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Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen and important

cause of foodborne disease worldwide. Many animal species in backyard production

systems (BPS) harbor STEC, systems characterized by low biosecurity and

technification. No information is reported on STEC circulation, antimicrobial resistance

(AMR) and potential drivers of antimicrobial usage in Chilean BPS, increasing the risk

of maintenance and transmission of zoonotic pathogens and AMR generation. Thus,

the aim of this study was to characterize phenotypic and genotypic AMR and to study

the epidemiology of STEC isolated in BPS from Metropolitana region, Chile. A total of

85 BPS were sampled. Minimal inhibitory concentration and whole genome sequencing

was assessed in 10 STEC strain isolated from BPS. All strains were cephalexin-resistant

(100%, n = 10), and five strains were resistant to chloramphenicol (50%). The most

frequent serotype was O113:H21 (40%), followed by O76:H19 (40%), O91:H14 (10%),

and O130:H11 (10%). The stx1 type was detected in all isolated strains, while stx2

was only detected in two strains. The Stx subtype most frequently detected was stx1c

(80%), followed by stx1a (20%), stx2b (10%), and stx2d (10%). All strains harbored

chromosomal blaAmpC. Principal component analysis shows that BPS size, number

of cattle, pet and horse, and elevation act as driver of antimicrobial usage. Logistic

multivariable regression shows that recognition of diseases in animals (p = 0.038; OR

= 9.382; 95% CI: 1.138–77.345), neighboring poultry and/or swine BPS (p = 0.006;

OR = 10.564; 95% CI: 1.996–55.894), visit of Veterinary Officials (p = 0.010; OR =

76.178; 95% CI: 2.860–2029.315) and close contact between animal species in the

BPS (p = 0.021; OR = 9.030; 95% CI: 1.385–58.888) increase significantly the risk

of antimicrobial use in BPS. This is the first evidence of STEC strains circulating in
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BPS in Chile, exhibiting phenotypic AMR, representing a threat for animal and public

health. Additionally, we identified factors acting as drivers for antimicrobial usage in

BPS, highlighting the importance of integration of these populations into surveillance

and education programs to tackle the potential development of antimicrobial resistance

and therefore the risk for ecosystemic health.

Keywords: antimicrobial resistance, Shiga toxin-producing Escherichia coli, backyard production systems,

zoonoses, one health, antimicrobial use

INTRODUCTION

Shiga toxin-producing Escherichia coli is considered one of the
most common causes of foodborne disease worldwide, causing
diarrhea with or without blood and potentially hemolytic uremic
syndrome (HUS) in people (1). In the last decade, STEC
has become much more prevalent in developing countries,
with variations in the age distribution, geographic region and
socioeconomic factors (2), which has led to its consideration as
an emerging pathogen (3). Estimates indicate over 2.8 million
annual acute illnesses worldwide, and up to 4,000 annual cases
of HUS associated to STEC infection (4).

STEC strains are usually detected in ground beef and ready-
to-eat food or drink (5), derived from domestic animals specially
raised in intensive production farms (6, 7). Also, there is evidence
about STEC in backyard production systems (BPS), but the
information is scarce (8). BPS are considered as one of the
most common forms of animal production worldwide, with
particular importance in developing countries (9). These animal
husbandry systems, which involve carrying out agricultural and
livestock activities in a common space, constitute a part of the
family farming system corresponding to a fragment of the family
income source. As such, it implies that the activities and times
allocated to animals breeding are conditioned by other household
activities (10).

BPS are defined as small-scale production systems, not
exceeding 100 animals, which are mainly poultry and pigs
(11), among other species maintained (12). Their main features
are the low levels of biosecurity, technological development
and veterinary assistance, resulting in a close contact between
humans and these animals, leading to pathogen transmission and
dissemination. This could potentially increase the risk of failures
in early detection of zoonotic and non-zoonotic outbreaks (11,
13–15). Ill animals from BPS are usually sold, slaughtered, and
consumed, without considering the risk of zoonotic infections,
increasing the risk of human infection (16). In this context,
some of the most important diarrheagenic bacteria have been
described in BPS throughout the world, including Campylobacter
spp., Salmonella enterica, and STEC, all of which have also
been associated with outbreaks in people (11, 17–21). Therefore,
BPS could be an important source of pathogens to people.
In this context, reports from BPS estimate STEC prevalence
between 0.2 and 74% in dairy cattle (22), over 70% in sheep
and goats (23), and even a 4% in captive wild birds (24), with
several other reports in different animal species with close in-
contact with humans (25, 26). Information about positivity to

STEC in Latin America is scarce, but a report described STEC
isolation in alpacas, raised under small farmer condition in
Peru (25).

