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Extracellular vesicles (EVs) regulate multiple physiological processes. Seminal plasma

contains numerous EVs that may deliver functional molecules such as small RNAs

(sRNAs) to the sperm. However, the RNA profiles in the boar seminal plasma

extracellular vesicles (SP-EVs) and its function have not been characterized. The

aim of this study was to characterize the functions and sRNA profiles in the boar

SP-EVs using deep sequencing technology. Briefly, boar SP-EVs were isolated by

differential ultracentrifugation and confirmed with a transmission electron microscope

(TEM), nanoparticle tracking analysis (NTA), and Western blot. The isolated boar SP-EVs

contained numerous and diverse sRNA families, including microRNAs (miRNAs, 9.45%

of the total reads), PIWI-interacting RNAs (piRNAs, 15.25% of the total reads), messenger

RNA fragments (mRNA, 25.30% of the total reads), and tRNA-derived small RNAs

(tsRNA, 0.01% of the total reads). A total of 288 known miRNAs, 37 novel miRNA, and

19,749 piRNAs were identified in boar SP-EVs. The identified ssc-miR-21-5p may confer

negative effects on sperm fertility based on a dual-luciferase reporter experiment. This

study therefore provides an effective method to isolate SP-EVs and characterizes the

sRNA profile.

Keywords: seminal plasma, extracellular vesicles, miRNA, piRNA, boar

INTRODUCTION

Extracellular vesicles (EVs) are lipid bilayer-delimited spherical structures released by cells into
their surrounding microenvironment (1). EVs were first observed during the physiological release
of non-specific cell vesicles by reticulocytes as they mature into erythrocytes and are thought to be
a mechanism of discarding cell membrane proteins (2). However, EVs are currently understood to
be secreted by various cell types (3). EVs fall into twomain categories, exosomes, andmicrovesicles.
Exosomes have diameters ranging between 50 and 150 nm, while microvesicles are 50–1,000 nm in
diameter (1). Once released, EVs can reach distant sites and transfer their cargoes to target cells,
inducing phenotypic changes. Thus, EVs may mediate intercellular communication upon release
into extracellular space (4).
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Spermatogenesis and post-testicular sperm maturation,
capacitation, and acrosome reaction are complex biological
processes that need communication between cells and organs
(5). For example, changes in sperm morphology and post-
testicular sperm function rely on sperm interaction with the
intraluminal fluid, especially in the epididymis (6), suggesting
that EVs in male reproductive biofluids may participate in
intercellular communication before and after spermatogenesis.
It has been shown that EVs in seminal plasma may enhance
ejaculated sperm motility and influence multiple other biological
functions when they fuse to sperm membrane in human (7).
Furthermore, it has been reported that boar seminal plasma EVs
(SP-EVs) could maintain sperm function by fusing to the sperm
membrane (8), indicating that some regulatory materials in the
boar SP-EVs, such as small RNAs (sRNAs), may participate
in post-testicular sperm function following transfer from EVs
to sperms.

Micro-RNAs (miRNAs) are single-stranded RNA molecules
composed of 22–24 nucleotides. They are important modulators
of post-transcriptional gene expression in mammals (9, 10).
MiRNAs exist in testis, sperms, seminal plasma, and SP-
EVs, and may play important roles in spermatogenesis, sperm
maturation, and capacitation (11). PIWI-interacting RNAs
(PiRNAs), which consist of 24–31 nt, are another class of
sRNA that could bind to PIWI proteins and modulate germ
cell processes, including spermatogenesis (12, 13). PiRNAs are
thought to modulate spermatogenesis by targeting specific genes
and give novel insights into causes of male infertility (14).
However, piRNAs’ function in boars has not been thoroughly
investigated, especially in boar SP-EVs. Additionally, previous
studies showed that human SP-EVs carry various kinds of
small non-coding RNAs, including miRNAs, piRNAs, tsRNA,
and Y RNA, which have regulatory functions (15, 16). In
mice and bovine systems, EVs from different regions of
the male reproductive tract have distinct miRNA profiles,
which have different biological functions depending on their
origin (17, 18). Thus, by directly transferring their sRNA
cargoes to target cells, EVs may play important roles in
intercellular communication.

