respectively, for L. monocytogenes, and some years ago, EUCAST
incorporated the disk-diffusion method for the same antibiotics
(13, 27). In both guidelines, the culture medium contains horse
blood, which is not everywhere commercially available. These
difficulties may have led researchers to use alternative culture
media and/or to interpret their results based on criteria defined
for other microorganisms.

The results of this study using EUCAST guidelines show
that L. monocytogenes local isolates remain fully susceptible
to penicillin, gentamicin, trimethoprim-sulfamethoxazole, and
meropenem. We found a low frequency of ciprofloxacin
(two isolates) and erythromycin resistance (one isolate). It
is important to highlight that these antibiotics are not
therapeutic options for treatment of invasive infections in
humans. Resistance frequency found in our study was similar to
those previously reported by other authors using microdilution
methods according to CLSI or EUCAST recommendations
for L. monocytogenes. In the USA, Davis et al. tested 90 L.
monocytogenes isolates recovered from human, food, animal,
and the environment and found only 2% of ciprofloxacin
resistance but not resistance to penicillin G, ampicillin,
erythromycin, gentamicin, and trimethoprim-sulfamethoxazole
(28). In Poland, Kuch et al. analyzed 344 human isolates
(recovered between 1997 and 2013) and did not find resistance to
ampicillin, penicillin, meropenem, erythromycin, trimethoprim-
sulfamethoxazole, levofloxacin, gentamicin, vancomycin, nor
rifampicin (29). In Australia, Wilson et al. using gradient
diffusion test, found resistance to ciprofloxacin (2%) and
erythromycin (1%) among 100 L. monocytogenes isolates
originating from food between 1988 and 2016; no resistance was
observed to penicillin G or tetracycline (30).

On the other hand, in Argentina, Prieto et al. found higher
frequency of resistance to erythromycin (30%) among 250
food and human disease-related L. monocytogenes isolates
recovered between 1992 and 2012 but no resistance to penicillin
G, ampicillin, trimethoprim-sulfamethoxazole, gentamicin,
tetracycline, nor rifampin (31).

Our results and those of the aforementioned studies differ
from others in which resistance to beta-lactams is reported with
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high frequency, a cause for concern since this group of antibiotics
is the first line of treatment for invasive listeriosis (32–35).
However, these studies do not use standardized culture media
for L. monocytogenes and interpret their results based on the
criteria defined for Staphylococcus or Enterococcus; these factors
may explain such discrepancies at least partially.

Genomic sequences analysis revealed the presence of the
resistance genes fosX, lin, norB, lde, mdrL, and fepA in all L.
monocytogenes strains studied.

Listeria monocytogenes is intrinsically resistant to fosfomycin
due to the lack of expression of transport systems through the
membrane. Also, the presence of fosX gene could explain another
resistance mechanism in L. monocytogenes, since it was globally
present in all strains analyzed here as well as in all the 100 studied
by Hurley et al. (36). The FosX protein catalyzes the hydration of
fosfomycin breaking the oxirane ring (37).

The lin gene was detected in all the analyzed strains
and encoded for a lincomycin resistance ABC-F type
ribosomal protection protein, a member of the ATP-
binding cassette F (ABC-F) proteins (38). We did not
find descriptions of this mechanism in L. monocytogenes,
but we did find the lin gene in almost all genomes of
this species in NCBI Pathogen Detection Isolates Browser
(https://www.ncbi.nlm.nih.gov/pathogens/) suggesting that
this mechanism could be involved in the natural resistance
to lincomycin.

Macrolide resistance in L. monocytogenes has been linked
to the methyl-transferase coding gene ermB and to efflux
mechanisms mediated by multidrug efflux transporter of Listeria
(MdrL) (39). We found the mdrL gene in all the analyzed
genomes but not the ermB gene in any of them.

Fluoroquinolone resistance in L. monocytogenes seems
to be primarily due to efflux pumps, principally through
overexpression of the lde and fepA genes (31, 40, 41). NorB
is a member of the major facilitator superfamily (MFS) of
transporters that confers resistance to hydrophilic quinolones
(norfloxacin and ciprofloxacin) and hydrophobic quinolones
(sparfloxacin and moxifloxacin). The norB gene has been found
by us and other authors in the analyzed genomic sequences of L.
monocytogenes (30, 42).

The presence of the genes mdrL, lde, fepA, and norB coding
for the respective efflux pumps seems to be universal in the
L. monocytogenes isolates analyzed in this study; however,
only two isolates were resistant to ciprofloxacin and one to
erythromycin. Therefore, additional mechanisms or the level
of expression of these genes could explain the differences in
susceptibility to fluoroquinolones and macrolides. Likewise, 45
of the 50 strains analyzed had ciprofloxacin inhibition zones
near the cut-off point (±5mm) for Staphylococcus spp. (data
not shown).

CONCLUSIONS

Antimicrobial-resistant L. monocytogenes and STEC isolates are
present at a low-middle frequency. However, the high load
of resistance genes found suggests that these pathogens could
contribute to the local burden of antimicrobial resistance.
A nationwide detailed study is necessary to determine the
prevalence of resistant L. monocytogenes and STEC strains
(including the resistance to antibiotics not tested in this work to
STEC as tetracycline and chloramphenicol) and also to know the
involved genes.
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