The identification and characterization of STEC is based in the
detection of the Shiga toxins (Stx), with two types (Stx1 and Stx2),
further classified into four subtypes for Stx1 (Stx1a, Stx1c, Stx1d,
and Stx1e) and 12 for Stx2 (Stx2a-l) (27, 28). Nevertheless, little
information is available for STEC characterization in the BPS
context in Latin America, while available information worldwide
reports a variable carriage of Stx virulence genes in isolates from
backyard animals (8).

The extended use of antimicrobial drugs in the food animals’
industries, including fish, cattle, swine and chicken, has led to
an increase of the antimicrobial resistance (AMR) in zoonotic
bacteria. These phenotypes may be transferred, as well as their
resistance encoding genes, to humans directly by contact or
throughout the food chain (29, 30). AMR in bacteria from
the Enterobacteriaceae family is a sign of the emergence of
resistant bacterial strains in the environment (31, 32), including
E. coli, Klebsiella spp., Proteus spp., and Salmonella spp. (19,
33, 34). Additionally, significant losses in terms of morbidity
and mortality have been reported due to multi-drug resistance
(MDR) in bacterial infections (35, 36). Moreover, in the last 5–10
years a growing demand for “organic foods” has been reported,
including animals sourced from backyard production systems
(37, 38). Literature supports the importance of “organic” animal
foods, particularly poultry, both in terms of food safety and its
economic impact in low income populations when compared
to conventional foods (10, 39). This may be due to the fact
that BPS do not use antibiotics or synthetic growth promoters
systematically and routinely, and its animals are fed in an
open pasture system (40, 41). Additionally, the growing access
to, and the use of, antimicrobials (either through prescription
or non-prescription), in both people and animals, leads to
an increase in multidrug resistance among several pathogens
(42). Several genes have been linked to AMR in bacteria
isolated from backyard animals, humans and even seafood,
against tetracycline (tetA, tetB, tetC, and tetG) (43), amoxicillin,
amoxicillin+clavulanic acid, ampicillin, and ceftiofur (blaPSE−1,
blaTEM, and blaCMY) (44), among other resistance genes related
to antimicrobials widely used (45). Thus,MDR STEC strains have
been described as a major public health threat worldwide and
in Chile (46, 47). In this context, Adesiji et al. (43) described
an increase in the incidence of AMR in developing countries,
related to inappropriate or uncontrolled use of these drugs in
farming practices.
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The aim of this study was to asses epidemiology of STEC
strains isolated from animals raised in BPS from central Chile and
AMR, in order to improve understanding and knowledge about
these neglected animal population and their impact under a One
Health approach.

MATERIALS AND METHODS

Sample Collection
A total of 85 BPS were included in this study, located in
Metropolitana de Santiago region during 2019. A proportional
stratified random sampling approach was used, based on the six
provinces included in the study area (Table 1), using a random
allocation of sampling points, as previously described (11). BPS
farm that breed poultry and/or pigs up to amaximumof 100 birds
or 50 pigs were considered in this study.

Poultry cloacal samples were collected using sterile swabs with
Cary-Blair transport medium (Becton, Dickinson and Company,
Franklin Lakes, NJ, USA). For pigs and any other animal, non-
poultry, present at the BPS, rectal samples were collected under
the same conditions. In a selection of BPS, based on viability,
for environmental samples were collected including fresh feces,
nesting material, floors of the poultry or pig, and other animal
pens, using sterile swabs with Cary-Blair transport medium. All
samples were labeled with the identification of the BPS and
animal species, stored at 4◦C and transported to the laboratory
and kept refrigerated until processing.

Sample Processing
STEC Isolation and Identification

Samples were processed according to protocols previously
described (7). Briefly, swabs were suspended into 9mL tryptone
soy broth (Becton, Dickinson and Company, Franklin Lakes,
NJ, USA), homogenized and incubated overnight at 42◦C for
enrichment. Subsequently, 25µL of each culture were plated onto
MacConkey agar (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA) plates then incubated at 37◦C for 18–24 h. An
aliquot from the confluent area of bacterial growth was then
suspended in 500 µL of sterile nuclease-free water and boiled
for 15min at 100◦C. Tubes were then centrifuged at 26,480 g for
5min at room temperature. Concentration and quality (260/280

TABLE 1 | Demographic distribution of BPS and sample size by province,

Metropolitana region, Chile.