Pigs are not only economically important farm animals
but also large animal models widely used in biomedical
research due to their anatomical and physiological closeness
to humans (19, 20). However, few studies have investigated
the biological function of boar SP-EVs. Here, we aimed
to isolate boar SP-EVs and elucidate sRNA profiles in
boar SP-EVs by deep sequencing, thereby providing
comprehensive new information of the physiological functions
of boar SP-EVs.

MATERIALS AND METHODS

Ethics Statement
Procedures involving boars and semen samples were
performed in adherence to guidelines by the Institutional
Animal Care and Use Committee (IACUC) of South China
Agricultural University.

Sample Collection
Six healthy, fertile Duroc boars were used as semen donors.
The boars were housed in a farm (Yunfu, Guangdong Province,
China) under controlled environmental conditions with a
temperature between 20 and 22◦C and a relative humidity of
60%. The sperm-rich fraction of the ejaculates were collected
using the gloved-hand method. All semen samples met the
following criteria: >2 × 108 spermatozoa/mL, with at least 70%
of spermatozoa exhibiting normal motility and 80% of them
morphologically normal. Sperm motility was determined under
a light microscope (400×) as the percentage of linear motility
at 37◦C. Spermmorphological assessment was determined under
light microscopy (400×); sperms with a proximal droplet, distal
droplet, and head/tail abnormality were considered abnormal. At
least 200 spermatozoa were counted per slide.

Isolation of EVs From Boar Seminal Plasma
EVs were isolated from seminal plasma by differential
centrifugation as described previously with some modification
(8, 21). Briefly, about 200mL of semen was centrifuged at 800 g
for 20min and then at 2,000 g for 20min at room temperature
so as to remove sperms. The supernatant was then centrifuged
at 16,000 g for 1 h at 4◦C to remove residual sperms and cell
debris, and the resulting supernatant has been considered as
seminal plasma fraction. The seminal plasma fraction was then
ultracentrifuged at 120,000 g for 1 h at 4◦C to obtain the EVs and
the EV-depleted seminal plasma fraction. The EV pellets were
then rinsed twice with PBS by ultracentrifugation at 120,000 g
for 1 h at 4◦C. Finally, the pellets were resuspended in PBS.

SP-EVs Characterization
Boar SP-EV morphology was determined by a transmission
electron microscope (TEM) with a modification of the protocol
as described by Rodriguez et al. (22). Briefly, 10 µL of SP-
EVs was loaded onto Cu grids and incubated for 10min at
room temperature. They were then stained with 2% uranyl
acetate (aqueous) for 2min before air drying and examination
by TEM (Talos L120C, Thermo Fisher). The sizes of the SP-
EVs were analyzed by nanoparticle tracking analysis (NTA) using
a Zetaview (Particle Metrix) with a 488-nm laser (23). SP-EVs
samples were diluted in PBS for 50 times before NTA, and then
analyzed according to manufacturer instructions.

Western Blot Analysis
SP-EVs were examined for specific markers using Western
blot (24). Briefly, sample lysis was done using RIPA buffer
supplemented with 1% protease inhibitor cocktail (Beyotime,
Cat. No. P0013B). Total protein was quantified using the Rapid
Gold BCA protein assay kit (Thermo Fisher, Cat. No. A53225).
A total of 20 µg of the protein was denatured and subjected
to 12% SDS-PAGE. Proteins were then transferred onto PVDF
membranes (Millipore, Cat. No. IPVH08110), blocked with 5%
(w/v) skim milk for 2.5 h at room temperature, and washed
five times with TBST. The membranes were then incubated
with anti-CD9 (Abcam, Cat. No. ab223052, 1:1,000) and CD63
(Abcam, Cat. No. ab216130, 1:1,000) overnight at 4◦C. They
were then washed five times with TBST, 5min each time, and
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incubated with a HRP-conjugated goat anti-rabbit IgG secondary
antibody for 2 h at room temperature. Signal was then developed
using enhanced chemiluminescence substrate (Beyotime, Cat.
No. P0018S) and examined using a UVP system (Upland).