Region Province N◦ of BPS

breeding

birds

N◦ of BPS

breeding

pigs

Sample

size

Metropolitana Melipilla 1,910 202 34

Chacabuco 426 78 13

Santiago 244 61 10

Cordillera 237 29 5

Talagante 387 36 7

Maipo 632 92 16

Total 3,836 498 85

absorbance ratio) of the obtained extracted DNA was measured
in a nanodrop (NANO-400micro-spectrophotometer, Hangzhou
Allsheng Instruments Co., Hangzhou, China). Samples with an
absorbance ratio closest to the optimal range (1.8–2.0) were
kept at −20◦C for further analyses (48). Presence of stx1 and/or
stx2 genes was assessed by PCR with primer sets and reaction
conditions following protocols previously described (49). As
positive control, a previously characterized STEC strain was used
(STEC 97) (50), and E. coli ATCC 25922 as negative control.
PCR products (5 µL) were separated by electrophoresis on a 2%
(wt/vol) agarose gel and visualized under LED light (GelDock,
Maestrogen Inc., Hsinchu City, Taiwan) by SYBR R© Safe DNAGel
Stain 10,000X (Thermo-Fisher Scientific, Waltham, MA, USA).
Product size was determined using Accuruler 100 bp Plus DNA
ladder (Maestrogen Inc., Hsinchu City, Taiwan). For each PCR
positive, a maximum of 30 colonies (E. coli phenotype) were
individually plated onto MacConkey agar (Becton, Dickinson
and Company, Franklin Lakes, NJ, USA) plates and subjected to
the multiplex PCR in order to identify the colony harboring stx
genes. If this was not possible, isolation was repeated from the
confluent growing zone.

Once the colonies possessing the stx1 and/or stx2 genes were
detected, they were identified as E. coli using the VITEK R©2
system (bioMérieux) and the GN VITEK R©2 card, according to
the manufacturer’s instructions.

Phenotypic Antimicrobial Resistance
Characterization
Minimal inhibitory concentration (MIC) analysis were
performed to characterize phenotypic antimicrobial resistance
using the VITEK2 system (bioMérieux, Marcy-l’Étoile, France)
and the AST-GN98 card, according to the manufacturer’s
instructions. Clinical cut-off values were applied according to
the Clinical and Laboratory Standards Institute guidelines
(51). The antimicrobials (AM) used for the analyses
included aminoglycosides (amikacin and gentamicin), β-
lactams (amoxicillin-clavulanic acid, ampicillin, cephalexin,
cefovecin, cefpodoxime, ceftazidime, ceftiofur and imipenem),
folate synthesis inhibitors (trimethoprim-sulfamethoxazole),
nitrofurans (nitrofurantoin), phenicols (chloramphenicol),
quinolones (ciprofloxacin, enrofloxacin, and marbofloxacin),
tetracyclines (doxycycline), and also cefepime, cefotaxime,
ceftazidime alone, and in combination with clavulanic acid for
the detection of extended-spectrum β-lactamase (ESBL). MDR
was determined if an isolated strain presented resistance to three
or more antibiotics of different classes (52). Intermediate strains
were classified as resistant.

Whole Genome Sequencing (WGS) and
Assembly
From all isolated STEC strains, genomic DNA was extracted
using the Wizard Genomic DNA purification kit (Promega),
following manufacturer’s instructions. Genomic DNA libraries
were created using the QIAseq FX DNA library kit (QIAGEN)
and MiSeq Reagent kit v3 600 cycles (Illumina), and sequencing
was performed using 2× 300-bp dual-index runs on an Illumina
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MiSeq at the University of Minnesota Mid-Central Research and
Outreach Center. All raw FASTQ files were trimmed and quality
filtered using Trimmomatic (v0.33) (53), specifying removal of
Illumina Nextera adapters, a sliding window of 4 with an average
Phred quality score of 20, and 36 as the minimum read length.
Trimmed reads were de novo assembled using the Shovill pipeline
(v1.0.4), which utilizes the SPAdes assembler (54), with default
parameters (https://github.com/tseemann/shovill).

In silico STEC Typing and Genotypic
Antimicrobial Resistance
VirulenceFinder 2.0 (https://cge.cbs.dtu.dk/services/
VirulenceFinder/) (55) was used to identify stx type and subtype
genes. Molecular serotype was inferred with the SerotypeFinder
2.0 (https://cge.cbs.dtu.dk/services/SerotypeFinder/), based on
the sequences of the O-antigen processing and the flagellin
genes (56). Resistance genes were identified using ResFinder3.2
(https://cge.cbs.dtu.dk/services/ResFinder/) (57) and ABRicate
(v.0.8.13) (https://github.com/tseemann/abricate/). These
analyses were performed with a default setting of a 90% of
identity threshold and 60% minimum gene length overlap, and
the presence of these genes was confirmed when a coverage and
identity >90% was identified.

Epidemiological Data Collection
A survey was conducted on each BPS by a semi-structured
interview with BPS owners, after they consent voluntarily

to be part of this study. Data was collected in relation to
infrastructure, biosecurity, animal production practices, and
public health.

Statistical Analysis
Descriptive statistics analysis was conducted to summarize data
about antimicrobial use and about infrastructure, biosecurity and
trade practices of BPS. BPSs were then classified as positive or
negative for the presence of STEC.

TABLE 3 | Serotype and Stx type and subtype genes detected in STEC strains

isolated from animals raised in backyard production systems from Metropolitana

region.

Strain code Stx type Stx subtype Serotype

RA-2 stx1 stx1c O113:H21

RA-3 stx1 stx1c O113:H21

RA-4 stx1 stx1c O76:H19

RA-5 stx1 stx1c O76:H19

RA-6 stx1 stx1c O76:H19

RA-7 stx1/stx2 stx1a/stx2b O91:H14

RA-8 stx1 stx1c O76:H19

RA-10 stx1 stx1c O113:H21

RA-12 stx1 stx1c O113:H21

RA-13 stx1/stx2 stx1a/stx2d O130:H11

TABLE 2 | MICs of selected antimicrobials against STEC strains isolated from animals raised in BPS from Metropolitana region, Chile.

Strain RA-2 RA-3 RA-4 RA-5 RA-6 RA-7 RA-8 RA-10 RA-12 RA-13

Origin Sheep Sheep Sheep Sheep Sheep Sheep Sheep Sheep Sheep Cow

Antimicrobial*

ESBL – – – – – – – – – –

AN ≤2 ≤2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2

AMC ≤2 ≤2 ≤2 ≤2 4 ≤2 ≤2 ≤2 ≤2 ≤2

AM 8 8 4 4 8 ≤2 4 8 8 4

CN 8+ 8+ 16+ 16+ 16+ 8+ 16+ 8+ 8+ 8+

CFO ≤0.5 1 ≤0.5 ≤0.5 1 ≤0.5 ≤0.5 1 1 ≤0.5

CPD ≤0.25 ≤0.25 0.5 0.5 0.5 ≤0.25 0.5 ≤0.25 ≤0.25 ≤0.25

CAZ ≤0.12 ≤0.12 ≤0.12 ≤0.12 0.25 ≤0.12 ≤0.12 ≤0.12 ≤0.12 ≤0.12

CFT ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1

C 8+ 16+ 8+ 4 16+ ≤2 4 4 8+ 4

CIP ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06 ≤0.06

DO 1 1 1 ≤0.5 1 ≤0.5 1 1 1 1

ENR ≤0.12 ≤0.12 ≤0.12 ≤0.12 ≤0.12 ≤0.12 ≤0.12 ≤0.12 ≤0.12 ≤0.12

GM ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1

IPM ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25

MRB ≤0.5 ≤0.5 ≤0.5 ≤0.5 ≤0.5 ≤0.5 ≤0.5 ≤0.5 ≤0.5 ≤0.5

FT ≤16 ≤16 ≤16 ≤16 ≤16 ≤16 ≤16 ≤16 ≤16 ≤16

SXT ≤20 ≤20 ≤20 ≤20 ≤20 ≤20 ≤20 ≤20 ≤20 ≤20

*AN, Amikacin; AMC, amoxicillin-clavulanic acid; AM, ampicillin; CN, cefalexin; CFO, cefovecin; CPD, cefpodoxime; CAZ, ceftazidime; CFT, ceftiofur; C, chloramphenicol; CIP,

ciprofloxacin; DO, doxycycline; ENR, enrofloxacin; GM, gentamicin; IPM, imipenem; MRB, marbofloxacin; FT, nitrofurantoin; SXT, trimethoprim-sulfamethoxazole.
+Antimicrobial resistance.
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To establish the influence on AM usage of animal
maintenance-related variables in BPS, elevation (meters
above sea level), and surface (acres), a principal component
analysis (PCA) was carried out using “deftools,” “factoextra,”
and “ggbiplot” packages of R statistical software (58). PCA
was also performed in order to determine the existence
of grouping among the same variables on BPS that report
different AM management intervention (AM, medicinal
herbs, mixed, no intervention). Given the nature of the
dependent variable (use AM or not), PCA was used as an
indicator of continuous variables to include in the multivariable
logistic model.