Total RNA Isolation and sRNA Sequencing
SP-EVs were isolated from 200mL of seminal plasma, and
total RNA was isolated from SP-EVs using exoRNeasy
Serum/Plasma Maxi Kit (Qiagen, Cat. No. 77023) according to
the manufacturer’s instructions. RNA samples were digested with
RNase-free DNase I (EN0521, Thermo Scientific). RNA yield and
quality were determined using NanoPhotometer R© (IMPLEN)
and Agilent 2100 pic600 (Agilent Technologies). A total of 3
µg of RNA isolated from six healthy boar SP-EVs were pooled
together for RNA library construction. Sequencing libraries
were produced by NEBNext R© Multiplex Small RNA Library
Prep Set for Illumina R© (NEB) according to the manufacturer’s
instructions. Sequencing was done on an Illumina Hiseq
2500/2000 platform, and 50-bp single-end reads were generated.

Analysis of sRNA Sequence Data
First, clean data (clean reads) from raw data were processed
with a customized perl and python scripts. Clean reads were
then mapped to the Sus scrofa Ensemble 94 genome version
(25) using Bowtie (26). To make every unique sRNA mapped
to only one annotation, each unique sRNA was annotated by
following the priority rule: known miRNA > rRNA > tRNA
> snRNA > snoRNA > repeat > gene > NAT-siRNA >

gene > ta-siRNA > piRNA > novel miRNA, using miRBase
release 22 (27) and RepeatMasker (http://www.repeatmasker.
org/), Rfam database (http://rfam.xfam.org/), and the reference
pig genome as reference. Next, novel miRNAs were identified
according to the precursor hairpin structure and the secondary
structure predicted using miREvo (28) and mirdeep2 (29).
MiRNA expression levels were calculated by TPM (transcript
per million) (30): Normalized expression = mapped read
count/Total reads∗1,000,000. Furthermore, other tags were
performed on a transcript database (http://www.ensembl.org)
(25) and specific piRNA database piRNABank (http://pirnabank.
ibab.ac.in/) (31).

Quantitative PCR (q-PCR)
Six boar SP-EVs miRNAs were randomly selected (four higher
sequence reads miRNAs: ssc-miR-21-5p, ssc-miR-148a-3p, ssc-
miR-10a-5p, and ssc-miR-125b, and two lower sequence reads
miRNAs: ssc-miR-135 and ssc-miR-744). Reverse transcription
was performed according to the TransScript miRNA First-Strand
cDNA Synthesis SuperMix kit (Transgen, Cat. No. AT351-
01). These cDNAs were validated by SYBR-Green qPCR using
PerfectStartTM Green qPCR SuperMix kit (Transgen, Cat. No.
AQ602-21) on a Real-Time PCR System (Applied Biosystems).
The spike-in control cel-miR 39-1 (Qiagen, Cat. No. 219610)
was used as endogenous control. Universal reverse primer for
qPCRwas obtained fromTransScript miRNA First-Strand cDNA
Synthesis SuperMix kit (Transgen, Cat. No. AT351-01). All
measurements were analyzed in another six boar SP-EVs samples

(n = 6). Relative miRNA expression was calculated using the
2−−11Ct method (32).

Prediction of the Target Genes
The target genes of miRNA were predicted by miRanda (33)
with score cutoff ≥140 and energy cutoff ≤ −10 kcal/mol, and
we use pig genome as a background. Analysis of ssc-miR-21-
5p, the most abundant miRNA in the SP-EVs, identified its
putative target gene pig VCL (Gene ID: 396974), among other
genes. This gene is known to play an important role in sperm
capacitation. Previous studies have shown that VCL is part of
the focal adhesion protein complex in the acrosome region and
affects sperm capacitation (34).