Due to the nature of the information (binary or dichotomous
outcome) a logistic regression model analysis was fitted to
investigate factors that determine AM use in BPS, where the
response can have only two values, representing the use (Y =

1) or not (Y = 0) of antimicrobials (AM). The construction of
the model was performed following previously reported methods
(11), briefly, as a first step a simple logistic regression was
performed in order to select the variables to be included in
further analyses, including the results from PCA. Variables with
a p ≤ 0.15 in this preliminary analysis were selected for the
multivariable logistic regression model. The model with the
lowest log Likelihood Ratio Test (LRT) was selected for the final
model (59), using a stepwise backward elimination procedure
removing those variables whose regression coefficients were not
significant (p > 0.05). The convergence of the models was set
at epsilon (ε) = e−16, in order to present stricter conditions
for determining statistically significant factors. Non-significant
variables whose elimination induced a change of 20% in the

regression coefficients of the significant variables when removed,
were retained in the model to adjust for confounding factors.
Biologically and epidemiologically coherent interactions were
evaluated (60). Goodness-of-fit was assessed using the Hosmer
and Lemeshow Test (61, 62). This considering the role of the
misuse or misinformed use of AM in the potential generation
of AMR among the circulating pathogens in these neglected
animal population.

RESULTS

Seven hundred and twelve (712) samples were collected from
animals raised in BPS (63) located in the Metropolitana region,
Chile. Of these, 531 (74.6%) corresponds to hens samples,
followed by 55 (7.7%) duck samples, 25 (3.5%) swine samples,
20 (2.8%) goose samples, and 81 (11.4%) samples belonging
to small ruminants, horses, and other domestic animals that
represent <2% of the total samples each one. A total of 20
samples (2.81%) belonging to 10 BPS (11.76%) were detected
positive to STEC by PCR. Positivity to STEC was detected in
9 sheep (45%), 3 dairy cattle (15%), 3 ducks (15%), 2 goats
(10%), 2 hens (10%), and 1 swine (5%). No environmental
samples were detected as STEC positive. From the PCR positive
samples, only 13 colonies (1.83%), each from different samples,
were successfully isolated and of them 10 (1.40%) proceed to
MIC and WGS analysis. Samples that have a stx positive PCR,
but no isolation was possible, the diagnosis was considered
as presumptive, because other bacterial species can also carry
stx genes.

TABLE 4 | Summary table of principal component analysis (PCA), indicating the importance of each quantitative variable of animal maintenance in BPS, elevation (meters

above sea level) and surface (acres) on the use of antimicrobials, standard deviation (SD), and the percentage of explanation of variation linked to each principal

component.

Quantitative

variablesa
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Principal component eigenvectors

Elevation 0.17 −0.71 0.00 −0.08 0.24 −0.59 0.03 −0.18 −0.17 −0.04 0.02

Surface −0.73 0.18 −0.43 0.22 0.03 −0.25 −0.10 0.25 −0.01 −0.11 −0.25

N◦ of birds −0.45 0.16 −0.10 0.39 0.71 0.16 0.19 −0.20 0.02 0.05 0.03

N◦ of swine −0.37 −0.60 0.36 −0.04 −0.04 0.02 0.50 0.33 0.12 −0.00 0.00

N◦ of horse −0.52 0.10 −0.26 −0.71 −0.02 0.03 0.17 −0.30 0.11 0.07 −0.11

N◦ of sheep −0.54 0.03 −0.24 0.45 −0.56 −0.14 0.17 −0.26 0.01 0.11 0.10

N◦ of goat −0.62 −0.46 0.29 0.01 0.08 −0.06 −0.42 −0.01 0.35 0.07 0.07

N◦ of cow −0.82 0.12 −0.21 −0.29 0.04 0.05 −0.08 0.19 −0.27 −0.07 0.24

N◦ of rabbit −0.39 −0.66 0.34 0.10 −0.12 0.36 −0.13 −0.16 −0.29 −0.01 −0.15

N◦ of dog 0.29 −0.50 −0.70 −0.02 0.05 0.11 −0.06 0.19 −0.04 0.36 −0.01

N◦ of cat 0.23 −0.57 −0.65 0.05 −0.03 0.22 0.02 −0.09 0.15 −0.33 0.06

Principal component eigenvalues

SD 1.67 1.47 1.27 1.00 0.95 0.81 0.75 0.71 0.60 0.53 0.42

% of Variance 25.35 19.60 14.56 9.17 8.25 5.91 5.12 4.59 3.25 2.58 1.60

Cumulative % 25.35 44.95 59.52 68.69 76.94 82.86 87.98 92.57 95.82 98.40 100.00

aPC, Principal component; SD, Standard deviation.
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FIGURE 1 | Distribution of antimicrobial use in BPS from Metropolitana region, on the first two principal components (PC) extracted from survey response on Elevation

(meters above sea level), Surface (acres), N◦ of Poultry, N◦ of Cattle, N◦ of Equine, N◦ of Ovine, N◦ of Goat, N◦ of Swine, N◦ of Rabbit, N◦ of Dog and N◦ of Cat

maintained at BPS. Space distribution of quantitative animal and BPS-related variables according to dimensions 1 and 2 (Dim 1 and 2), plotted as their eigenvectors.

From the original positive samples, a total of 10 STEC positive
samples were analyzed by MIC. Detail of AMR is summarized
in Table 2. The STEC strains were susceptible to most of the
AM included in the analysis. However, all of them were resistant
to cephalexin (100%, n = 10) and five strains were resistant to
chloramphenicol (50%).

From the 13 STEC strains, 10 were successfully sequenced and
upload to Enterobase repository (https://enterobase.warwick.
ac.uk/species/index/ecoli) (Supplementary Material 1). Whole
Genome sequences has also been deposited at GenBank under the
accession JAEDXK000000000 to JAEDXT000000000, BioProject
PRJNA682583. Molecular serotyping detected by WGS showed
the presence of non-O157 strains, predominantly O113:H21

(40%, n = 4), O76:H19 (40%, n = 4), O91:H14 (10%, n = 1),
and O130:H11 (10%, n = 1) serotypes. Additionally, stx1 was
detected in all isolated strains, stx2 was only detected in two
strains (Table 3). The Stx subtype most frequently detected was
stx1c (80%, n= 8), followed by stx1a (20%, n= 2), stx2b (10%, n
= 1), and stx2d (10%, n= 1) (Table 3). Using the ABRicate tools,
all strains harbored the chromosomal blaAmpC (100%, n = 10).
No other AMR encoding genes were detected.

Variance (measure by eigenvalues) for the first four
components (PC1–PC4), also named dimensions (dim) were >1
and they explained around 68% of the variability found in the use
of AM in BPS from Metropolitana region. These components
allowed us to summarize our data into multivariate linear
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FIGURE 2 | Distribution of antimicrobial use in BPS from Metropolitana region, on the first two principal components (PC) extracted from survey response on Elevation

(meters above sea level), Surface (acres), N◦ of Poultry, N◦ of Cattle, N◦. of Equine, N◦ of Ovine, N◦ of Goat, N◦ of Swine, N◦ of Rabbit, N◦ of Dog, and N◦ of Cat

maintained at BPS. Space distribution of quantitative variables according to dimensions 1 and 2 (Dim 1 and 2), plotted as their eigenvectors and differentiated by type

of intervention (AM, medicinal herbs, mixed, no intervention).

regression analyses, without losing information or minimizing
such loss. In particular, the values for these components
(expressed as percentages) were 25.35, 19.60, 14.56, and 9.17%,
respectively. Eigenvectors (Table 4) from these four components
confirm that some of this variable are related to antimicrobial
use by the BPS owner, specifically: PC1 is dominated by the
N◦ of cattle and surface (acres), indicating that smaller BPS
and the ones with lower number of cattle tend to have more
chances of using AM; PC2 is dominated by the elevation of
the BPS (Figure 1), this means that BPS located closer to 0
meters above sea level have more chances of using AM; PC3
is dominated the number of domestic animals (dogs and cats),
indicating that the presence of pets, decrease the probability
of AM usage at BPS; and PC4 is dominated by the number
of horse, indicating that lower number of horses increase
the risk of AM usage. No evidence of significative grouping
in terms of different AM management intervention in BPS
was detected (Figure 2). Furthermore, PCA results were used

to determine the inclusion of quantitative variable into the
multivariable model.

Variables retained in the final multivariable logistic regression
model for antimicrobial use in BPS located in Metropolitana
region can be observed in Table 5. A total of 97 variables
were collected throughout the survey. Only eight variables were
retained in the final model. Among them, the recognition of
diseases in animals (p = 0.038; OR = 9.382; 95% CI: 1.138–
77.345), the maintenance of poultry and/or swine in neighboring
BPS (p = 0.006; OR = 10.564; 95% CI: 1.996–55.894), the visit
of Official Veterinary Officials (p = 0.010; OR = 76.178; 95%
CI: 2.860–2,029.315) and the close contact between different
animal species in the BPS (p = 0.021; OR = 9.030; 95% CI:
1.385–58.888) increase significantly the risk of antimicrobial use
by BPS owners. Several non-significant variables were retained
in the final model, in order to account for potential confounding
factors. Interaction terms were evaluated but none of them was
significant at the LRT.