Plasmid Construction and Dual-Luciferase
Reporter Assay
The normal and mutant of the 3’UTR (untranslated region) of
the pig VCL gene (Gene ID: 396974) were amplified by PCR
and inserted into the pGL3-basic vector (Promega) with Xbal
digestion (the sequences refer to Supplementary Data Sheet 1).
The PK-15 cells were cultured with Dulbecco’s minimum
essential medium (DMEM, Gibco) containing 10% fetal bovine
serum (Gibco) at 37◦C in a humidified 5% CO2 atmosphere.
When the PK15 cells grew to about 75% confluent, ssc-miR-
21-5p (100 nM) and a luciferase reporter vector containing the

pig VCL-3
′
-UTR (400 bp) (0.3 µg/well) were co-transfected into

the cells using Lipofectamine 3000 (Invitrogen), together with
0.1 µg/well of pRL-TK (Beyotime). At 48 h after transfection,
the luciferase activity was measured with a microplate reader
(TECAN) according to the manufacturer’s instructions.

Statistics
Data analysis was performed using Prism 8.0 (GraphPad).
Multiple groups were compared using one-way ANOVA whereas
two groups were compared with the Student t-test. A p < 0.05
was considered statistically significant.

RESULTS

Characterization of SP-EVs
SP-EV morphology evaluation by TEM revealed that the boar
SP-EVs were presented as cup-shaped vesicle structures, which
is in line with the general description of EVs (Figure 1A). NTA
analysis showed that the SP-EVs collected from three different
pigs had an average diameter of 121.6 ± 2.5 nm with 72.5% of
the SP-EV diameter ranging from 50 to 150 nm, consistent with
the documented EV size (Figure 1B). Western blotting showed
that relative to the EV-depleted seminal plasma fraction, boar SP-
EVs contained specific EV markers, CD9 and CD63, and have
shown no cytoplasmic contaminants (β-tubulin) (Figure 1C).
Taken together, these results show that the isolated boar SP-EVs
indeed have all EV characteristics and that boar semen is rich
in SP-EVs.

SP-EVs Contain Several sRNA Biotypes
RNA quality was assessed by electrophoresis and Agilent 2100.
Our analysis found that the SP-EV samples are enriched for

Frontiers in Veterinary Science | www.frontiersin.org 3 November 2020 | Volume 7 | Article 585276

http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://rfam.xfam.org/
http://www.ensembl.org
http://pirnabank.ibab.ac.in/
http://pirnabank.ibab.ac.in/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Xu et al. Boar Semen Extracellular Vesicles sRNAs

FIGURE 1 | The characteristic features of EVs isolated from seminal plasma. (A) Transmission electron micrographs of SP-EV samples. An overview of the SP-EVs

shown at a scale of 100 nm indicating the presence of a large number of EVs in boar SP-EVs. SP-EVs possess typical cup-shaped vesicle structures under the TEM.

(B) Nanoparticle tracking analysis of particle size distribution profiles from three different SP-EV samples; most particle sizes range from 50 to 200 nm consistent with

the characteristics of EVs. (C) Western blots of one sperm sample (S), three SP-EVs samples, and three SP-EV-depleted seminal plasma using antibodies against the

EV markers CD63 and CD9.

sRNAs (Figure 2A) and that almost all the RNAs ranged between
18 and 35 nt in length (Figure 2B).

After exclusion of low-quality and contaminant reads,

30.11M (94.46%) clean reads remained and were aligned to

the Sus scrofa Ensemble 94 genome version (25). Mapped

RNAs were sorted by biotype (Table 1); 9.45% of mapped

sRNAs were identified as miRNA (including the identified

novel miRNA). Unexpectedly, piRNA, which are 24–31 nt

long and have important functions in germline development

(14), comprised 15.25% of the library, which had not been
previously reported. Protein-codingmRNA fragment constituted

25.30% of the fraction, while ribosomal RNA, tRNA, and

snRNA reads accounted for 0.10, 0.01, and 0.03% of the RNA,
respectively. Other sRNA fragments, including repeats, made

up 17.67%, while unannotated tags represented 32.19% of total

RNA. These data show that boar SP-EVs carry multiple sRNA
biotypes. The sequence data have been deposited in the SRA
database (SRR11870885).

Some Mature miRNAs Account for the
Majority of the Total miRNA in Boar SP-EVs
Upon mapping to miRBase release 22 (27), 288 miRNAs were
identified. Although only 8.95% of the mapped sRNA in the
library was identified as miRNA, we found that the top 10
abundant miRNA account for the majority of total SP-EVs
miRNA reads. The most abundant miRNA is ssc-miR-21-5p,
accounting for 19.72% of total SP-EVs miRNA reads. The top 5
most abundant miRNAs of the boar SP-EVs (ssc-miR-21-5p, ssc-
miR-148a-3p, ssc-miR-10a-5p, ssc-miR-10b, and ssc-miR-200b)
comprised 60.69% of total miRNA reads while the top 10 most
abundant comprised 81.59% of total miRNA reads (Figure 3A).
We validatedmiRNA expression levels by quantifying six selected
miRNAs (four higher sequence reads miRNAs: ssc-miR-21-5p,
ssc-miR-148a-3p, ssc-miR-10a-5p, and ssc-miR-125b, and two
lower sequence reads miRNAs: ssc-miR-135 and ssc-miR-744)
using RT-qPCR of total RNA isolated from SP-EVs from six
unsequenced donors. This analysis showed that the relative
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FIGURE 2 | (A) Results of the boar SP-EV RNA quality detection by Agilent 2100. The boar SP-EVs are enriched with small RNAs. (B) Length distribution of RNA

sequence. The different colors refer to the different base length of the identified RNAs, which have a range between 18 and 35 nt.

TABLE 1 | The sequencing reads and percentage of each RNA type in the library.

Types Total Known

miRNA

Novel

miRNA

piRNA mRNA rRNA tRNA snRNA snoRNA Repeat Unannotated

Reads 19,449,493 1,740,710 96,788 2,966,589 4,920,444 19,101 1,827 4,891 840 3,437,677 6,260,626

Percent 100.00% 8.95% 0.50% 15.25% 25.30% 0.10% 0.01% 0.03% 0.00% 17.67% 32.19%

FIGURE 3 | (A) The top 10 most abundant miRNAs in SP-EVs. Left axis and the bars: percentage of each miRNA of the total miRNA reads. Right axis and dot:

cumulative percentage of miRNA reads. (B) qPCR analysis of miRNA expression in three additional SP-EV samples that had not been sequenced; four higher

abundant and two lower abundant miRNAs (by sequencing data) were tested.

expression of the six miRNAs was consistent with the RNA-seq
data (Figure 3B).

Identification of Novel miRNAs in SP-EVs
To identify potential novel miRNAs in boar SP-EVs, the
unclassified tags were analyzed using miREvo (28) and mirdeep2

(29). After excluding known miRNA, rRNA, tRNA, snRNA,
snoRNA, repeats, gene (protein-coding mRNA fragment), NAT-
siRNA, ta-siRNA, and piRNA fragments, 37 novel mature
miRNAs that had not been previously deposited in miRBase
release 22 were identified (Supplementary Table 1). About 88%
(85504/96788) of the novel miRNA tags started with U at the
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5’ end, which has been commonly observed in the 1st miRNA
positions before.

Boar SP-EVs Express High Levels of
piRNAs
Analysis of piRNAprofiles in the SP-EVs byNGS identified 19749
piRNAs, most of which had preference for U at position 1 and A
at position 10 (Figure 4). We found that only a few kinds of the
piRNAs account for the majority of total piRNAs in boar SP-EVs.
The top 10 most abundant piRNAs accounted for 94.6% of the
piRNA reads in the library (Table 2).