Frontiers in Veterinary Science | www.frontiersin.org 7 January 2021 | Volume 7 | Article 595149

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Pavez-Muñoz et al. Antimicrobial Resistance in BPS STEC-Strains

DISCUSSION

Previous evidence reported the social and economic impact that
BPS play in rural households, representing a risk for animal
and human health by becoming a hot-spot of human-wildlife-
domestic species contact (9, 10). One of the main features of BPS
is low biosecurity measures or standards, and the maintenance of
several animal species. Of these, small-scale poultry production is
the most important, together with swine, cattle, and other small
ruminants (11). These production systems have been linked to
the occurrence of several zoonotic and non-zoonotic outbreaks
worldwide (11, 14, 15, 64). BPS maintain a wide spectrum of
species that harbor STEC, including cattle (22), sheep and goats
(23, 65), and poultry and captive wild birds (11, 24). Positivity
reported by this study (11.76%) is similar to what has been
reported in productive animal species (cattle and swine) under
industrialized conditions in Chile (7). As far as we know, this is
the first report of STEC positivity in animals raised under BPS
condition in Chile, detecting positivity in sheep (35%), cattle
(25%), duck (15%), goat (10%), hens (10%), and swine (5%),
highlighting the importance of BPS in terms of animal and
public health. Serotypes reported by this study are commonly

TABLE 5 | Results of the multivariable model for antimicrobial usage in BPS from

Metropolitana region, Chile.

Variable Classification OR 95% CI p-value

Lower Upper

(Intercept) 0.006 0 0.125 0.001

Last poultry

keeping

Current Reference

0–1 year 0.609 0.081 4.579 0.63

2–5 years 5.146 0.547 48.455 0.152

> 5 years 14.345 1.279 237.054 0.063

N◦ of sheep 0.968 0.655 1.43 0.869

Responsible

for poultry

management

Family Reference

Man 1.101 0.156 7.755 0.923

Woman 0.194 0.037 0.939 0.054

Recognize No Reference

diseases in

animals

Yes 9.382 1.138 77.345 0.038

Veterinary/ No Reference

zootechnician

visit

1 per year 0.113 0.004 2.971 0.191

more than

one time

per year

2.673 0.112 63.824 0.544

Neighbors No Reference

keep poultry

and/or swine

Yes 10.564 1.996 55.894 0.006

Visit of the No Reference

Official

Veterinary

Service

Yes 76.178 2.86 2029.315 0.01

Animal No Reference

contact in

BPS

Yes 9.03 1.385 58.888 0.021

detected in animals or animal products (66, 67), and linked to
animal and human diarrhea (68) and HUS, under particular
conditions (69, 70). It is important to highlight that no O157
STEC strains were detected in this study, high morbidity, and
mortality serotype linked to animal transmission (71). The stx
subtype genes profile detected in this study, is consistent with
that reported previously for most STEC isolates, both in animals
from intensive farming systems and people (7, 72). Even so, it is
important to highlight that O113:H21 have been linked to severe
human diseases and HUS (73).

Little information is known regarding AMR of STEC strains
and other enteropathogens isolated from animals raised in
BPS in Latin America. Regarding phenotypic AMR in the
STEC isolated strains analyzed, our results show phenotypical
resistance against cephalexin in all the STEC strains isolated from
animals raised in BPS, similar results to reports for cattle and
swine samples under industrialized production systems in the
same region of Chile (47). Even though cephalexin resistance
is reported as a common feature in STEC isolates and is an
antimicrobial of non-frequent use in animals or humans, non
all STEC strains show this feature (74), suggesting that this
resistance pattern is a threat to global health (75, 76). This
could be due to the chance of exchanging resistance elements
with other bacteria that share hosts with STEC or throughout
other mechanisms (77). Similar resistance patterns, including β-
lactamases and particularly to cephalexin, has been described for
piglets, humans, free-range birds, water sources, and even STEC
strains isolated from flies (78–80). Resistance to chloramphenicol
was reported in five STEC strains, being different from that
reported for industrialized species in Chile, where AMR was
detected for a wider variety of drugs at phenotypical analysis
(47). Resistance to the phenicols is mainly due to the presence
of cat genes, encoding for chloramphenicol acetyltransferases,
specific to chloramphenicol, or to the presence of cml genes,
encoding for efflux pumps, among othermechanism, such as nfsB
nitroreductase expression (81).

A gap in the knowledge is recognized in terms of AM usage
in BPS (82, 83), leading to a potential misuse of AM in these
settings. AM usage as disease preventers under BPS or similar
low technification productive systems is well described (84, 85),
based on the socio-economic impact of this animal housekeeping
production (10). Other use reported is as growth promoters,
reported in small-scale poultry production systems improving
feed conversion ratios and overall productivity (63, 86), even
when it has been banned in several countries, including Chile
(87, 88). A lack of understanding of the public health outcomes
related to BPS antimicrobial usage in this neglected population,
including both animal and humans (89, 90), creates a perfect
scenario for antibiotic misuse resulting in AMR generation on
high impact pathogens (91). Recent reports highlights the use
of AM in animal production under low and middle-income
countries, a proxy to the BPS conditions, reporting that AM use
was greatest in chickens, followed by swine, and dairy cattle,
however, per kg of meat produced, AMU was highest in swine,
followed by chickens and cattle (92), situation that could be
similar under Chilean BPS conditions, if this neglected animal
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population was involved actively in surveillance programs of
AMR or animal health (93, 94).

The PCA analysis suggest that some of the continuous variable
measures during sampling, can have implications on the decision
of AM usage, among them, the number of cattle raised at the BPS
shows importance on the determination of AM use, as reported
widely, mainly linked to the eagerness of livestock producers to
meet high demand by using AM as promoters of animal growth
and disease prevention, arising AMR (95), as it has been reported
for E. coli in calves from India, observing presence of several
resistance genes for carbapenems, drugs not used in food animal
treatment, hence carbapenem-resistant strains in calves could
possibly by originated from the natural environment or human
contact (96). It has also been described to BPS pig farmers, that
presents low training on animal raising, with low knowledge on
AM, engaging in several irrational AM use practices (97). Surface
of the BPS, measure on acres, can be a proxy of flock size or
total number of animals raised in the production systems, as
previously reported (98), unit size as been reported as an element
of inclusion for surveillance of AM usage in animal production
from low and middle-income countries (99).

Even when no significant result was detected for the
maintenance of a wide diversity of animal species in a BPS
and its association with AM usage, PCA and evidence suggest
an important role in the maintenance and transmission of
several pathogens, particularly STEC, as all these species have
been reported has of STEC and Salmonella spp. reservoirs in
Chile and worldwide (7, 11, 100, 101). In this sense logistic
multivariable model highlights the role of within-BPS animal
contact increasing the risk of AM usage 9.03 times, perhaps due
to an increase in the probability of becoming infected with a
pathogen, potentially leading to clinical signs or a decrease in
the productive indicators (102), also it can be related to the
presence of several potential host and therefore reservoir for a
wide number of pathogens (103, 104).

Logistic multivariable regression model, also detected
significant association between recognizing diseases in animals,
increasing the probability of AM usage in over 9.38 times, this
could be explained in a two-way direction, either BPS owner
are aware of disease and also on how to treat infected animals
(105, 106) or these treatments are due to a lack of knowledge
on how to deal with diseases and are linked with misuse of
AM, potentially leading to the development of AMR (107, 108).
Linked to this risk factor, our model detected statistically
significant association of AM usage with the visit of a Veterinary
Officer to BPS, establishing an increase in the probability of
AM usage over 70 times, it is important to highlight that
Veterinary Officers only visit BPS in the presence of an outbreak
of some high impact pathogens (e.g., highly pathogenic avian
influenza, PRRS) (14, 15) and only return to BPS if sample
results are positive to these pathogens, under this conditions,
AM usage can be increased or explained due to BPS sanitary
status, but should be following the guidelines and assistance of
the Veterinary Officers. Model also detected significance to a
10.56 increase in the probability of AM usage when neighbors
of a BPS also maintain hens or swine, the existence of animals
in the vicinity plus low biosecurity measures increase the

chance of pathogen transmission (11, 109) due to free animal
movements, leading to the potential use of AM (110, 111), other
potential explanation to this phenomena, could be related to BPS
location within family groups, working under the existence of
cooperation groups or by social/cultural influence of neighbors
(112, 113).

This study corresponds to the first AMR report (phenotypic
and genotypic) in circulating STEC strains under backyard
production systems in Chile and the first epidemiological
approach to understand AM usage under this animal
production conditions.
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