Boar SP-EVs May Have a Negative Effect
on Sperm Fertility
We then focused on some of the most abundant miRNAs in
boar SP-EVs and explored their potential target genes. Among

these target genes, the VCL gene has a score of 152 and an
energy of −11.28 kcal/mol and is known to be important in
sperm function (34). We then used a dual-luciferase reporter
to analyze the interaction between ssc-miR-21-5p and the VCL
gene. The luciferase reporter experiment revealed significantly
suppressed luciferase activity (Figure 5). However, luciferase
activity was unchanged upon co-transfection of ssc-miR-21-5p

and VCL-3
′
-UTR-Mut into PK15 cells (Figure 5), indicating that

ssc-miR-21-5p specifically inhibits pig VCL gene and may affect
sperm fertility.

DISCUSSION AND CONCLUSIONS

SP-EVs have previously been shown to be present in seminal
plasma of various species, including humans (15), mouse (17),
bovines (18), and boars (8, 21, 24, 35). Here, the existence

FIGURE 4 | (A) The first base bias of different length of piRNAs. (B) PiRNA base bias at each position.

TABLE 2 | The top 10 most abundant piRNAs.

piRNA_id Sequence Length Read count TPM

uniq_11164 GCATTGGTGGTTCAGTGGTAGAATTCTCGCC 31 2,120,736 714,873.5

uniq_11130 GCATTGGTGGTTCAGTGGTAGAATTCTCGC 30 465,605 156,949.6

uniq_56665 GCATGGGTGGTTCAGTGGTAGAATTCTCGCC 31 60,767 20,483.79

uniq_49224 GCATTTGTGGTTCAGTGGTAGAATTCTCGCC 31 50,725 17,098.76

uniq_534 TCCCTGGTGGTCTAGTGGTTAGGATTCGGC 30 30,309 10,216.78

uniq_9 TCCCTGGTGGTCTAGTGGTTAGGATT 26 23,951 8,073.582

uniq_52864 GCATTAGTGGTTCAGTGGTAGAATTCTCGCC 31 19,903 6,709.052

uniq_547 TCCCTGGTGGTCTAGTGGTTAGGATTC 27 11,984 4,039.656

uniq_461 TCCCTGGTGGTCTAGTGGTTAGGATTCGG 29 11,135 3,753.469

uniq_79645 TCCCTGGTCTAGTGGTTAGGATTCGG 26 10,523 3,547.172
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FIGURE 5 | (A) The design of luciferase reporter. VCL 3’ UTR sequence contains the ssc-miR-21-5p binding site; VCL 3’ UTR Mut sequence contains mutation of the

ssc-miR-21-5p binding site. (B) Luciferase activity was analyzed 48 h after co-transfection of PK15 cells with VCL3’ UTR (WT) or VCL 3’ UTR Mut plasmid (Mut) and

ssc-miR-21-5p mimics (miR-21) or mimics negative control (miR-NC). pGL3 used as the basic vector of the luciferase reporter. (C) The ssc-miR-21-5p binding site

sequences on the VCL 3
′
UTR is conserved across species.

of boar SP-EVs was validated by TEM, NTA, and Western
blotting at the same time. EVs isolated from boar seminal
plasma were shown as cup-shaped spherical structures with a
mean diameter of 121.6 nm (Figures 1A,B), which are typical
EV features. Western blot analysis showed that the boar SP-
EVs expressed the EVs markers CD63 and CD9 and were free
of cell contamination (Figure 1C). However, recent study has
indicated that ultracentrifugation alone may not be sufficient to
isolate clean EVs; an additional purification process such as a
density gradient ultracentrifugation made with iodixanol might
be applied to remove the aggregates (36). Although we tried to
isolate boar SP-EVs using membrane-based affinity binding and
precipitation, methods that are commonly used to isolate EVs
from bioliquids, the yield was too small for TEM analysis (data
are not shown).

EVs are secreted from cells and are ubiquitous in body fluids,
including blood, urine, and milk. Because they can transport
cargoes to distant sites (37), EVs may modulate intercellular
communication (38, 39). Identifying RNAs in SP-EVs may help
elucidate SP-EV function. Although miRNAs have been reported
to be associated with reproduction in boars, no systematic studies
have profiled sRNA boar SP-EVs. Here, analysis of SP-EV total
RNA revealed that almost all of the sRNAs in boar SP-EVs
were <100 nt long (Figure 2, Table 1). Of these sRNAs, miRNA
and piRNA are most likely to have functional activity and were
therefore thoroughly analyzed.

Our analysis found miRNAs to comprise 9.45% of total reads
in SP-EVs. However, only a few miRNAs accounted for the
majority of total RNAs (Figure 3). EVs that play important
roles in intercellular communication have been widely accepted,
and there is a study that proved that EVs could infiltrate the
sperm membrane in boar (8). However, further studies should
be taken to evaluate the interaction between SP-EVs and sperms.
We also analyzed other abundant miRNAs. For example, DNA
methyltransferase 3 beta (DNMT3B) gene as a candidate target
of ssc-miR-148a-3p has been reported to participate in sperm
development (40–42). These observations led us to hypothesize
that boar SP-EVs may participate in porcine spermatogenesis.
Ssc-miR-10a-5p is highly expressed in spermatogonia (43) and
is also abundant in the SP-EVs, suggesting that boar SP-EVs
may partially derive from testis and influence spermatogenesis.
The miRNA ssc-miR-200b has been shown to target porcine
spermatogenesis-associated serine-rich 2-like (SPATS2L) gene,
which significantly affects litter size (44), suggesting that boar
SP-EVs may affect sperm function and influence embryo
development. Taken together, these results suggest that boar SP-
EVs modulate male reproductive physiology. Further studies
are required to illustrate the biological functions of boar SP-
EVs. Furthermore, a recent study profiled the RNA of the boar
sperm (45); it is interesting that the miR-10b, miR-191, miR-
30d, and let-7a are both abundant within the sperm and SP-
EVs, and they may affect sperm fertility. However, to achieve
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more rigorous and scientific results, we need to sequence the
boar sperm and SP-EVs at the same time with a suitable
sample size.

Additionally, the top 10 most abundant miRNAs may
participate in other physiologic processes. For example, ssc-
miR-21-5p directly impacts TLR4 signaling, while ssc-miR-21-
5p promotes IL-10 production by regulating PDCD4 expression
(46) and suppressing IL-12 p35 protein by targeting IL-12A
(47). Ssc-miR-148a-3p targets the IL-20RB gene to modulate
immune-related function (48, 49). Let-7a miRNA belongs
to the top 10 most abundant miRNAs in boar SP-EVs,
and its homologs let-7c, let-7f, let-7g, and let-7i are also
abundant in boar SP-EVs. These members of the Let-7 family
modulate IL-6, IL-10, and IL-13, which are associated with
inflammatory responses (50). These findings mean that some of
the most abundant miRNAs in boar SP-EVs may have immune
functions, which is in agreement with results from human
SP-EVs (15). Target genes of the miRNAs listed here were
summarized in Supplementary Table 2. However, how miRNAs
are delivered to SP-EVs and how they regulate mRNAs warrant
further study.

We have also identified piRNAs consisting of 24–31 nt in boar
SP-EVs. PiRNAs are primarily expressed in germline cells (51).
Here, we identified 29 SP-EV piRNAswithmore than 1,000 reads,
suggesting that some SP-EVs may be derived from spermatozoa
or there may be a strong interaction between boar SP-EVs and
spermatozoa in the semen. The source and mechanism of piRNA
activity in the male genital tract have not been fully elucidated.
Future studies should explore the function of these piRNAs in
sperm physical function.

In conclusion, we have employed EV isolation methods to
look into sRNA profiles. Our findings may further illustrate
the role of miRNAs and piRNAs in sperm maturation,
capacitation, acrosome reaction, and fertility, andmay contribute
to the development of novel therapeutic strategies for male
infertility. On the other hand, the present study has limitations,
such as sequencing using pooled samples to characterize the
composition of EVs by ultracentrifugation alone; in addition,
we could not analyze the predicted functionality of piRNAs
because of the scarcity of bioinformatics tool designed for
that purpose.
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